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For a large number of grid infrastructure projects, various interrelationships may have an
impact on portfolio optimization to a certain extent. At present, there are few qualitative
analyses considering linkages among massive power grid infrastructure projects. In order
to overcome the limitations of the existing studies, this paper proposes a method for
extracting the correlation characteristics of massive power grid infrastructure projects
based on relational graph convolutional neural network (R-GCN). The correlation
characteristics of power grid infrastructure projects with different voltage levels,
engineering attributes and project properties are comprehensively considered. R-GCN
generalizes the traditional graph convolutional neural network and can process multi-
relational data, building an encoder and identifying multiple relations between entities in the
project library by accessing different layers to solve corresponding modeling problems, so
as to accurately identify the linkages among a large number of power grid infrastructure
projects, and further improve the rationality of portfolio optimization.

Keywords: deep learning, correlation analysis, characteristics extraction, infrastructure project, power grid
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INTRODUCTION

As the energy revolution continues to advance in depth, the electric power structure will gradually
shift from traditional fossil fuel-based power to clean and low-carbon renewable energy power
(Erdiwansyah et al., 2021; Zhang et al., 2022). Power grid enterprises shoulder the heavy burden of
the national economy and people’s livelihood, and the construction of power grid infrastructure
projects has a subtle influence on the security, stability and development of the construction area. In
the face of massive infrastructure projects to be selected from various prefectures and cities across the
province, power grid companies are facing huge challenges in coordinating the construction of
regional and provincial main grid projects and distribution network projects among cities (Liu et al.,
2017; Chen et al., 2020; Liu et al., 2021).

Although the current power grid infrastructure demand is huge, the actual available funds of
power grid companies are often lower than the actual construction demand (Chen et al., 2020).
Therefore, how to use limited resources such as capital, manpower and equipment for the most
valuable projects is of great significance to power grid planning. For massive power grid
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infrastructure projects with different voltage levels, engineering
attributes and project properties, there may be a special
relationship among some projects (Sheng et al., 2020; Li et al.,
2021). At this point, whether a project is constructed or not has
important leading significance on whether and when other
following projects are constructed. Moreover, a lot of
manpower and time will be cost to identify the linkages
among projects manually, and it is difficult to cover all aspects
of the attributes and features of the projects to make a
comprehensive consideration. Therefore, an intelligent
correlation characteristics extraction method is of great
necessity. At present, the existing studies have not considered
the possible interrelationships among projects systematically, and
few literatures have comprehensively analyzed the correlation
characteristics among massive power grid infrastructure projects
(Xiao et al., 2019; Sheng et al., 2020; Yang et al., 2021). In this
context, fully considering the correlation characteristics among
the massive infrastructure optimization projects and accurately
identifying the linkages among different projects can provide
more instructive opinions for the subsequent investment
portfolio optimization (Huang et al., 2020; Yang et al., 2021).

In this paper, a R-GCN-based identification method of
linkages among massive infrastructure projects is designed for
power system planning which satisfies the growth of
infrastructure demand and enhances investment benefit. The
key contributions of this study are twofold:

1) From the perspective of the engineering attributes of
infrastructure projects and the inherent attributes of the
project itself, four project entity node types for massive
power grid infrastructure projects are established: power
transformation projects, transmission line projects, power
transmission and transformation projects, and supporting
transmission projects, as well as four specific linkages:
mandatory relation, coexistence relation, interdependence
relation, and mutual exclusion relation.

2) Based on the R-GCN methodology (Schlichtkrull et al., 2017),
an identification method of linkages among massive power
grid infrastructure projects is proposed, consisting of four
parts: an input of original triples of the entity node feature
vector of one project-the relation-the entity node feature
vector of another project, a R-GCN encoder, a DistMutlt
decoder and a cross-entropy-based boundary loss calculation.

