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The accurate measurement and management of energy risk have become

important issues of the economic development and energy security for all

countries. The existing literature generally adopts the Value at Risk (VaR).

However, VaR does not satisfy the subadditivity axiom to measure the

energy risk, which makes the calculation defective. In this paper, we use the

Conditional VaR (CVaR) with the characteristics of coherent and convex risk

measurement to measure energy risk under nonparametric kernel (NPK)

framework. We consider how to use the energy derivatives to hedge the

price risk of energy so that the result is more reasonable and effective. The

empirical results show that the NPK method that we propose is more effective

to measure the actual energy risk and carry out more effective risk hedging.
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1 Introduction

Energy is an important driving force for the development of the world’s economy. The

development of any country cannot be separated from the contribution of energy.

However, due to its non-renewability, the total energy consumption is decreasing

while the demand is increasing, which will inevitably lead to the imbalance between

supply and demand, and the sharp fluctuation of energy price. In addition, energy is

dominated by a few countries, and for political and economic purposes, some energy-

exporting countries often control energy-importing countries by reducing or expanding

their energy supplies, which raises the risk of energy price fluctuation. Energy risk involves

national and even global economic development in all aspects. In particular, in those

countries with greater energy dependence, the impact of the international energy market

is more obvious (Youssef et al., 2015). Therefore, how to measure the energy risk

accurately and how to monitor and manage the risk have become important issues

that need to urgently be solved.

The Value-at-Risk (VaR) method is an effective tool in energy risk measurement. The

method was first proposed by the J.P. Morgan Group in 1994 to estimate the maximum

possible loss to an asset or portfolio of assets for a given future period, at a given level of
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confidence (Jorion, 2000). This concept not only covers the two

risk characteristics of uncertainty and loss but also allows people

to choose a specific subjective probability according to their own

risk preferences, and its measurement of risk is very close to

people’s psychological feelings of risk. Therefore, once VaR was

proposed, it was promptly promoted and was included in the

supervisory indicators successively by the Basel Accord (1995)

and EU Capital Adequacy Directive (1996). Driven by the Basel

Degiannakis (2004) Committee on Banking Supervision and the

International Organization of Securities Commissions, VaR has

gradually developed into a common international risk

measurement standard (Duffie and Pan, 1997; Engle and

Manganelli, 2004). Since the diffusion of the Risk Metrics

(RM), there is a dispute on how to do calculate VaR. Several

approaches have been proposed and may be classified into three

families: nonparametric historic simulation approaches, the

parametric model approaches based on an econometric model

for volatility dynamics, and the extreme value theory. However,

these methods which have not reflected the current volatility

(Youssef et al., 2015). Mcneil and Frey (2000) propose a

combined approach to overcome the drawbacks. At present,

there is a large body of literature that has studied financial

assets using VaR (Angelidis et al., 2004; Tang and shieh, 2006;

Kang and Yoon, 2007; Jinbo et al., 2020), and there are many

studies that have focused on energy risk (Costello et al., 2008; Fan

et al., 2008; Marimoutou et al., 2009; Krehbiel and Adkins, 2015).

Aloui and Mabrouk (2010) use three long memory models

(i.e., FLGARCH, HYGARCH, and FLAPARCH) to estimate

the VaR of energy products basis on different hypotheses of

error distribution; based on Aloui’s study, Youssef et al. (2015)

consider the extremum theory focusing on the tail distribution

rather than on the entire distribution, and the results show that

the FIAPARCH model with extreme value theory is more

effective in prediction. In terms of energy risk management,

Sadeghi and Shavvalpour (2006) believe that accurate price

forecasting can help reduce portfolio risk. The existing

literature is based on the principle that different kinds of

products can be combined to invest and spread risk and

propose that portfolio investment is applied to the field of

energy risk management to avoid the risk brought by

fluctuation of energy price. Wu et al. (2007) believe that the

risk index model based on portfolio theory can guarantee the

safety of China’s oil imports. Muñoz et al. (2009) have established

the linetype system model to calculate the cash flow to get the

ROI at the lowest risk and study the portfolio risk of Spain’s

energy market. Vithayasrichareon and Macgill (2012, 2013) use

the Monte Carlo method of portfolio analysis to setup Thailand’s

energy pricing.

