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Solid-state refrigeration represents a promising alternative to vapor compression
refrigeration systems which are inefficient, unreliable, and have a high global warming
potential. However, several solid-state cooling technologies—including those relying on a
temperature change induced by an applied electric field (electrocaloric effect), magnetic
field (magnetocaloric effect), and uniaxial stress (elastocaloric effect)—have been
investigated, but their efficiency and scalability remain a concern. Materials with a large
barocaloric response—temperature/entropy change induced by hydrostatic
pressure—hold a significant promise for solid-state cooling but remain comparatively
less explored. These materials need to be inexpensive, compressible, and show a large
barocaloric response around the temperature of interest. Soft materials have the potential
to meet these requirements and enable the development of low-cost high-efficiency solid-
state heat pumps. Here, we investigate the barocaloric performance of commercially
available block copolymer thermoplastic elastomers. We characterized the mechanical,
thermal, and barocaloric properties of these materials and evaluated their potential for
solid-state refrigeration. We utilized rheometric measurements to evaluate the isothermal
compressibility and normalized refrigerant capacity of the thermoplastic elastomers. In
addition, we directly measured the pressure-induced temperature change of the test
materials and compared them with their normalized refrigeration capacity. The measured
isothermal compressibility was in the 0.1–0.4 GPa−1 range, while the normalized
refrigeration capacity varied between 13.2 and 41.9 kJ K−1 GPa−1 for a 100 MPa
applied pressure and 65°C temperature span. The corresponding pressure-induced
temperature change for an applied pressure of 434.1 MPa varied between 2.2 and
28°C. These results demonstrated the superior barocaloric properties of thermoplastic
elastomers and their promise for next generation barocaloric solid-state refrigeration
devices.

Keywords: thermoplastic elastomers, solid-state refrigeration, barocaloric effect, material characterization,
rheology

INTRODUCTION

Air conditioning and refrigeration account for about a quarter of global total energy demand (US
Energy Information Administration, 2021). These cooling needs are primarily met by vapor
compression systems which are inefficient, unreliable, and have a high global warming
potential (de Paula et al., 2020; Pol Lloveras and Josep-Lluís Tamarit, 2021). Solid-state
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refrigeration (SSR)—utilizing the caloric response of materials
subjected to external stimuli—provides a promising alternative
to the vapor compression technology and has consequently
received significant attention over the last three decades
(Greco et al., 2019). Recent studies have investigated a wide
variety of materials for SSR when subjected to an external
electric field (based on the electrocaloric effect), magnetic field
(based on the magnetocaloric effect), uniaxial stress (based on
the elastocaloric effect), or hydrostatic pressure (based on the
barocaloric effect) (Kitanovski et al., 2015). However, solid-
state cooling technologies are not yet competitive with vapor
compression systems and require investigation of different
material systems and operational modalities (Kitanovski et al.,
2015; Qian et al., 2016).

Solid-state cooling based on the barocaloric (BC) effect is
among the least studied caloric technologies but has received a
significant interest in the last few years due to the large
barocaloric responses reported in several material classes
(Aprea C. et al., 2019; C.; Aprea et al., 2018a; Aprea G. et al.,
2019; Aznar et al., 2020; Garcia-Ben et al., 2021; Greco et al., 2019;
Miliante et al., 2020; Min et al., 2020; Moya and Mathur, 2020;
Lloveras and Tamarit, 2021). The barocaloric response of a
material subjected to hydrostatic pressure is characterized by
the resulting isothermal entropy change (ΔST) or, equivalently,

the adiabatic temperature change (ΔTs). Another key BC
performance metric that connects the material BC response
with its useful heat pumping capacity between a specified
temperature range (ΔTh−c) is the normalized refrigerant
capacity (NRC) (Usuda et al., 2019). The NRC is normalized
by the applied pressure (Δp) and, therefore, factors in the
challenge of achieving high pressures—a key bottleneck for BC
cooling. These BC metrics, however, only represent the
thermodynamic performance and do not account for the
effectiveness of mechanical force transmission and heat
conduction which are also critical for SSR devices. Previous
studies have shown that the isothermal volumetric
compressibility (β) of a material is directly correlated with its
BC performance (Li et al., 2019). In addition, the heat transfer to/
from the hot/cold reservoir is dependent on its thermal
conductivity (k) and specific heat capacity (cp) (Aprea et al.,
2020; C.; Aprea G. et al., 2019; Maiorino et al., 2019). The
performance of a BC SSR device is, thus, dependent on the
material barocaloric, mechanical, and thermal properties
(Figure 1A).

