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With the continuous expansion of the UHV AC/DC interconnection scale, online, high-
precision, and fast transient stability assessment (TSA) is very important for the safe
operation of power grids. In this study, a transient stability assessment method based on
the gating spatiotemporal graph neural network (GSTGNN) is proposed. A time-adaptive
method is used to improve the accuracy and speed of transient stability assessment. First,
in order to reduce the impact of dynamic topology on TSA after fault removal, GSTGNN is
used to extract and fuse the key features of topology and attribute information of adjacent
nodes to learn the spatial data correlation and improve the evaluation accuracy. Then, the
extracted features are input into the gated recurrent unit (GRU) to learn the correlation of
data at each time. Fast and accurate evaluation results are output from the stability
threshold. At the same time, in order to avoid the influence of the quality of training
samples, an improved weighted cross entropy loss function with the K-nearest neighbor
(KNN) idea is used to deal with the unbalanced training samples. Through the analysis of an
example, it is proved from the data visualization that the TSA method can effectively
improve the assessment accuracy and shorten the assessment time.

Keywords: transient stability assessment, gating spatiotemporal graph neural network, data visualization,
K-nearest neighbor, gated recurrent unit

1 INTRODUCTION

Power system transient stability refers to the ability of each generator to maintain synchronous
operation after a power system is greatly disturbed. At present, with the continuous expansion of the
power system scale and the continuous growth of power consumption, accidents occur frequently
when the system load reaches the limit transmission capacity. It leads the system closer to the limit of
safe and stable operation. As long as the disturbance is slightly increased, the system will produce
obvious voltage and frequency offsets, which will further lead to more serious transient stability
problems (Liu et al., 2007). Therefore, the real-time assessment of transient stability after disturbance
has attracted much attention.

Traditionally, transient stability assessment (TSA) has been modeled by solving a set of high-
order differential algebraic equations (DAEs). It uses a direct method (Kang et al., 2021) based on a
simplified model and a time domain simulation method (Wu and Ding, 2010) based on a trajectory
model to evaluate system stability. Since 1980s, the transient energy function used by the direct
method has been used to evaluate system stability (Hiskens and Hill., 1989; Owusu-Mireku and
Chiang., 2018). However, in the actual large-scale AC/DC hybrid system, the direct method is based
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on the composition equation of the second-order simplified
model of the generator, which leads to inaccurate evaluation.
The time domain simulation method requires complete power
grid and disturbance information, which consumes a lot of
computing time.

With the innovative application of synchronous vector
measurement technology and high-performance calculation
methods, system variables can be sampled in the form of
synchronization. In order to use the abovementioned
technology for accurate and fast TSA, Song et al. (2005),
Gomez et al. (2011), and Huang et al. (2019) carried out some
experiments on TSA using synchronous vector measurements. It
can make accurate and fast TSA for specific power systems. By
extracting the relationship between the historical transient data
set and the stability condition, the constraints of the system from
an unstable state to a stable state can be confirmed accurately.
Among them, the shallow layer neural network (Tang et al., 2019)
had many applications, such as the support vector machine
(SVM) method mentioned in Tian et al. (2017), which is
suitable for small-scale training samples with a short
evaluation time. However, there is a certain randomness in
manual parameter adjustment based on experience. For
different research objects, the model should have different
forms and parameters to improve the accuracy of online
evaluation. In addition, the poor adaptability of topology also
affects the accuracy of online evaluation. In recent years, a series
of deep learning methods (Tan et al., 2019; Tian et al., 2020) have
been developed, which are suitable for automatically extracting
data features from large samples. This method is used in TSA
processes, such as the long- and short-term memory (LSTM)
networks (Sun et al., 2020) and the gated recurrent unit (GRU)
network (Chen andWang., 2021) in the recurrent neural network
(RNN), which rely on the timeliness of data for rapid evaluation.
However, this method only considers the independent time series
data of each node. The significant impact of the time-varying
topology on TSA is ignored. The graph neural network (GNN)
model (Scarselli et al., 2009) solves the problem of topological
structure influence, such as the graph convolutional neural
(GCN) network in Li et al. (2020) and the graph attention
network (GAT) in Zong et al. (2021). They are embedded in
power grid topology. When this characteristic information is
input, the spatial correlation information between nodes is
extracted to improve the evaluation accuracy. However, the
method outputs the evaluation results at all times. It results in
a large amount of computational data and prolongs the
evaluation time. It is not beneficial for the stable recovery of
the system.