The wide application of VaR has led to many in-depth

studies, and researchers quickly began to compare VaR with

other indicators. Artzner et al. (1997, 2010) proposed the theory

of coherent risk measurement, which they believe should satisfy

at least four axiomatic conditions: monotonicity, subadditivity,

positive homogeneity, and translation invariance. Artzner et al.

(1997, 2010) pointed out that VaR does not satisfy the

subadditivity axiom in the theory of coherent risk

measurement; that is, the combined risk measured by VaR

may not be less than the sum of the single risks, thus

breaking the risk diversification principle in portfolio theory.

Meanwhile, many scholars pointed out that the VaR only reports

one quantile of the distribution of returns (or losses) and does not

focus on the risk distribution behind the quantiles. Because of the

VaR deficiencies, Rockafellar and Uryasev (2000) proposed the

concept of CVaR, which refers to the mathematical expectation

of all losses exceeding the VaR level. Studies by Acerbi and

Tasche (2002) show that CVaR is an index of coherent risk

measurement that compensates for the shortcomings that VaR

does not satisfy the subadditive axioms. It can be seen from the

definition of CVaR that it focuses on the mean value of the

distribution tail of the rate of return, and thus is more sensitive to

changes in the tail than the VaR, making up for the defect that

VaR is only one quantile and is not concerned with the losses

beyond the quantile Hu et al. (2017). In addition, CVaR is a

convex risk measurement. It is theoretically accepted as a more

reasonable and effective risk measurement tool than VaR. CVaR

is now written into Basel III as a risk measurement and

monitoring tool. Zhang et al. (2018) added CVaR to model

constraints, established a two-stage unit commitment model,

and considered energy storage and demand side response in the

model. Hu et al. (2017) considered CVaR in the objective

function, conducted risk modeling of unit combination of

power system based on CVaR theory, and considered the

uncertainty of wind power in the model. Jin et al. (2019)

considered CVaR theory can also be extended to the risk

analysis of energy system to describe energy price risk.

The existing literature rarely analyzes the risk of energy

system with CVaR theory. In contrast, we use the Conditional

VaR (CVaR) with the characteristics of coherent and convex risk

measurement to measure energy risk under nonparametric

kernel (NPK) framework. Because we consider how to use the

energy derivatives to hedge the price risk of energy, the result is

more reasonable and effective.

The content of this paper is arranged as follows. Section 2

introduces the nonparametric CVaR model. Section 3 describes

the empirical analysis on the basis of the energy market price

data. The final section summarizes our study.

2 Models and methods

2.1 Model

There are many management methods and problems about

energy risk. This paper focuses on how to use energy futures to

hedge the risk of energy spots. It is assumed that the rates of

return on energy futures and spots are r1 and r2, respectively; the
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mean and standard deviation of r1 are μ1, σ1; the mean and

standard deviation of r2 are μ2, σ2. The portfolio rate of return rp
formed by 1 unit of long energy spots and h units of short energy

futures can be expressed as:

rp � r1 − hr2 (1)

Themean and variance of rp are μp � μ1 − hμ2 and σ
2
p � σ21 +

h2σ22 − 2hρσ1σ2 respectively, in which ρ is the correlation

coefficient of rates of return on energy spots and energy

futures. Risk hedging strategy focuses on finding the best

hedge ratio h to minimize the risk of the hedge portfolio.

According to the different risk measurement indicators, risk

hedging strategies of futures and spots are different. The

classic and most commonly-used risk measurement is the

variance proposed by Markowitz (1952). The minimum

variance hedging strategy is to find the hedging ratio that

minimizes the variance of the portfolio.

It is assumed the cumulative distribution function of the rate

of return rp on hedging portfolio is F(x, h), and at a given

confidence level of 1 − α, the value-at-riskVaR(h) of the hedging
portfolio is expressed as (Jorion, 2000):

VaR(h) � −inf{x ∈ R: F(x, h)≥ α} (2)

The confidence level 1 − α is given in advance, usually by

investors according to their own preferences or by regulatory

agencies. In the condition that the distribution function F(x, h)
satisfies the continuity, VaR(h) is the opposite of the lower α

quantile of rp. Although VaR is a widely-used risk measurement

index, many scholars show the defect that VaR does not satisfy

the subadditivity and it ignores the tail risk (Acerbi and Tasche,

2002). Therefore, Rockafellar and Uryasev (2000) proposed the

concept of CVaR, which refers to the mathematical expectation

of all losses exceeding the VaR level. The mathematical

expression of the CVaR of the hedging portfolio is:

CVaR(h) � −E[rp∣∣∣∣rp ≤ − VaR(h)] (3)

Risk hedging strategy on the basis of CVaR focuses on finding

the hedging rate h that minimizes the CVaR(h) of the hedge

portfolio. Under the assumption that rp is subject to normal

distribution, the corresponding CVaR(h) can be expressed as the
linear function of the mean value and standard deviation

(Alexander and Baptista, 2004), namely:

CVaR(h) � φ(zα)
α

σp − μp (4)

where σp is the standard deviation of the combined rate of

return. zα is the lower α quantile of the standard normal

distribution. φ is the density function of the standard normal

distribution, The normal distribution assumption is not true in

the real market. An equivalent definition of CVaR given by

Rockafellar and Uryasev (2000) without any distribution

setting is:

CVaR(h) � min
v∈R

Fα(h, v) (5)

where, Fα(h, v) � v + α−1E[(−rp − v)+], and (x)+ � max(x, 0).
Meanwhile, the authors pointed out that the minimum CVaR

model is equivalent to the following optimization problem:

min
h∈R

CVaR(h) � min
(h,v)∈R×R

Fα(h, v) (6)

2.2 Methodology

Given the distribution function or density function of rp,

Fα(h, v) can be obtained. However, we seldom know the specific

form of distribution function or density function in real life and

need to estimate it by using sample data. Supposing {r1,t}Tt�1 and
{r2,t}Tt�1 are sample data of return rate on spots and futures,

respectively, and {rp,t}Tt�1 is the sample data of portfolio rate of

return in the period of T, and rp,t � r1,t − hr2,t, thus the kernel

estimator of the density function of the combined rate of

return is:

f̂(x, h) � 1
Tb

∑T

t�1g(x − rp,t
b

) (7)

whereG(z) � ∫z

−∞g(u)du, and g(z) is a kernel function selected
by the researcher. According to the study by Li and Racine

(2007), the Gauss kernel function is a good candidate if we intend

to estimate the density function and distribution function of the

univariate, that is, g(z) � ( 			
2π

√ )−1 exp(−z2/2). b is bandwidth.
According to the study by Li and Racine (2007), we set

b � 1.06 × T−1/5 × σ̂p � aσ̂p, in which a � 1.06 × T−1/5, and σ̂p
is the sample covariance of the portfolio rate of return. Thus,

under the kernel estimation framework, according to the kernel

estimator (7) of density function, the kernel estimator of Fα(h, v)
can be expressed as:

F̂α(h, v) � v + α−1Ê[(−rp − v)+]
� v + α−1 ∫+∞

−∞
(−x − v)+f̂(x, h)dx

� v + α−1 ∫+∞

−∞
(−x − v)+ 1

Tb
∑T
t�1
g(x − rp,t

b
)dx

� v + 1
Tbα

∑T
t�1

∫−v

−∞
(−x − v)g(x − rp,t

b
)dx

� v + 1
Tα

∑T
t�1

∫Rt

−∞
( − by − rp,t − v)g(y)dy

� v − 1
Tα

∑T

t�1((rp,t + v)G(Rt) + bH(Rt)) (8)

where y � (x − rp,t)/b, Rt � (−v − rp,t)/b and

H(x) � ∫x

−∞yg(y)dy. The minimum CVaR model under the

kernel estimation framework can be expressed as:
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min
h∈R

ĈVaR(h)
� min

(h,v)∈R×R
F̂α(h, v)

� min
(h,v)∈R×R

v − (Tα)−1∑T

t�1((rp,t + v)G(Rt) + bH(Rt)) (9)

Similar to the study of Yao et al. (2013), the convexity

theorem of optimization problem (9) is given as follows:

Theorem 1:Optimization Problem (9) is a convex optimization

problem.

Proof: Because the constraint set of the optimization problem (9)

is a nonempty convex set, we only need to prove that the Hessian

matrix of the objective function F̂α(h, v) is a positive semi-

definite matrix.