The BC effect has been demonstrated and investigated in a
wide variety of materials (Boldrin, 2021) including soft materials,
organic–inorganic salts, perovskites, andmagnetic shapememory
alloys (Mañosa et al., 2010; Patel et al., 2016; Li et al., 2019;
Miliante et al., 2020). Despite their typically low thermal
conductivity, soft materials are particularly attractive due to
their large BC response, high compressibility, and low cost.
One class of soft materials that has received significant
attention is plastic crystals whose first-order phase transitions
near room temperature lead to colossal ΔST values > 500 J kg−1

K−1 (Δp ≈ 500 MPa) (Li et al., 2019, 2020; Lloveras and Tamarit,
2021). In addition to plastic crystals, a wide range of polymers
have shown promising BC properties. Patel et al. (2016) observed
a BC ΔTs ≈ 6°C at room temperature (Δp ≈ 200 MPa) in
polyvinylidene difluoride–based polymers. Furthermore, the
BC effect was investigated in several elastomers. These
included nitrile butadiene rubber which achieved a BC ΔST ≈
60 J kg−1 K−1 and ΔTs ≈ 15°C (Δp = 390 MPa) near room
temperature (Usuda et al., 2019). The range of the NRC
reported for ΔTh−c values of 5–75°C was 1–13 kJ K−1 GPa−1. A
higher ΔST up to 250 J kg−1 K−1 and ΔTs up to 25°C were
measured for natural rubber, albeit at a higher applied
pressure (Δp ≈ 500 MPa) (Miliante et al., 2020). Comparable
BC properties were also demonstrated in polyurethane rubber
(Bocca et al., 2021)—achieving NRC ≈11 kJ kg−1 GPa−1 (Δp =
174 MPa)—and PDMS rubber (Carvalho et al., 2018)—achieving
NRC ≈9 kJ kg−1 GPa−1 (Δp = 193 MPa)—for ΔTh−c = 25°C. The
BC properties of these materials were evaluated by pressure-
dependent differential scanning calorimetry, indirect methods
based on Maxwell’s relations, or quasi-adiabatic direct
measurements (Li et al., 2019; Lloveras et al., 2019; Usuda
et al., 2019; Bocca et al., 2021). Although impressive
barocaloric entropy and temperature changes have been
observed in different classes of materials, the performance is
still not sufficient to compete with conventional refrigeration
technologies due to challenges associated with the thermal
transport, reliability and cost. Thus, it is crucial to search and

FIGURE 1 | Thermoplastic elastomers (TPEs) as promising barocaloric
materials. (A) Different material properties relevant for solid-state refrigeration
based on the barocaloric effect. These include compressibility (β), thermal
conductivity (k), and barocaloric entropy change (ΔST ). (B) TPEs
comprise a plastic and an elastomeric component—shown here for a typical
block copolymer (polystyrene-co-block-polyisoprene).
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investigate new materials that have good barocaloric
performance, high thermal conductivity, and mechanical
durability capable of undergoing repeated compression cycles
over their operating lifetime and are available at low cost.