The abovementioned deep learning models only consider the
time-varying or topological space-varying data. They have a
limitation between the time and accuracy of coordinated
evaluation. At present, this model has been proven to be
superior in graph data structure and time series information
analysis in many fields, including traffic flow prediction (Zhao
et al., 2020). However, this model has not been applied in the field
of power systems. The complex traffic road structure is similar to
the power grid structure. It is a complex network structure
connected by points and lines. Therefore, the combined model

of RNN and GNN provides a new solution for quickly extracting
accurate dynamic spatial topology and time information.

Therefore, based on the two models, a gating spatiotemporal
graph neural network (GSTGNN) framework with embedded
topology and time series information is proposed. An adaptive
method (Li et al., 2018) was adopted to improve the accuracy and
speed of the assessment. Compared with the GAT model using
multiple attention heads equally, the GSTGNN model is used in
this study. The GSTGNN model is used to extract topological
information of nodes and improve the accuracy of TSA. At the
same time, the time requirement of TSA for a large-scale power
network emergency control center is not more than 0.04 s (Ding,
2016). The general conventional model is to aggregate all fixed
time data for TSA. Therefore, an adaptive TSA method is
proposed, which uses the GRU model to aggregate less time
data and get accurate evaluation results quickly. In addition, the
improved weighted cross entropy loss function of the K-nearest
neighbor (KNN) method (Wang and Ye, 2020) was used to
improve the evaluation performance. Compared with several
TSA models, the proposed model can extract the sampling
information of nodes more accurately and evaluate the

FIGURE 1 | Graph of the neural network algorithm process.
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transient stability of AC/DC heterogeneous multisource
networks.

The arrangement of this study is as follows: the second part
describes the improvement of the GAT network and puts
forward the GSTGNN network. The combination of
GSTGNN and GRU networks is introduced in detail to
form the evaluation model of this study. The third part
describes the adaptive TSA process based on the model in
detail, including off-line training and online evaluation.
Finally, the fourth part compares the evaluation
performance of the proposed method with other methods
through experiments and draws a conclusion.

2 NEURAL NETWORK FRAMEWORK OF
THE GATED SPATIOTEMPORAL GRAPH
2.1 Graph Neural Network and Attention
Mechanism
The graph neural network uses the G(x, A) matrix to describe
the topological relationship of the power system network,
where x represents the collected power grid information
feature vector and A represents the adjacency matrix of the
topology. The application of the graph neural network in the
power system is to aggregate the information of G(x, A) having
a topological relationship. It can aggregate the characteristics
of nodes themselves and neighbors and generate a new feature
G(~x, A). G(~x, A), containing original information and
topological information, has a higher correlation with the
output results. ~x represents a new feature vector with
higher correlation with the evaluation results, as shown in
Figure 1.

The attention mechanism is introduced to weighted
summation of the features of adjacent nodes. The weight is
completely determined by the features of nodes, which is not
affected by the dynamic topology. Each node in the model
represents a monitoring node in the grid topology. The input
of the attention layer of the graph is the node feature vector set x,
as given below:

x � (x1
�→, x2
�→, . . . , xN

�→)T, xi
→ ∈ RF. (1)

Here, xi
→ is the eigenvector of node i,N is the number of system

nodes, and F is the characteristic number of nodes.
The output of each layer is a new node feature vector set ~x, as

given below:

~x � ⎛⎝ x̃1

�→
, x̃2

�→
, . . . , x̃N

�→⎞⎠T

, x̃i

→
∈ RF. (2)

Here, F′ is the feature number of the new node, similar to the
feature extractor.