LINKAGES AMONG MASSIVE
INFRASTRUCTURE PROJECTS

While portfolio optimizing, the candidate project library covers a
large number of power grid infrastructure projects. From the
perspective of project properties, it includes power
transformation projects, transmission line projects, power
transmission and transformation projects with voltage levels of
500kV, 220kV, 110kV, and 35 KV (Xiao et al., 2019; Sheng et al.,
2020; Yang et al., 2021). Each type of project covers newly-started
projects, continued-construction projects, expansion projects,
and renovation projects (Hong et al., 2021). The overall

number of projects is extremely huge, and the relation among
projects is intricate. The choice of which projects to build and the
order of construction will affect the selection of subsequent
projects and the management of the construction period (Xiao
et al., 2019; Hong et al., 2021; Yang et al., 2021). Therefore, it is
necessary to mine deeper into the potential linkages among
projects. Considering the engineering attributes and project
properties of massive power grid infrastructure projects with
multiple voltage levels, the correlation characteristics are
analyzed, and finally four types of project entity nodes are
formulated: power transformation projects, transmission line
projects, power transmission and transformation projects, and
supporting transmission projects, as well as four specific linkages:
mandatory relation, coexistence relation, interdependence
relation, and mutual exclusion relation, as shown in Figure 1.

Mandatory Relation
The portfolio optimization of power grid infrastructure projects
does not only focus on one single project, but comprehensively
considers the regional grid as a whole. Some of the projects may
play a crucial role in the safety and reliability of the regional grid,
and should be mandatorily selected, regardless of the
comprehensive evaluation results. Such projects must be
constructed and put into operation, and would certainly be of
the highest priority. The mandatory projects cover three voltage
levels of 500kV, 220kV for regional and provincial main grids and
110kV for distribution network. Furthermore, the project
properties cover power supply delivery projects, electric
railway supporting projects, UHV supporting projects and new
energy collection stations and other power grid infrastructure
projects.

Coexistence Relation
The coexistence relation means that the two projects need to
cooperate with each other to make sense, that is, both projects
either going into production or not being selected at all. While
building a new power transmission and transformation project,
substations and transmission lines in the corresponding area will
be constructed. In order to ensure the delivery of electric energy, it
is necessary to construct supporting transmission projects
corresponding to each voltage level. For example, a 220kV
power transmission and transformation project and the 110kV
transmission project of the 220kV substation are coexistent
projects.

Interdependence Relation
The interdependence relation refers to the fact that there is a
sequential construction sequence between two projects in the
aspects of time sequence or space for construction. One project
must be arranged after another project is put into operation. On
one hand, due to the large scale, technical difficulty and long
construction period of power grid infrastructure projects, in order
to avoid and reduce risks, the power supply delivery and
transmission line projects of the regional and provincial main
grids are implemented in two or three phases, so that there is an
interdependence relation between the phased projects. On the
other hand, multi-circuit lines are established for the newly-
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started and renovation transmission line projects of the regional
and provincial main grids and part of the 110kV distribution
network, which are spatially consistent. These projects are
interdependent, working together to improve the security,
stability and reliability of power grids.

Mutual Exclusion Relation
The mutual exclusion relationship means that two projects are
conflicting and cannot be selected simultaneously. Due to the
huge number of power grid infrastructure projects, there may be
risks that projects will be recorded repeatedly, the coverage
regions will overlap, and projects with the same function may
exist. In order to avoid unnecessary waste of resources caused by
repeated construction, such projects should be selected on merit.

RELATIONAL GRAPH CONVOLUTIONAL
NEURAL NETWORK ENCODER

Input
The input of the R-GCN-based identification method is defined
as the original triples of the entity node feature vector of one
project-the relation-the entity node feature vector of another
project, which is essentially composed of limited power grid
infrastructure projects and limited linkages among these power
grid projects. Therefore, the input ftri(y) can be summarized as
the following expression:

ftri(y) � {Vpro, Elin, XV, AV} (1)
Where Vpro � {vi} ∈ Rn denotes the set of massive power grid
project entity nodes and n is the number of all power grid project
entity nodes of Vpro. Correspondingly, Elin is the set of defined
linkages among massive power grid infrastructure projects. And
XV � {xi,j} ∈ Rn×d is the feature matrix of power grid project
entity nodes of Vpro, with d being the sum of the number of
existing project properties and the number of existing
engineering attributes of massive power grid infrastructure
projects (Wang et al., 2021). That is to say, xi,j denotes the

value of the j-th attribute of the power grid project entity node i of
Vpro. And AV is the adjacency matrix of Vpro, which represents
the linkage between every two power grid project entity nodes.
The definition of the adjacency matrix AV � {ai,j} ∈ Rn×n is
shown as follows:

ai,j � { 1, if project entity node vi is connected with project entity node vj
0, if project entity node vi is not connected with project entity node vj