Although several polymers have demonstrated encouraging
barocaloric properties, a class of soft materials that has not yet
been investigated is thermoplastic elastomers (TPEs). TPEs are
polymers with two distinct building blocks—a thermoplastic
(hard) part comprising a glassy/semicrystalline material and an
elastomeric (soft) part comprising a pure amorphous material
(Figure 1B) (Roth et al., 2020). The soft elastomeric component
confers high compressibility and a high BC response due to the large
pressure-induced conformational changes in the polymer, while the
semicrystalline component increases the phonon density of states,
enhancing the thermal transport (dos Santos et al., 2008; Xu et al.,
2020). Thus, TPEs represent a promising class of materials that can
simultaneously achieve high isothermal volumetric compressibility
(β), high isothermal barocaloric entropy change (ΔST), and high
thermal conductivity (k) (Kıroğlu and Kızılcan, 2021). In addition,
TPEs have relatively low melting points (<300°C) and can be easily
fashioned into different shapes and sizes using manufacturing
processes such as injection molding and extrusion-based additive
manufacturing (Heckele and Schomburg, 2004) (Raasch et al., 2015).
Furthermore, a wide range of TPEs with varying thermomechanical
properties are commercially available at low cost. This study
investigates the barocaloric properties of TPEs as potential BC
refrigerant material for next-generation SSR systems.

In this work, we characterized the barocaloric and related
properties of commercially available TPEs. The
pressure–volume–temperature (pvT) relationships of the
materials are obtained in the 35–100°C temperature range and
at pressures <100 MPa using a rheometer. The pvT data are used
to evaluate the isothermal compressibility (β), the normalized
refrigerant capacity (NRC), and related BC properties. We also
measured the thermal conductivity of the TPEs at their melting
temperature using the same rheological apparatus. In addition to
the rheometric measurements, we also used a custom-fabricated
experimental setup to directly measure the quasi-adiabatic
temperature change of the TPEs when subjected to hydrostatic

pressure near room temperature. The quasi-adiabatic
measurement, based on methods reported in the literature
(Usuda et al., 2019), enables direct determination of the
barocaloric temperature change and provides qualitative
validation of the rheological measurements. Finally, we
compared the barocaloric, mechanical, and thermal properties
of the different TPEs and identified the most promising
candidates for solid-state heat pumping.

MATERIALS

We investigated barocaloric and related properties of block
copolymer TPEs near room temperature (20–100°C). Block
copolymers are widely accessible at a low cost from numerous
manufacturers. Table 1 lists the TPEs studied and their key
components. For this study, we identified commercially
important TPEs based on styrenic block copolymers,
thermoplastic copolyesters, thermoplastic polyurethanes,
ethylene-based copolymers, and thermoplastic polyamides
(Holden, 1987). In this work, we tested nine TPEs and one
pure thermoplastic material (ZYTEL) chosen based on their
commercial availability. The material selection also ensured
the TPEs were usable at room temperature, that is, the glass
transition temperature of the elastomeric part was lower than
room temperature, and the glass transition temperature of the
thermoplastic part was sufficiently higher than room
temperature. All materials obtained were in the form of
millimeter-scale pellets (additional details regarding the
material suppliers are provided in Supplementary Section S1).

METHODS

We performed material characterization to obtain mechanical,
thermal and BC properties by rheometry, differential scanning
calorimetry (DSC), and quasi-adiabatic direct measurement
techniques. Atmospheric pressure DSC measurements were
initially used to characterize the melting temperatures of

TABLE 1 | List of materials studied. Thermoplastic elastomers (TPEs) tested, their classification, composition and common name, and melting temperature at ambient
pressure and temperature obtained from DSC measurements.

TPE type Thermoplastic
elastomer

Thermoplastic
component

Elastomeric
component

Commercial/
common
name

Melting
temperature

Styrenic block copolymer (SES) Polystyrene-co-block-polyisoprene Polystyrene Polyisoprene SBPI 322.1℃
Polystyrene-block-polybutadiene Polystyrene Polybutadiene SBPB 359℃

Thermoplastic
copolyester (TPC)

Polyester-block-polycaprolactane Polyester Polyether Hytrel™ 131.1℃
Polyester-block-polyether Polybutylene

tetraphthalate
Polyester PIBIFLEX™ 224℃

Thermoplastic
polyurethane (TPU)

Polycaprolactane-block-
polyurethane

Polycaprolactane Polyurethane ESTANE™ 218℃

Polyether-block-polyurethane Polyether Polyurethane PELLETHANE™ 205.2℃
Thermoplastic
polyethylene (TPE)