For N nodes, input node features predict output new node
features. The operation of G(~x, A) obtained from G(x, A)
first needs to calculate the attention coefficient aij, as given
below:

aij � softmax(eij) � exp(η(β cos(Wxi
→,Wxj

→)))
∑k∈Ni

exp(η(β cos(Wxi
→,Wxk

�→))). (3)

Here, the matrix W is initialized, β is the training parameter,
cos is the cosine similarity, and η is the LeakyReLU nonlinear
activation function.ãij is determined in Eq. 4 through the
adjacency matrix A

ãij � { aij Aij � 1
0 Aij � 0

. (4)

Different attention coefficients are generated during each
training. Therefore, this study proposes a network structure
using a new attention head mechanism. It sets the weight for
the important attention head containing topology information,
that is, 0 to 1. The model pays attention to the node information
of the important attention head and improves the interpretability
of the model.

For a GAT layer with k attention heads, each attention head
contains a different set of parameters W and aij. mi represents a
vector composed of k attention head weights. The working
process is shown in Figure 2.

Among them, node 1 has three attention heads in its
neighborhood. Different arrow styles and colors represent
independent attention heads. Different soft gates aggregate and
control the features of each head to get more relevant feature
vectors. The weight formula of attention head is shown below:

mi � [m(1)
i , m(2)

i , . . . , m(k)
i ],

� FCα
θm
⎛⎝xi ⊕ maxj∈Ni({FCθg(xj)}) ⊕ ∑j∈Ni

xj

|Ni|
⎞⎠, (5)

FIGURE 2 | Characteristic extraction process.
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Here, the combined maximum pool and average pool are used
to construct the network. xj is the adjacent node of node i, θg
means to map the features of neighbor nodes to the vector of g
dimensions as small as possible, Ni is the number of neighbor
nodes of node i, FCα

θ � α(wx + b) represents the single and full
connection layers, α is the sigmoid activation function, ⊕ is the
linker, k is the number of attention heads, θm maps connected
features to the k-dimensional space, and m(k)

i is the weight of the
kth attention head of the ith node.

Each node i aggregates the new output features of the attention
head topology information, as follows:

x̃i � ‖Kk�1m(k)
i σ⎛⎝ ∑

jϵNj

ãkijW
kxj
⎞⎠. (6)

Here, after x̃i going by the GSTGNN layer, node i contains the
output new features of the feature information of different spatial
adjacent nodes. The attention head k satisfies inequality k≥ 2. σ
represents the GELU activation function (Hendrycks and
Gimpel., 2016).

In order to prevent overfitting of the model, the random
regularization idea is introduced to control the performance
on the training set, as follows:

GELUs(x) � xϕ(x),

� 0.5x(1 + tan h[ ��
2
π

√ (x + 0.044715x3)]). (7)

Here, φ(x) uses N (0,1) normal distribution.
When x decreases, the output value will depend on the input

value randomly according to the probability. It improves the
generalization ability of the model.

2.2 Gated Recurrent Unit
As mentioned before, GSTGNN is introduced to extract power
grid topology information to improve the evaluation accuracy.
However, the evaluation time is not considered. The system
studied in this study is a high-dimensional dynamic system.
Not only each node has power grid topology information but
also its physical quantity has time series characteristics. The GRU
network has the characteristics of forgetting and selective
memory. It learns and retains the timing characteristics of
input data for later use. In transient assessment, the stability
after fault removal can be deduced from the fault state. Therefore,
the GRU layer is added to capture the historical sequence and
current information of nodes and predict the future time stability.
It does not need to input all time data. Thus, it can shorten the
evaluation time.

In conclusion, in order to process the sequence information
with a complex topological structure and time correlation,
GSTGNN and GRU are combined to form a gated
spatiotemporal GNN framework. At each time, the input xt

and hidden state ht−1 get new features ~xt, ~ht−1 with topology
information through the GSTGNN layer, as follows:

~xt � G(xt, A),
~ht−1 � G(ht−1, A). (8)

Here, two gating states zt and rt are obtained by the state
transmitted from the previous node h̃t−1 and the input of the
current node x̃t; zt is the gating of control update, which decides
the unit to update its active content to reduce the risk of gradient
disappearance; rt is the gating of control reset, which determines
the degree of combining the new input information with the
previous memory state features. The expression is shown as
follows:

zt � α(Wz
˜xt[i, : ] + bz),

r � α(Wr
˜xt[i, : ] + Ur

˜ht−1[i, : ] + br). (9)

Here, α is the sigmoid activation function with a range of (0,1).
Through rt, the newmemory will store the information related

to the past in the following:

̂ht[i, : ] � tanh(Wh
˜xt[i, : ] + Uh(rt ⊙ Uh

˜ht−1[i, : ]) + bh).
(10)

Here, ⊙ means the Hadamard product and multiplies the
corresponding elements in the matrix to identify retained and
forgotten previous information. ̂ht[i, : ] remembers the state of
previous time by resetting.