According to the function F̂α(h, v) and the formula

Rt � (−v − rp,t)/b, we have:
zF̂α(h, v)

zRt

� − 1
Tα

∑T

t�1((rp,t + v)g(Rt) + bRtg(Rt)) � 0 (10)

zRt

zv
� −1

b
,
zRt

zh
� r2,t

b
+ v + rp,t

b2
zb

zh
(11)

Furthermore, we take first order derivatives of v and h by the

function F̂α(h, v). By simplifying the formula using the results of

(10) and (11), we can obtain:

zF̂α(h, v)
zv

� 1 − 1
Tα

∑T

t�1G(Rt) (12)
zF̂α(h, v)

zh
� 1
Tα

∑T

t�1[G(Rt)r2,t −H(Rt) zb
zh
] (13)

Furthermore, by Formulas 12, 13, we have the second partial

derivatives, as follows:

z2F̂α(h, v)
zv2

� 1
Tbα

∑T

t�1g(Rt) (14)
z2F̂α(h, v)

zvzh
� − 1

Tα
∑T

t�1g(Rt) zRt

zh
(15)

z2F̂α(h, v)
zhzv

� 1
Tα

∑T
t�1
[g(Rt) zRt

zv
r2,t − Rtg(Rt) zRt

zv

zb

zh
]

� − 1
Tα

∑T
t�1
g(Rt)[r2,t

b
+ v + rp,t

b2
zb

zh
]

� − 1
Tα

∑T

t�1g(Rt) zRt

zh
(16)

z2F̂α(h, v)
zh2

� 1
Tα

∑T
t�1
(g(Rt) zRt

zh
r2,t − Rtg(Rt) zRt

zh

zb

zh
−H(Rt) z

2b

z2h
)

� 1
Tα

∑T
t�1
(g(Rt) zRt

zh
(r2,t − Rt

zb

zh
)) − 1

Tα
∑T
t�1
(H(Rt) z

2b

z2h
)

� 1
Tα

∑T

t�1(g(Rt)(zRt

zh
)2

b) − 1
Tα

∑T

t�1(H(Rt) z
2b

z2h
) (17)

Then, the Hessian matrix of the objective function F̂α(h, v)
can be expressed as:

Θ �
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

z2F̂α(h, v)
zv2

z2F̂α(h, v)
zvzh

z2F̂α(h, v)
zhzv

z2F̂α(h, v)
zh2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

� 1
Tα

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
∑T
t�1
g(Rt) 1

b
−∑T
t�1
g(Rt) zRt

zh

−∑T
t�1
g(Rt) zRt

zh
∑T
t�1
(g(Rt)(zRt

zh
)2

b)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

− 1
Tα

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
0 0

0 ∑T

t�1(H(Rt) z
2b

z2h
)
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (18)

Θ1 � 1
Tα

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
∑T
t�1
g(Rt) 1

b
−∑T
t�1
g(Rt) zRt

zh

−∑T
t�1
g(Rt) zRt

zh
∑T
t�1
(g(Rt)(zRt

zh
)2

b)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

� 1
Tα

∑T

t�1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝g(Rt)
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1	
b

√

−zRt

zh

	
b

√
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠( 1	

b
√ −zRt

zh

	
b

√ )⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(19)

Kernel function g(·)> 0, bandwidth b> 0, and 1
Tα> 0.

Therefore, Θ1, the sum of T positive semi-definite matrixes, is

still a positive semi-definite matrix.

Θ2 � − 1
Tα

⎛⎜⎜⎜⎜⎜⎜⎝
0 0

0 ∑T

t�1(H(Rt) z
2b

z2h
)⎞⎟⎟⎟⎟⎟⎟⎠ (20)

For any z ∈ R,H(z) � ∫z

−∞yg(y)dy, if z< 0 then yg(y)< 0
for any y ∈ (−∞, z), since g(y)> 0. If z≥ 0, we have

Frontiers in Energy Research frontiersin.org04

Li and Hu 10.3389/fenrg.2022.887946

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2022.887946


H(z) � ∫z

−∞
yg(y)dy

� ∫−z

−∞
yg(y)dy + ∫z

−z
yg(y)dy

� ∫−z

−∞
yg(y)dy< 0 (21)

Because yg(y) is an odd function. Therefore H(z)≤ 0 for

any z ∈ R.

Because − 1
Tα< 0, z

2b
z2h

� aσ̂21 σ̂
2
2

σ̂3p
(1 − ρ̂2)≥ 0 and H(z)≤ 0, so we

prove Θ2 is a semi-positive definition matrix immediaely. Thus,

optimization Problem (9) is a convex optimization problem.

There are many algorithms to solve the convex optimization

problem. In particular, for the one-dimensional

optimization problem, we can obtain its global optimal

solution easily.