Poly (ethylene-co-vinyl acetate) Polyethylene Co-vinyl acetate ELVAX™ 86.8℃
Poly (ethylene-co-vinyl alcohol) Polyethylene Co-vinyl alcohol EVCA 189℃

Thermoplastic polyamide (TPA) Polyether-block-polyamide Polyamide Polyether PEBAX™ 162℃
Glass-reinforced polyamide Polyamide - Zytel™ 251.5℃
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different materials and confirm their suitability for the study. We
also used the DSC data to identify other relevant (solid–solid)
phase transitions near room temperature and evaluate the specific
heat capacity of the material (Supplementary Section S2). In
addition, we performed direct barocaloric characterization by
measuring the temperature change induced in each material
when subjected to hydrostatic pressure. These quasi-adiabatic
measurements were performed near ambient temperature (20°C)
using a custom-fabricated test setup described in Supplementary
Section S7. These direct and indirect measurements allowed us to
investigate the barocaloric properties of TPEs and evaluate their
potential for solid-state refrigeration.

Isothermal Compressibility
To determine the isothermal compressibility (β) of each material,
we obtained pressure–volume–temperature (pvT) data using a
capillary rheometer in the 10–90MPa pressure range.We acquired
pvT isotherms varying the pressure using a piston setup while
monitoring the displacement to calculate the material volume and
ensuring it is maintained at a constant temperature. The material
temperature is monitored using three thermocouples surrounding
the pvT capillary and a thermocouple attached to the capillary die.
The complete description of the pvT testing process is presented in
Supplementary Section S3.

Figure 2A presents pvT isotherms for a representative material
(ELVAX) at different temperatures. Each isotherm—showing a
decreasing specific volume with increasing pressure and decreasing
temperature—is fitted with the Tait equation of state (Supplementary
Section S3) (Pottiger et al., 1994). The volumetric compressibility at
constant temperature (β) is obtained by evaluating the gradients of the
isotherms (Janssen et al., 1995).

β � 1
v0
(zv
zp

)
T

, (1)

where v0 is the initial specific volume at atmospheric pressure.
Figure 2B shows β as a function of pressure at different
temperatures for ELVAX (data for other materials are

included in Supplementary Section S4). The results indicate
that the compressibility decreases at higher pressures but
increases at elevated temperatures. β values for all materials
are shown as a function of temperature at a pressure of
50 MPa in Figure 2C. We observed β increases with
increasing temperature at constant pressure due to softening
of the material as it approaches its melting
temperature—consistent with prior results for thermoplastic
compounds (Roth et al., 2020). The overall range of
compressibility values obtained (0.1–0.6 GPa−1, measurement
uncertainty <0.3%) is comparable to that for elastomers and
plastic crystals reported in the literature (Li et al., 2019). However,
the values for TPEs are slightly lower than some highly
compressible elastomers such as rubber due to the increase in
hardness with the addition of the thermoplastic component (Fazli
and Rodrigue, 2020). Overall, the highest β values in the
0.4–0.53 GPa−1 range are observed for ELVAX in the
measurement temperature span of 35–100°C.

Thermal Conductivity
The thermal conductivity (k) of each polymer is measured at
its respective melting temperature via the transient line source
(TLS) method implemented using the rheometer. The TLS
measurement used a thermal conductivity probe with an
embedded linear heat source and thermocouple to heat and
measure the transient temperature of a cylindrical material
specimen. The temperature rise of the sample as a function of
time is fitted using the transient heat conduction equation to
calculate the material thermal conductivity. Figure 3A shows
the raw data used to calculate the thermal conductivity for one
of the materials tested (ELVAX). Additional information
regarding the thermal conductivity measurement and raw
data for other materials are provided in Supplementary
Section S5. In addition to thermal conductivity, we also
measured the temperature-dependent specific heat capacity
of the materials using DSC (Figure 3B; Supplementary
Section S2).