The memory state of current time step ht[i, : ] needs zt to
forget and select memory at the same time as follows:

ht[i, : ] � (1 − zt)⊙ ˜ht−1[i, : ] + zt ⊙ ̂ht[i, : ]. (11)
Here, (1 − zt) ⊙ ˜ht−1[i, : ] means selective “forgetting” of the
original hidden state and removing unimportant information.
zt ⊙ ̂ht[i, : ] selects some information in ̂ht[i, : ], which means
forgetting the state information of the past moment and adding
some state information input by the current node. In order to
improve the generalization ability and evaluation accuracy of the
model, topology information is included in the transmission of
the abovementioned state information.

Finally, new features aggregated are input into the softmax
separator for classification. The output prediction value ~y at the
last time is obtained in Eq. 12. The value range is (0,1)

~y � softmax(Wohlast[i, : ] + bo). (12)
Here, Wo and bo are the parameters learned by gradient back

propagation.

3 ADAPTIVE TRANSIENT STABILITY
ASSESSMENT

3.1 Principle
In order to start the emergency control immediately after the fault
is removed, TSA needs to be performed quickly and accurately. In
Sun et al. (2020) and Tian et al. (2020), most of the existing TSA
methods use a fixed length observation window; that is, the
evaluation time is constant. However, this static evaluation
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time may not be able to cope with fast transient instability. The
system models with different fault degrees need different
observation window lengths. After the fault is removed, the
dynamic data of the system are observed in the dynamic time
window. The stability of the system is evaluated in the future time
window, and the observation time window is gradually adjusted.
As long as the evaluation system loses stability in the future, the
emergency control will be started immediately.

3.2 Off-Line Training
3.2.1 Generate Data Set
The purpose of the evaluation model is to obtain the evaluation
results from the sampling data. The input data need to fully reflect
the dynamic behavior of the system. In this study, the transient
stability of the power system after fault removal is studied.
Rajapakse et al. (2009) proposed to use PMU to sample the
generator voltage amplitude after fault as input. Due to the inertia
of the rotor, it takes a long time to display the change of generator
rotor speed and angle after fault. In contrast, the generator voltage
amplitude reflects the fault faster than the rotor angle variable. It
has been verified that the voltage amplitude can accurately
evaluate the transient stability of the system. Gomez et al.
(2011) further proved that the use of voltage amplitude has a
higher evaluation accuracy thanmechanical variables (rotor angle
and angular velocity). Therefore, this study selects voltage
amplitude as the input variable. In addition, other node
dynamic variables are selected to form the input data together
with the voltage amplitude to improve the evaluation accuracy. Li
et al. (2021) selected the initial characteristics reflecting the
system dynamics to construct the input characteristics of TSA.
The input characteristics include voltage amplitude, phase angle,
injected active power, and injected reactive power of each node on
all buses.

Analog measurements are used by 50 Hz sampling. In order
to better simulate the system response after various faults are
removed, different contingencies are simulated to generate the
whole data set. Input x is expressed in the form of time as
follows:

x � (x1,x2, . . . ,xT)T

�
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎛⎜⎝ u1,1 . . . uT,1

. . . ut,n . . .
u1,N+1 . . . uT,N+1

⎞⎟⎠T

, ⎛⎜⎝ δ1,1 . . . δT,1
. . . δt,n . . .