3 Empirical analysis

This section uses the futures data and spots data of crude oil

and gasoline for empirical analysis, and the sample data are

ranged from 2 January 2006 to 24 February 2017, with a total of

2910 daily price data. The full sample data are used to measure

the risk and are divided into training subsamples and testing

subsamples to test the performance of risk hedging. The training

subsamples range from 2 January 2006 to 30 December 2011,

with a total number of 1565; the testing subsamples range from

2 January 2012 to 24 February 2017, with a total number of 1345.

The price data comes from Datastream. The data of the daily rate

of return is obtained using the first-order difference on the

logarithm of the price. For convenience, all of the data of the

rate of return are expanded by 100 times; that is, the data unit is

%. Summary statistics for the spots and futures returns are

reported in Table 1.

Table 1 shows that where the mean of the rate of return is less

than zero, it indicates that both the crude oil price and the

gasoline price are declining. Where the median of the rate of

return is zero, it indicates that the number of days of rising prices

and falling prices are roughly equal in the period of the sample.

From the point of view of minimum, maximum, and standard

deviation, the price of gasoline spots varies most, and the risk of

fluctuations of the price of gasoline spots is the greatest. As for the

daily rates of return on the four products, the skewness

coefficients are all greater than zero, indicating a right shift in

their distributions. The kurtosis coefficients are more than 3,

indicating that the distributions of the rates of return on the four

products are in “leptokurtosis and fat-tail”. The JB statistics

further confirm that the distributions of the rates of return on

the four products are significantly different from the normal

distribution, so the risk measurement and risk management on

the basis of normal distribution are inaccurate. The last column

shows the correlation coefficient of the rates of return on crude

oil futures and spots is 0.908, while the correlation coefficient of

the rates of return on gasoline futures and spots is 0.836. A higher

correlation coefficient indicates that the corresponding futures

are better risk hedging tools for spot assets.

3.1 Risk measurement

First, by using the nonparametric method, we measure the

risks of the two products in the whole samples, with the result

noted as NPK-CVaR. Meanwhile, the measurement result of

CVaR under normal distribution is given as Norm-CVaR for

comparison. In addition, because values of CVaR are related to

the level of confidence, a series of different confidence levels are

taken to test the measurement results. The results are shown in

Table 2.

Table 2 shows that with all the four products and confidence

levels 1 − α, Norm-CVaR is less than NPK-CVaR, indicating that

the normal distribution assumption always underestimates the

risk of energy spots and futures in reality. In addition, according

to the comparison between spots risk and futures risk, the

measurement results of crude oil and gasoline show that no

matter under nonparametric estimation method or normal

distribution assumption, the risk value of futures are greater

than that of the corresponding spots.

To see the differences of risks measured by the two different

methods more directly, we use kernel estimation method and

normal distribution to fit the sample distribution of the rates of

return on the four products (Figure 1). Specifically, based on the

sample data of the rates of return on the four products, the

TABLE 1 Descriptive statistics of daily rate of return.

Panel A crude oil

Mean Median Min Max Std skewness kurtosis JB stat

Spots −0.004 0.000 −13.065 21.277 2.446 0.286 8.603 3844.332

Future −0.004 0.000 −13.065 16.410 2.392 0.168 7.752 2751.086

Panel B Gasoline

Spots −0.006 0.000 −22.485 22.240 2.749 0.073 10.631 7060.148

Future −0.005 0.000 −16.162 21.655 2.420 0.015 8.940 4276.240
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density function of the real data is estimated through kernel

estimation, and the image is noted as NPK. As a comparison, the

normally distributed density function is used to fit the density

function of the sample data. That is to say, supposing that the real

data are in normal distribution, we estimate the mean and the

standard deviation through sample data, and the normally

TABLE 2 Risk measurement under different confidence level.