FIGURE 2 |Mechanical property measurement. (A) pvT isotherms (symbols) fitted with the Tait equation of state (solid lines) for a representative material (ELVAX).
(B) Temperature-dependent isothermal compressibility calculated using the isotherms plotted as a function of pressure for ELVAX. (C) Isothermal compressibility of all
materials as a function of temperature at 50 MPa pressure.
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Figure 3C shows the measured thermal conductivity and
specific heat capacity for all materials tested to compare their
heat transfer properties. As would be expected from thermally
insulating polymers, the thermal conductivities of the
materials tested are relatively low (<0.2 W m−1 K−1;
measurement uncertainty <0.05 W m−1 K−1). The thermal
conductivities are, however, comparable to those of typical
elastomers (e.g., silicone rubber ~0.18 W m−1 K−1) (Kashi
et al., 2018; Gschwandl et al., 2019; Mirizzi et al., 2021); the
addition of thermoplastics did not result in a significant
increase in k for the studied TPEs. However, consistent
with our understanding of the TPE structure, we observed a
higher thermal conductivity for the pure thermoplastic
(ZYTEL) than its corresponding TPE (PEBAX) which

additionally includes an elastomeric component. The
specific heat capacities of the TPEs studied varied from
821 J kg−1 K−1 (ZYTEL) to 1,792 J kg−1 K−1 (ELVAX), with
cp for most materials around 1,300 J kg−1 K−1. For reference,
the specific heat capacity of a pure elastomer (silicone rubber)
is similar ~1,300 J kg−1 K−1 (Kashi et al., 2018).

Barocaloric Properties
Maxwell’s relations are used to calculate the BC isothermal
entropy change (ΔST) from the measurement of volumetric
thermal expansion behavior as a function of temperature for
different pressures. pvT isobaric measurements are performed
maintaining a constant pressure on the material sample while
ramping the temperature at a constant rate maintaining local

FIGURE 3 | Thermal property measurement. (A) Transient temperature profile from the thermal conductivity measurement for a representative material (ELVAX). (B)
DSC endo- and exotherms used for specific heat capacity calculation shown for ELVAX. (C) Plot showing themelt thermal conductivity and specific heat capacity at 35°C
for the TPEs tested.

FIGURE 4 | Barocaloric property measurement. (A) pvT isobars shown for a representative material (ELVAX) (solid lines represent the Tait equation fits for each
isobar). (B) Normalized refrigerant capacity (NRC) calculated for a cold reservoir temperature of 35°C and varying temperature spans (ΔTh−c ) and pressures shown for
ELVAX. (C) NRC as a function of ΔTh−c for all materials (measurement uncertainty <0.3%) evaluated for Δp = 100 MPa.
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thermal equilibrium (Wang et al., 2019). Figure 4A shows pvT
isobars for ELVAX in the 35–100°C temperature range for
different pressures with the corresponding Tait equation fits
(isobars for other materials are included in Supplementary
Section S3). The isothermal entropy change is then calculated
based on the gradients of the relative specific volume change
over the pressure range of interest (Usuda et al., 2019),

ΔST � −v0 ∫p2

p1

⎛⎝z(Δvv0)
zT

⎞⎠
p

dp, (2)

where Δv is the specific volume change from its initial value v0 due
to a change in the temperature at a specific pressure. The overall
ΔST is evaluated as the pressure increases/decreases from p1 to p2

as the material is hydrostatically compressed/expanded. To
estimate the potential of the BC material, we then determined
its normalized refrigerant capacity for SSR operation between a hot
thermal reservoir (at temperature Th) and cold thermal reservoir
(at temperature Tc) (Usuda et al., 2019).

NRC(ΔTh−c,Δp) �
∣∣∣∣∣∣∣∣∣∣∣∣
1
Δp ∫Th

Tc

ΔST(T,Δp) dT
∣∣∣∣∣∣∣∣∣∣∣∣. (3)

This NRC value is dependent on the temperature range of
operation ΔTh−c � Th − Tc and is normalized by the applied
pressure Δp. Additional details regarding NRC calculation are
provided in Supplementary Section S6.