(2)

Based on the above definition, the input ftri(y) can be
converted into a spectral signal f̂tri(y) by Graph Fourier
Transform, as shown in the formula 3.

f̂tri(yi) � UT
Vftri(y) (3)

Where ftri(y) is the input of defined original power grid project
triples and f̂tri(y) is corresponding spectral input. UT

V is the
transposed eigenvector matrix which originates from the eigen-
decomposition of the normalized Laplacian matrix LV which
corresponds to the adjacency matrix AV (Ngo et al., 2020).

Relational Graph Convolutional Neural
Network
Based on the graph convolution methodology and the Graph
Fourier Transform, the graph convolution of the input of
defined original power grid project triples can be realized in
the standard orthogonal space of the spectral domain, as
shown below:

f̂tri(y)pGg � F−1(F(f̂tri(y)) ⊙ F(g))
� UV(UT

Vf̂tri(y) ⊙ UT
Vg) (4)

Where g is the graph convolution kernel, pG is the graph
convolution operator, and ⊙ denotes the Hadamard product.

After converting the Hadamard product into the matrix
multiplication, the graph convolution of the input of original
power grid project triples is changed into the following formulas:

FIGURE 1 | Linkages among massive infrastructure projects.

Frontiers in Energy Research | www.frontiersin.org May 2022 | Volume 10 | Article 8881613

Lu et al. R-GCN-based Correlation Extraction

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


f̂tri(y)pGg � UVgθU
T
Vftri(y) (5)

UT
Vftri(y) � [θ1, θ2, ..., θn]T (6)
g � diag([θ1, θ2, ..., θn]) (7)

Where θ1, θ2, ..., θn are the parameters of the graph convolution
kernel g.

Then the feature matrix of power grid project entity nodes
output by the graph convolutional neural network at layer l + 1
can be obtained and represented by the following formula (Peng,
2020):

Hl+1
j � τ⎛⎝UV∑s

i�1
gl
i,jU

T
VH

l
i
⎞⎠, j � 1, 2, ..., t (8)

Where Hl
i ∈ Rn is the value of the i-th input attribute of all the

power grid project entity nodes output at layer l, s is the
number of dimensions of input attributes of all the power grid
project entity nodes at layer l + 1, and similarly t is the number
of dimensions of output attributes of all the power grid project
entity nodes at layer l + 1. gl

i,j is the spectral graph convolution
kernel and τ denotes the typical non-linear activation function.

Although the above graph convolutional neural network could
be applied to form a multi-layer convolutional neural network, it
is not reliable enough and eigen-decomposition is required in the
above-mentioned calculation process and might cause the high
complexity of calculation. In order to make up for the above
shortcomings, the Chebyshev neural network is introduced to
parameterize all the parameters to be learned of the graph
convolution kernel g (Li et al., 2020).

g � g(Λ) ≈ ∑K−1

k�0
θkTk(Λ̂) (9)

Λ̂ � 2Λ
λmax

− In (10)

Where θk denotes the coefficients of Chebyshev polynomial.
If the Chebyshev polynomial of the eigenvalue block-diagonal

matrix is defined as the graph convolution kernel, the graph
convolution of the input of original power grid project triples can
be computed by the following formula:

ftri(y)pGg � UV
⎛⎝∑K−1

k�0
θkTk(L̂)⎞⎠UT

Vftri(y) � ∑K−1

k�0
θkTk(UVL̂U

T
V)ftri(y)

� ∑K−1

k�0
θkTk(~L)ftri(y) (11)

Moreover, after the introduction of the Chebyshev neural
network, the feature matrix of power grid project entity nodes
output by the graph convolutional neural network at layer l + 1 is
shown below:

Hl+1
j � τ⎛⎝UV∑s

i�1
∑K−1
k�0

(θkTk(L̂))UT
VH

l
i
⎞⎠

� τ⎛⎝∑s
i�1

∑K−1
k�0

(θkTk(~L))Hl
i
⎞⎠, j � 1, 2, ..., t (12)