Panel A crude oil

1 − α 99% 98% 97% 96% 95% 94% 93% 92% 91% 90%

Spots Norm-CVaR 6.523 5.925 5.551 5.273 5.049 4.860 4.695 4.549 4.417 4.296

NPK-CVaR 8.961 7.513 6.698 6.155 5.749 5.424 5.151 4.916 4.709 4.524

Future Norm-CVaR 6.378 5.794 5.428 5.156 4.937 4.752 4.591 4.448 4.319 4.319

NPK-CVaR 8.833 7.372 6.573 6.034 5.631 5.309 5.040 4.808 4.606 4.426

Panel B Gasoline

1 − α 99% 98% 97% 96% 95% 94% 93% 92% 91% 90%

Spots Norm-CVaR 7.332 6.660 6.240 5.927 5.675 5.463 5.278 5.114 4.965 4.830

NPK-CVaR 10.495 8.684 7.723 7.083 6.598 6.205 5.874 5.590 5.341 5.121

Future Norm-CVaR 6.455 5.864 5.494 5.219 4.997 4.810 4.647 4.502 4.372 4.252

NPK-CVaR 9.168 7.690 6.847 6.285 5.865 5.528 5.245 5.000 4.785 4.592

FIGURE 1
Sample distribution fitting of rates of return on futures and spots.
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distributed density function can be obtained and noted as Norm

in the figure. It can be seen from the four figures that compared

with the density function in normal distribution, density

functions estimated by NPK have higher peaks and thicker

left tail and right tail. This characteristic of “leptokurtosis and

fat-tail” is vital for measurement and management of energy risk.

For the long position (short position), the thicker left tail (right

tail) indicates a greater probability of larger losses in the real

energy market, which is seriously underestimated under normal

distribution. This is consistent with the conclusion of Table 2;

that is, the risk measurement under the normal distribution

assumption tends to underestimate the risk.

3.2 Risk hedging

This section uses the futures data and spots data of crude oil and

gasoline to study the risk hedging based on CVaR. Specially, we use

the futures of the crude oil and gasoline to hedge the risk of the

corresponding spots. As a comparison, we present the hedging

performance under the NPK CVaR and the Norm CVaR. The

previous analysis has shown that the Norm CVaR tends to

underestimate the actual risk, and CVaR can be expressed as a

linear function of the mean and standard deviation under normal

distribution assumption, while only taking into account the

information on the first two order moments. When the financial

TABLE 3 Comparison of the hedging effect of the three methods.

Commodity NPK Norm CFM

Mean %ΔStd %ΔCVaR Mean %ΔStd %ΔCVaR Mean %ΔStd %ΔCVaR

Panel A: in sample

Crude oil 0.007 54.310 42.712 0.003 56.703 39.338 0.027 11.332 9.695

Gasoline 0.008 39.720 28.645 0.000 44.693 26.488 0.022 12.027 10.695

Average 0.008 47.015 35.678 0.001 50.698 32.913 0.025 11.680 10.195

Panel B: out of sample (static hedging)

Crude oil -0.010 56.964 32.926 -0.004 60.620 28.809 -0.039 11.405 10.210

Gasoline -0.014 42.083 27.328 -0.002 45.848 23.466 -0.036 12.935 11.381

Average -0.012 49.523 30.127 -0.003 53.234 26.138 -0.038 12.170 10.796

Panel B: out of sample (dynamic hedging)

Crude oil -0.003 57.144 32.149 -0.003 60.525 26.742 -0.033 31.526 26.554

Gasoline -0.015 40.668 25.829 -0.005 45.588 23.457 -0.026 11.086 9.967

Average -0.009 48.906 28.989 -0.004 53.056 25.099 -0.029 21.306 18.260

FIGURE 2
Histogram of crude oil (in sample).
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market data are in non-normal distribution, investors will pay more

attention to higher moments of market data in addition to the first

two moments, such as mean and variance. Therefore, Cao et al.

(2010) proposed a semi-parametric method to estimate CVaR. In

fact, their method is the Cornish-Fisher expansion of CVaR (CFM

CVaR), which includes the information on the third moment and

fourth moment of the market data without any distribution

assumption. This method is an improvement of normal method.

Although CFM CVaR reflects the information on the first four

moments of the risk factors, the information on higher order

moments cannot be included because of the complexity of the

formulas. The nonparametric kernel estimation method can get the

sample distribution function of the market data exactly without any

distribution setting, and therefore that the information on higher

moments can be obtained. Theoretically, if the sample size is large

enough, the nonparametric kernel estimation method can get the

information on all moments of the risk factors. Therefore, we

compare the performance of the three methods in the actual risk

hedging. We consider both the static hedging strategy and the

dynamic hedging strategy. Static hedging strategy, which is the

FIGURE 3
Histogram of crude oil (out of sample).

FIGURE 4
Histogram of gasoline (in sample).
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optimal hedging strategy obtained from the training subsamples, is

applied to the training subsamples and testing subsamples to test the in

sample and out of sample performances of the hedging strategies.