Figure 4B shows the NRC of ELVAX as a function of ΔTh−c
calculated from pvT isobars for Tc = 35°C for five Δp values up to
100MPa. The NRC increases at higher ΔTh−c since more heat is
pumped for a larger temperature span. The nature of the
dependence of NRC on ΔTh−c and Δp is, however, dependent
on the pvT relationship of the material. A slightly higher NRC is
observed for a higher Δp, particularly at large ΔTh−c, because of the
non-linear increase in ΔST due to the solid-state second-order
phase transition in ELVAX, which can be attributed to the
crystalline-to-amorphous transition (beta transition) within the
TPE (Brogly et al., 1998). This solid-state phase transition is also
observed in the DSC thermogram in the ~0–70°C temperature
span (Figure 3B). A similar broad phase transition was observed in
previous studies on related copolymers with 18% vinyl acetate
content (Wang and Deng, 2019). Figure 4C shows the NRC values
of all materials as a function of ΔTh−c for a Δp of 100 MPa. Unlike
ELVAX, the NRC for all other materials varies nearly linearly with
ΔTh−c since they do not undergo any phase transformation.
Overall, the TPE NRC values are comparable to those for pure
elastomers reported earlier (≈10 kJ kg−1 GPa−1 for ΔTh−c = 25°C
(Carvalho et al., 2018; Usuda et al., 2019), but higher values are
measured for ELVAX while lower values are measured for the less
compressible EVCA and the thermoplastic ZYTEL.

RESULTS AND DISCUSSION

The performance of solid-state materials as refrigerants for SSR is
dependent on their barocaloric, mechanical, and thermal

properties. Figure 5 summarizes the barocaloric property
measurements—showing the normalized refrigerant capacity
(at Tc = 35°C, Th = 100°C, and Δp = 100 MPa) as a function
of isothermal compressibility (at 35°C and 50 MPa) and the melt
thermal conductivity of the materials tested. Comparing NRC
and β (Figure 5A), it is evident that high compressibility is
generally correlated with a high NRC, as shown by the
measurements for ELVAX, SBPI and SBPB. This relationship
between the NRC and β is primarily due to the larger hydrostatic
strain developed for the same applied pressure in materials with
high compressibility. However, the TPE structure and
composition also influences these properties, as shown by the
lower NRC measured for the purely thermoplastic ZYTEL.
Unlike the correlation between mechanical and barocaloric
properties, the thermal conductivity does not appear to have
an impact on the NRC (Figure 5B). This apparent disconnect
between k and NRC is because the rheological-based barocaloric
measurements were performed under quasi-equilibrium
conditions which were not influenced by the thermal
transport. However, heat transfer plays a crucial role in the
design and operation of a SSR device. Thus, higher thermal
conductivity materials are preferable. Overall, these results
indicate TPEs such as ELVAX, SBPI and SBPB that are highly
compressible, reasonably thermally conducting, and have a high
barocaloric refrigerant capacity are good candidate materials
for SSR.

In addition to rheometric measurements, we also used a
custom-fabricated quasi-adiabatic test setup similar to that
reported in the literature (Bom et al., 2018) to directly
measure the pressure-induced temperature change of all
materials. Figures 6A,B show the test rig used to measure the
BC response of the polymers around ambient temperature
(~20°C). The setup comprises a rigid enclosure that holds the
BC material which is subjected to compression-expansion cycles
using a hydraulic press-driven piston. Figure 6C shows the
results of a typical quasi-adiabatic BC temperature change
measurement for ELVAX at a maximum pressure of
434.1 MPa. A detailed description of direct BC measurement
setup, experimental procedure and raw data are included in
Supplementary Section S7.

Figure 6D shows the measured quasi-adiabatic temperature
change (ΔTq−ad) as a function of maximum applied pressure for
all materials tested. ΔTq−ad increases monotonically with
increasing Δp corresponding to a higher barocaloric entropy
change at greater pressures. The conformational change-driven
entropy increase/decrease within the TPEs is reversible—shown
by the consistent results obtained for multiple cycles—and does
not appear to saturate in the range of pressures investigated.
Overall, we measured the highest ΔTq−ad value of 28°C (±0.75%
measurement uncertainty) for a Δp of 434.1 MPa for ELVAX,
while the lowest value was reported for ZYTEL.