In order to further simplify the calculation process, the first-
order approximation is also introduced to the above graph
convolutional neural network. Fixing the maximum eigenvalue
of the normalized Laplacian matrix LV as constant two (Li et al.,
2020; Jalali et al., 2021), the formula 11 and formula 12 can be
simplified as follows:

ftri(y)pGg � θ0ftri(y) − θ1D
−1/2
V AVD

−1/2
V ftri(y) (13)

Hl+1
j � τ⎛⎝∑s

i�1
(θ0 − θ1(LV − In))Hl

i
⎞⎠, j � 1, 2, ..., t (14)

To avoid the problem of overfitting, let θ � θ0 � −θ1. And then
the formula 13 and formula (14) can be further simplified, as
shown below:

ftri(y)pGg � θ(In +D−1/2
V AVD

−1/2
V )ftri(y) (15)

Hl+1
j � τ⎛⎝∑s

i�1
θ ~D

−1/2
V

~AV
~D
−1/2
V Hl

i
⎞⎠, j � 1, 2, ..., t (16)

On the basis of the above simplified graph convolutional
neural network, the relational graph convolutional neural
network comprehensively considers the connection mode
with neighbor power grid project entity nodes under
different types of defined linkages and adds a special self-
connection to each power grid project entity node so that the
information about all the power grid project entity nodes at
each layer can be effectively transmitted (Gusmao et al., 2021).
Consequently, the feature matrix of power grid project entity
nodes output by the relational graph convolutional neural
network at layer l + 1 is defined as follows:

Hl+1
j � σ⎛⎝∑

r∈R
∑

m∈Nr
i

1
ci,r

Wl
rH

l
m +Wl

oH
l
i
⎞⎠, j � 1, 2, ..., t (17)

Where σ is the activation function, Wl
r is the regularization

weight matrix of the corresponding power grid project entity
nodes, andWl

o is their own weight matrix. r ∈ R represents the
r-th linkage of the set of all defined linkages between related
power grid project entity nodes and m ∈ Nr

i denotes the set of
neighbor nodes of the specific power grid project entity node i
at layer l + 1 under the specific linkage r. Specially, ci,r is a
normalized constant that can either be learned or chosen in
advance, here let ci,r � |Nr

i |.
However, when applying the formula 17 to the input of

defined original power grid project triples which is essentially
a multi-relational dataset, the number of parameters of the
relational graph convolutional neural network will increase
rapidly with the increase of the number of defined linkages
among massive power grid infrastructure projects, which can
easily lead to the problem of overfitting. To address this issue, we
introduce one method—basis-decomposition—for regularizing
the weights of R-GCN-layers (Schlichtkrull et al., 2017). With the
basis-decomposition, each Wl

r in formula 17 is defined as
follows:
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Wl
r � ∑B

b�1
alrbC

l
b (18)

WhereWl
r is a linear combination of the basic transformationsCl

b
with the coefficients alrb which are only related to the
corresponding linkage r between specific power grid
infrastructure projects.

A R-GCN-BASED IDENTIFICATION
METHOD OF LINKAGES

The R-GCN-based identification method of linkages among
massive power grid infrastructure projects consists of four
parts: an input of original triples of the entity node feature
vector of one project-the relation-the entity node feature
vector of another project, a R-GCN encoder, a DistMutlt
decoder and a cross-entropy-based boundary loss calculation,
as shown in Figure 2.

Firstly, the original triples of the node feature vector of one
project-the relation- the node feature vector of another project are

used as both positive and negative samples to be the input of the
relational graph convolutional neural network encoder. After a
series of operations of feature selection such as aggregation,
updating and circulation, the project entity node feature vector
output by the R-GCN encoder which can extract features from
the original triples input are combined with the candidate
linkages to form the recombinant triples.

Next, we use the DistMult decoder as the scoring function to
score the recombinant triples and sort scores in an ascending
order (Yu et al., 2021). A recombinant triple is scored as
formula (19).

ftri(s, r, o) � HT
s RrHo (19)

WhereHi is the real-valued vector output by the relational graph
convolutional neural network encoder and is corresponding to
each project entity node vi. Here we have Rr is the matrix vector
related to the specific linkage r.