δ1,N+1 . . . δT,N+1

⎞⎟⎠T

,

⎛⎜⎜⎝ p1,1 . . . pT,1

. . . pt,n . . .
p1,N+1 . . . pT,N+1

⎞⎟⎟⎠T

, ⎛⎜⎜⎝ q1,1 . . . qT,1
. . . qt,n . . .

q1,N+1 . . . qT,N+1

⎞⎟⎟⎠T

,

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

T

,

(13)
Here, ut,n, δt,n, and pt,n and qt,n are the node voltage amplitude,

phase angle, and active and reactive power, respectively; T is the
observation time window, which affects the accuracy and
complexity of GRU evaluation; and N is the number of nodes,
which is determined by the grid topology.

The transient stability index (TSI) of the power angle after
fault removal is used to judge the sample stability. The expression
is shown as follows:

yi � { 1 (Stable) t ≻ 0
0 (Unstable) t≤ 0

i � 1, 2, ..., T. (14)

Here, t satisfies the formula t � 360−δmax
360+δmax

. δmax is the maximum
power angle difference of any two synchronous generators at the
end of the simulation, and yi is the label of the real category (Xie
et al., 2021). A complete data set is established.

3.2.2 ImprovedWeightedCross Entropy Loss Function
In a really large power grid, because the number of stable samples
is much larger than the number of unstable samples, that is,
“imbalance”, some important unstable situations may be
misjudged as stable. In practical applications, more attention is
paid to the accurate evaluation of unstable samples. Conventional
methods dealing with data imbalance only consider the
imbalance of the number of two types of samples, while
ignoring the spatial distribution information of the number of
two types of samples (Chen et al., 2017).

The KNNmethod (Wang and Ye, 2020) can obtain the spatial
distribution information of each sample so as to solve the
problem of data imbalance. First, the distance between each
sample and the nearest sample of the opposite category is
calculated. It is the reference position of the sample, which is
used to divide the region. Then, the number of unstable and stable
data of a series of location regions is obtained, which is the spatial
distribution of the sample.

The study sets the total space to have a areas. The formula is
shown as follows:

wAi �
FBi

FAi + FBi

wBi �
FAi

FAi + FBi

, (15)

Here, FAi and FBi are the number of unstable and stable
samples in ith region. wAi (i = 1,2, . . ., a) and wBi (i = 1,2,
. . ., a) are the weights of samples in the ith region.

In this study, an improved weighted cross entropy loss
function is used to increase the cost of misjudgment, as follows:

L � − 1
N
∑N
j�1
(wAiyj log(~yj) + wBi(1 − yj)log(1 − ~yj)). (16)

Here,N is the number of single training samples, yj is the label
of real class, and ~yj is the probability of evaluation class.

The purpose of off-line training is to get the optimal w and b
by using the Adam optimizer to train the model under the
condition of minimum loss function L. The abovementioned
methods are used to reduce the impact of unbalanced data.

3.3 Online Evaluation
The stability threshold is used to evaluate the evaluation results.
Because the GRU layer is used in this study, ~yi only focuses on the
stability index generated at time T. When i = 1, 2,..., T − 1 is
ignored, the rule is shown as follows:

Stability �
⎧⎪⎨⎪⎩ Stable 1≥ ~yi > δ

Unstable ~yi < 1 − δ i � 1, 2, ..., T
Unknow Others

. (17)
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Here, δ ∈ (0.5, 1) is the stability threshold.
It is necessary to search and set the appropriate threshold δ to

balance the accuracy of TSA with the average evaluation time. An
adaptive TSA process is proposed in Figure 3.

In this study, xi is input to the model according to the
observation time window after fault removal. The evaluation
results are predicted moment by moment. When it is within
the judgment range, the results are directly output. Otherwise, the
hidden state hi at this time and the next time xi+1 are input to the
next neuron for TSA. If the evaluation time exceeds the
observation time window, the sliding time window method is
adopted until the reliable evaluation result. ỹi is obtained, or the
maximum allowable evaluation time (Tmax) is reached. If Tmax

has not been determined, it is regarded as unstable. In this
process, hi and xi+1 are needed to go through the GSTGNN
layer to get hi and xi+1 with topological relationship and inputed
to the next evaluation time. It is found that Tmax is generally set to
10 cycles.