The data from the quasi-adiabatic approach can be compared
with the results obtained using rheometric measurements.
Figure 7 shows the barocaloric NRC (for Δp = 100 MPa and
ΔTh−c = 65°C) evaluated using pvT measurements and the
directly measured ΔTq−ad (for Δp = 434.1 MPa) for all
materials. The data points on the NRC versus ΔTq−ad plot fall
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approximately on a diagonal, indicating a direct correlation and
agreement between the rheometric and direct measurements.
Although NRC and ΔTq−ad were obtained for different
pressure ranges due to the constraints imposed by our
equipment, the results indicated we can reasonably extrapolate
the results and make qualitative comparisons. Furthermore, the

NRC is a thermodynamic metric evaluated based on
measurements under near-equilibrium conditions, while
ΔTq−ad is measured directly and depends on thermal transport
(and corresponding thermal properties, k and cp). Nevertheless,
the measured NRC and ΔTq−ad values are qualitatively consistent
and can be used to identify promising barocaloric materials.

FIGURE 5 |Mechanical, thermal, and barocaloric properties. (A)Normalized refrigerant capacity (NRC, shown for Δp = 100 MPa and ΔTh−c = 65°C) and isothermal
compressibility (β at 35°C and 50 MPa) of the TPEs tested. (B) NRC and melt thermal conductivity (k) of the materials characterized.

FIGURE 6 | Direct barocaloric temperature change measurement. (A) Schematic representation and (B) photograph of the custom-fabricated setup for the direct
measurement of the pressure-induced temperature change. (C)Measured temperature of a representative material (ELVAX) subjected to five pressure (Δp = 434.1 MPa)
applications and release cycles. (D) Measured temperature rise as a function of applied pressure (Δp) for the materials tested around room temperature.
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The performance of barocaloric materials is dependent upon
their compressibility, thermal conductivity and heat capacity, and
BC entropy change. Among the materials studied in this study,
the highest NRC and ΔTq−ad were measured for ELVAX—a TPE

with polyethylene as the thermoplastic component and co-vinyl
acetate as the elastomeric component. Its superior barocaloric
performance can be attributed to its solid–solid phase transition
in the 0–70°C temperature range and high compressibility. These
properties enabled ELVAX to demonstrate cooling to
temperatures less than 0°C during the quasi-adiabatic
measurements (applied pressure: 434.1 MPa). TPEs such as
SBPI and SBPB—with reasonably high compressibility and
barocaloric NRC, and thermal conductivity higher than
ELVAX—also hold a promise for BC SSR. Meanwhile, the
thermoplastic ZYTEL exhibited the worst barocaloric
properties among the materials tested due to the absence of an
elastomeric part in its structure. We also noticed that some
relatively hard materials (low β), such as HYTREL, also
showed decent BC properties likely due to the elastomeric
contribution. These results indicate dependence of barocaloric
properties on the type and quantity of the elastomeric component
in a TPE. Although the addition of the thermoplastic component
can improve the thermal conductivity of the TPE, it usually comes
at a cost of lower ΔST and β. Several of these observations are,
however, based on a qualitative understanding of our results that
considered a wide range of TPE materials. Future work that
systematically investigates the effect of different thermoplastic/
elastomeric components and their relative amounts could provide
further insight into the properties of TPEs and their potential as
barocaloric refrigerant materials.

Another key metric relevant for the performance of a
refrigerator is the coefficient of performance (COP). To
predict the performance of the tested barocaloric materials as

FIGURE 7 | Direct versus indirect barocaloric measurement.
Comparison of the normalized refrigeration capacity (NRC, for Δp = 100 MPa
and ΔTh−c = 65°C) evaluated based on pvT measurements and the quasi-
adiabatic temperature change (ΔTq−ad ) measured (Δp = 434.1 MPa)
using the custom test rig for the materials tested.

TABLE 2 | Comparison of the current work with previous studies on barocaloric properties of soft materials.

