AUTHOR=Hu Qiankun TITLE=Chaotic Oscillation Control Model of Power System Under Electromechanical Power Disturbance JOURNAL=Frontiers in Energy Research VOLUME=10 YEAR=2022 URL=https://www.frontiersin.org/journals/energy-research/articles/10.3389/fenrg.2022.887561 DOI=10.3389/fenrg.2022.887561 ISSN=2296-598X ABSTRACT=

The influence of electromechanical power on the power system is controlled in order to stabilize the power system. The author establishes a fourth-order power system model with a power disturbance term based on the dissipative property; the possibility of the existence of a system chaotic attractor is analyzed using the Lyapunov exponent spectrum, bifurcation diagram, phase diagram, spectral entropy, etc., and the influence of the power disturbance term on the motion state of the system is studied. It can be seen that under the influence of the disturbance frequency, the system will exhibit sufficient dynamic behavior. The parameters of the power disturbance term are more sensitive to the influence of the system power angle, and when the disturbance amplitude reaches a certain value, the power angle will increase sharply, and eventually the system will become unstable. The experimental results show that when controller parameters c1=c2=60 are selected, thenτ = 0.01, η = 0.3, and ε = 0.001. Moreover, when two groups of different control objectives r = 1.2 + 0.1 sin(t) and r = 1.2 are chosen, it can be clearly seen that the power angle δ in the system is very unstable before the controller is connected and the fluctuations are large and irregular, whereas after the controller is added for 150 s, the power angle δ tends to become stable, the fluctuation range becomes small and regular, and the system has almost no chattering. In order to reflect the superiority of the author’s control method, under the same parameter conditions, the symbolic function θ(s)=sgn(s) is used as a switching function of the controller and the tracking control numerical simulation is carried out for the same control objectives r = 1.2 + 0.1 sin(t) and r = 1.2. The controller that adopts the relay characteristic function θ(s)=ss+|ε| as a switching function has a better control effect and the system is smooth and stable without chattering.