Finally, the boundary loss calculation based on the cross-
entropy loss is performed to make the score of the observable
positive samples of the model higher than that of the
negative samples. By optimizing the cross-entropy loss

FIGURE 2 | The overall process of the proposed identification method.
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function, the result of the predicted linkages with the highest
score is the final output. The cross-entropy loss function is
shown below:

L � − 1

(1 + ω)∣∣∣∣Ê∣∣∣∣ ∑
(s,r,o,y)∈T

y log(ftri(s, r, o))
+(1 − y)log(1 − l(ftri(s, r, o))) (20)

Where T represents the set of triples which covers both the
positive samples and the negative samples, |Ê| is an incomplete
set of the linkages between projects, and l(p) is the logistic
sigmoid function. We take y as an indicator set to y � 1 for
positive samples and y � −1 for negative ones, which indicates
the status of each triple.

The overall training process of the R-GCN-
based identification method of linkages among
massive power grid infrastructure projects is shown in
detail as follows:

1) The related parameters of the R-GCN encoder are initialized
and the dataset of massive power grid infrastructure projects is
sorted out to get the original triples input.

2) The dataset of original triples is input onto the R-GCN
encoder to perform a series of operations of feature
selection and output the feature matrix of the set of project
entity nodes.

3) The project entity node feature vector output by the R-GCN
encoder is combined with the candidate linkages between
projects to form the recombinant triples.

4) The DistMult decoder is used as the scoring function to score
the recombinant triples and sort scores in an ascending order.

5) The boundary loss calculation which is based on the cross-
entropy loss function is performed. Ensure that the score of
the observable positive samples of the model is higher than
that of the negative samples.

6) The results of predicted linkages among massive power grid
infrastructure projects with the highest score are output.

7) The error between the predicted linkages and the actual
linkages is calculated.

8) Whether the conditions of training termination are met is
judged. If yes, the training process is terminated. If not, the
error is used to update the weight matrix of the R-GCN
encoder and then the process will jump to the second step.

CASE STUDIES

On the basis of the above-mentioned R-GCN-based method for
identifying the correlation characteristics of massive power grid
infrastructure projects, the candidate project library is divided
into training set, test set and verification set in a ratio of 8:1:1 to
train the model, the predicted results on the test set are presented
in Table 1:

As is shown in Table 1, the proposed method can effectively
identify the linkages among massive power grid infrastructure
projects. Where the deviation is defined as the difference between
the predicted value and the actual value as a percentage of the

TABLE 1 | The testing results of the R-GCN-based identification method.

The linkages Mandatory relation Coexistence relation Interdependence relation Mutual exclusion relation

Number Of Actual Triples 31 63 87 23
Number Of Predicted Triples 26 57 80 20
Deviation (%) 16.13 9.52 8.05 13.04

FIGURE 3 | Predicted linkages among infrastructure projects.
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number of actual triples. For the four linkages, the deviation
values range from just below 8% to above 16%, that is, the overall
accuracy rate is as high as 90%, which proves that the proposed
method is feasible. Furthermore, with the increase of the sample
size, the accuracy rate of the R-GCN-based method for
identifying the correlation characteristics on the candidate
project library is improving. In conclusion, when the sample
size exceeds 30,000, the final accuracy rate can reach 94%,
verifying the effectiveness of the proposed method.

Based on the existing engineering attributes and project
properties, the candidate project library is converted into the
format of original triples as an input of themodel, and some of the
predicted linkages among massive infrastructure projects are
shown in Figure 3. It is not difficult to find that there are
complex relations among the massive infrastructure projects,
and the proposed method can quickly identify the linkages
and extract the correlation characteristics, greatly improving
the degree of intelligence for power grid infrastructure planning.

DISCUSSION AND CONCLUSION

From the perspective of the engineering attributes and inherent
properties of the power grid infrastructure project, this paper
analyzes in detail the correlation characteristics among the multi-
voltage-level projects, and finally defines four specific linkages
among the massive infrastructure projects. Furthermore, based
on the R-GCN, a method which can accurately identify the

correlation characteristics is proposed. In the follow-up
research, the identified linkages can be considered as one of
the constraints of the investment optimization model of massive
power grid infrastructure projects, so that a more scientific and
reasonable investment portfolio can be obtained. As a result,
power infrastructure investment could be further promoted from
relatively extensive management to sophisticated, intelligent and
high-quality development to achieve precise resource allocation.
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