It is a defect that the static hedging assumes that the

distribution of the sample data in the sample interval is

unchanged, while the actual financial market environment is

constantly changing. Therefore, if the sample interval is too long

and the distribution of rate of return changes, then there may be

deviation in the static hedging. In dynamic hedging, long

intervals are divided into several short intervals, in which the

distribution of rates of return is assumed to be unchanged. This

avoids the problem in static hedging that the distribution of the

rates of return is unchanged in a long interval. However, the

defect in dynamic hedging is that the position of the futures needs

to be constantly adjusted, which increases the cost of risk

hedging. The dynamic hedging strategy is constructed as

follows: the optimal hedge ratio is obtained from the initial

1565 training subsamples, and is applied to the next

10 trading days (2 weeks). The training subsamples are then

updated by replacing the oldest 10 samples by the data of the

10 trading days, as mentioned earlier, while the training sample

size of 1565 is unchanged. The new hedge ratio is obtained from

the updated training subsamples, and is applied to the next

10 trading days, and so on until to the end of the sample

period. This method reflects the latest transaction information

by dynamically adjusting the training subsamples. Finally, based

on the dynamic hedge ratio, the sequence of the portfolio rate of

return is obtained and the out of sample performance (e.g., mean,

standard deviation and CVaR) are calculated, see Table 3.

Table 3 shows the mean, the decline in the standard deviation

(%ΔStd), and the decline in the CVaR (%ΔCVaR) of the portfolio

rate of return after hedging based on the three methods. After being

hedged by three methods, the CVaR and the standard deviation

declined greatly. This shows whether the decline in the CVaR is the

largest based on NPK CVaR from the point of view of a single asset

or an average value. Specifically, NPK CVaR is superior to Norm

CVaR, and Norm CVaR is superior to CFM CVaR. This indicates

that as a modification to Norm, semi-parametric CFM is not

satisfactory in practice. The decline in the standard deviation is

the greatest in theNormCVaRmethod,mainly because CVaR is the

linear function of the standard deviation in the Norm method, and

tominimizeNormCVaR is tominimize the standard deviation. The

standard deviation is a symmetric index. Its decline may be caused

by the decline, either in the left tail or in the right tail of the

distribution. This shows that the decline in the standard deviation in

Norm method is larger than that in NPK method, which is largely

due to the decline in the right tail in the table because the left decline

of CVaR in Norm is smaller than that in NPK. Similarly, the

sequence of standard deviation declines from large to small is in

the sequence of Norm, NPK, and CFM. Finally, the conclusion by

the mean is mixed. The means in the three methods after hedging

are all positive in sample, while they are negative out of sample. This

happens because the mean of the rate of return on spots before

hedging is positive in sample, while it is negative out of sample.

From Figures 2–5, the histograms of the pre-hedging and

post-hedging rates of return on the two energies in and out of

samples are shown, respectively. Only the hedging image in NPK

CVaR is given, because the risk decline in it is the largest. It can be

seen directly from the figures that after hedging, the histograms

are more concentrated, and the tail samples at both ends are less

with most of the samples distributed on the right side of zero.

This shows that hedging significantly reduces the risk in the left

FIGURE 5
Histogram of gasoline (out of sample).
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tail. The empirical results show that the NPK method that we

proposed is more effective to measure the actual energy risk and

carry out more effective risk hedging.

4 Conclusion

The accurate measurement of energy risk, and risk regulation

and management have become important issues to be solved by

academia and governments. However, VaR, which is the main

tool for measuring risk, does not satisfy the subadditivity axiom

and is defective in practical application. In this paper, we use a

new nonparametric kernel estimation method to measure the

price risk of energy. On this basis, we study how to hedge and

manage the energy risk. Specifically, we use the CVaR to measure

the downside risk of the energy, and obtain the NPK estimator of

CVaR. Based on the estimation formula, we build the NPK CVaR

risk hedging model and prove its convexity. The empirical results

from crude oil and gasoline show that the NPK method that we

propose is more effective to measure the actual energy risk and

carry out more effective risk hedging.

Although CVaR is superior to VaR in nature, there are still

some deficiencies in the practice of energy risk management and

supervision. The effectiveness of CVaR depends on the accuracy

of distribution tail estimation, but it is difficult to accurately

estimate the tail of distribution. Under extreme market

conditions, the original stable relationship between the

influencing factors has been destroyed and the CVaR

estimation may have a large deviation.
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