3.4 TSA Performance Comparison
With the continuous development of machine learning, for the
classification problem, the index based on the confusion matrix in
Table 1 can better evaluate the applicability of the classification
model than only using the accuracy.

In the power system transient stability analysis, researchers
pay more attention to whether the instability is classified
correctly. As a result, the following evaluation indexes are
mainly based on whether the instability can be correctly
judged. In Table 1, TP is the number of stable samples
correctly predicted, FP is the number of unstable samples
incorrectly predicted, FN is the number of mispredicted stable
samples, and TN is the number of unstable samples correctly

predicted. In the confusion matrix, the more the number of TP
and TN is, the better the number of FP and FN is. However, there
are a large number of sample data. It is difficult to measure the
model only by the number. Therefore, in order to
comprehensively evaluate the TSA performance, four indexes
are obtained as follows to calculate the accuracy (ACC),
miscalculation rate (recall), precision, and comprehensive
evaluation index (F1) of the model instability.

ACC is the proportion of the number of correct assessments to
the total number of assessments, defined as follows:

ACC � TP + TN

TP + TN + FP + FN
× 100% . (18)

Once an unstable situation is misjudged as a stable situation, it
may lead to a large area power outage of the system. Thus, the
unstability recall is used to express the misjudgment rate. The
closer the recall is to 1, the lower the possibility of misjudgment of
the unstability situation. The formula of recall is shown as follows:

recall � TN

TN + FP
× 100% . (19)

Unstability precision is the proportion of correctly predicted
unstable samples, defined as follows:

precision � TN

TN + FN
. (20)

The higher the precision is, the more accurate it is to predict
the unstable situation. However, recall and precision are inversely
proportional and cannot reach a high ratio at the same time.
Therefore, F1, the weighted harmonic average of precision and
recall, is introduced in Eq. 21. The two performance indicators
are comprehensively considered. F1 is distributed between [0,1].
The closer it is to 1, the stronger the feature extraction ability of
the model and the better the evaluation performance

F1 � 2 × precision × recall

precision × recall
. (21)

The accuracy mainly includes ACC and F1. Although the deep
learning algorithm studied in this study can reach 1 (or 100%) in
theory, it will lead to overfitting of the model. The data model
does not have enough prediction ability. Therefore, this study
introduces the idea of stochastic regularization, which is as close
as 100% when the prediction requirements are met.

Besides the accuracy, the average response time (ART) in Eq.
22 is also an important index to evaluate the performance of TSA

ART � ∑Tmax

i�1
[Ti × C(Ti)]/ ∑Tmax

i�1
C(Ti). (22)

FIGURE 3 | Adaptive TSA process.

TABLE 1 | Confusion matrix for TSA.

Evaluation quantity Real stability Real unstability

Prediction stability True positive (TP) False negative (FN)
Prediction unstability False positive (FP) True negative (TN)
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Here, Tmax is the maximum allowable evaluation time (10
cycles). C(Ti) is the total number of classified instances in the
current evaluation cycle. ART refers to the average TSA time after
fault removal.

3.5 Total Evaluation Process
The total TSA process is shown in Figure 4:

1) Off-line training: In this study, the three-phase permanent
short-circuit fault is set under different fault points of different
lines. It can realize the diversity of sample data. The time domain
simulation method generates data, including voltage amplitude,
phase angle, injected active power, injected reactive power, and

the maximum power angle difference δmax at the end of the
simulation. δmax obtains the stability index t; when t > 0, it
indicates the system transient stability, and the label is “1"; on the
contrary, the system is unstable and the label is “0". This study
selects the dynamic data of each node on the bus as the input data
to determine the system stability in order to be limited to a certain
range to reduce the difference of the data. The training data and
test data are generally normalized. The weights under instability
and stability are obtained from the training data so as to form a
weighted cross entropy loss function. The model parameters are
continuously adjusted. The Adammethod is used tominimize the
loss function until the optimal evaluation model is obtained.

2) Online evaluation: Test data and actual data are added, and
performance is evaluated by using the best trained model.

4 NUMERICAL EXAMPLE

4.1 Generation of Sample Data Sets
This study uses a representative New England 10-machine 39-
node power system in Figure 5 to evaluate the performance of the

FIGURE 4 | General evaluation flow chart.