Material name Material type Adiabatic/quasi-
adiabatic
ΔT (K)

(Δp (MPa))

Material
COP (Δp (MPa))

References

Neopentyl glycol (NPG) Plastic crystal 12q-ad (100) - (Li et al., 2019; Lloveras et al., 2019; Boldrin, 2021)
Pentaglycerin (PG) Plastic crystal 10q-ad (100) - (Li et al., 2019; Aznar et al., 2020; Boldrin, 2021)
Neopentyl alcohol (NPA) Plastic crystal ~12.5 (100) - (Li et al., 2019; Aznar et al., 2020; Boldrin, 2021)
2-Amino-2-(hydroxymethyl)propane-1,3-diol
(TRIS)

Plastic crystal ~4 (100) - Aznar et al. (2020)

2-Amino-2-methyl-1,3-propanediol (AMP) Plastic crystal ~7 (600) - Aznar et al. (2020)
PVDF-TrFE-CTFE Polymer ~10q-ad (80) - (Patel et al., 2016; Aprea et al., 2018)
Polydimethylsiloxane (PDMS) Elastomer 28.5q-ad (390) 9 (87) Carvalho et al. (2018)
Waste tire rubber Elastomer 21q-ad (390) - Bom et al. (2020)
Natural rubber Elastomer 25q-ad (390) - Bom et al. (2018)
Nitrile butadiene rubber Elastomer 16.4q-ad (390) ~4 (173) Usuda et al. (2019)
Polyurethane Elastomer 15q-ad (218) - Bocca et al. (2021)
SBPI TPE 21.5q-ad (434) 11.5 (100) Current work
SBPB TPE 14.64q-ad (434) 8.9 (100) Current work
Hytrel TPE 8.78q-ad (434) 8.4 (100) Current work
PIBIFLEX TPE 19.84q-ad (434) 10.8 (100) Current work
ESTANE TPE 17.5q-ad (434) 9.1 (100) Current work
PELLETHANE TPE 16.58q-ad (434) 8.3 (100) Current work
ELVAX TPE 28.04q-ad (434) 16.5 (100) Current work
EVCA TPE 7.1q-ad (434) 2.5 (100) Current work
PEBAX TPE 11.1q-ad (434) 8.3 (100) Current work
Zytel Thermoplastic 2.2q-ad (434) 2.4 (100) Current work

The table shows the studied material, material type, adiabatic/quasi-adiabatic (q-ad) temperature change (ΔT) resulting from the applied pressure change (Δp), and the material coefficient
of performance (COP) calculated for a representative Δp.
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solid-state refrigerants, we evaluated the material COP using the
methods described in the literature (Carvalho et al., 2018; Schmidt
et al., 2016; Usuda et al., 2019). Details are given in Supplementary
Section S8. Table 2 lists the predicted COP values of the tested
materials calculated for a working temperature of 35°C and
compared with the barocaloric performance of other soft
materials reported in the literature. The COP values of the
TPEs studied in this work are comparable to those reported for
pure elastomeric compounds (Carvalho et al., 2018; Usuda et al.,
2019). The COP values are also consistent with the NRC values
described earlier, demonstrating ELVAX, SBPI and SBPB as
promising barocaloric materials for refrigeration.

CONCLUSION

This study reports a large barocaloric response in TPEs at
relatively low applied pressures ≲100 MPa. We identified and
experimentally measured mechanical, thermal and BC properties
that are relevant for SSR. Mechanical characterization relied
upon the volumetric compressibility, while thermal
characterization focused on the thermal conductivity of the
materials. The BC properties of the materials were quantified
by their NRC evaluated using rheometric measurements and
directly measured quasi-adiabatic temperature change. The
rheometric pvT measurements of the soft materials facilitated
the calculation of barocaloric ΔST and NRC using Maxwell’s
relations, which were compared with direct BC temperature
change measurements and realized using a custom setup.
Overall, we characterized ten commercially available block
copolymers near room temperature. We demonstrated NRC
values as high as 41.9 J kg−1 K−1 for a hydrostatic pressure of
100 MPa and 65°C temperature span and a maximum ΔTq−ad of
28°C for an applied pressure of 434.1 MPa. These NRC and
ΔTq−ad values are comparable to the highest values reported for
elastomers, indicating the promise of TPEs as BC materials. Of
the ten materials tested, we identified three commercially
available TPEs—ELVAX, SBPI and SBPB—as good candidates
for BC SSR.
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