FIGURE 5 | New England 10-machine 39-bus power system.

FIGURE 6 | Relationship between iteration times and accuracy.
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method. The reference frequency is 50 Hz. The time domain
simulation data of PSA-BPA software is used, similar to the data
generated by PMU in real time. Python is used to program.

The sampling step is set as 0.02 s. Various faults are simulated
in various scenarios to obtain complete data sets. A total of 11
load levels of 75–125% (step size 5%) are set. Generator output is
changed accordingly to ensure power flow convergence. The
Three-phase permanent short-circuit fault is set for the fault
type. Fault points are set for 0, 25, 50, 75, and 100% of lines. The
fault clearing time is set for 0.2 s. The simulation time is 5 s. Fault
samples are selected considering the whole wiring system andN-1
accident. The fault samples are 8855. A total of 6000 training set
samples are randomly selected, and test set samples are selected
according to 4:1, including 5211 stable samples and 2289 unstable
samples.

In order to train the evaluation model with the best
performance, these control parameters are defined later. In
terms of the model structure, this study sets up two GSTGNN
input layers to avoid excessive smoothing caused by too many
layers. One GSTGNN middle layer and four attention heads
are set to extract and aggregate the features with the
topological structure of the power grid. The GRU layer is
set to two layers, with 128 batch sizes in each layer, which
further improves the evaluation speed. The last layer is the
dense layer, which uses the nonlinear activation function
to fit the nonlinear problem to improve the evaluation
accuracy. In terms of training parameters, the dropout is set
to 0.05. The learning rate is set to 0.001. The training iterations
are set to 300. The aforementioned settings can improve the
performance of the evaluation model.

In the test, each evaluation cycle of the adaptive TSA method
based on the sampling step is 0.02 s. The maximum evaluation
time is set to 0.2 s (Tmax = 10). The observation window T and δ
are set to 8 and 0.62, respectively. The specific setting experiment
is described later.

4.2 Handling Unbalanced Data
In this study, the idea of KNN is introduced to calculate the
weight of each sample. The weight is added to the training
parameters in the loss function to obtain the best model. A
total of 6000 samples with or without imbalance are taken as
the training data. The number of iterations is 300. When T = 8, δ
= 62; the training process is shown in Figure 6.

After the fault occurs, with the increase of iteration times, the
accuracy (ACC) increases rapidly until it reaches 50 times. The
accuracy tends to increase gently. Finally, the evaluation accuracy

of balanced processing can reach 99.237%. Therefore, data quality
has an important influence on the training high-
performance model.

For the same set of data, the performance of this method is
improved compared with other deep learning models, as shown
in Table 2.

According to Table 2, the recall of SVM which belongs to the
shallow model is less than 0.9, so it cannot extract features
accurately and is prone to misjudgment. GAT, LSTM, and
GRU models all have higher ACC. However, when the scale of
system topology expands, the F1 value of the GAT model is
higher than that of LSTM and GRU models. It indicates the
importance of topological relationship between nodes for TSA.
Because the CNN model does not take into account the
topological structure and time series information of the power
grid, ACC is relatively low. Compared with the previous model,
the ACC of the framework established in this study is closer to
100%, and the F1 value is relatively close to 1. It still has strong
generalization performance for high-dimensional data. The
framework is relatively more stable. Its performance is better
than that of GAT-GRU, GAT, SVM, GRU, LSTM, and CNN
models. This indicates that this framework can better mine the
essential characteristics of data. Its training parameter sharing
overcomes the complex problems of the traditional adaptive
evaluation system.

4.3 Average Evaluation Time and Training
Time
The following table shows the comparison of art and training
time in Table 3.

The ART of the GRUmodel and LSTMmodel are basically the
same (Yu et al., 2018). Because the parameters of the GRU model
are less than those of the LSTM model, the training time is
relatively short (Chen and Wang. 2021). The extreme learning
machine (ELM) network (Zhang et al., 2015) needs to train 10
classifiers whose parameters are not shared. A large number of
parameters lead to the longest training time. A simple SVM
network structure cannot effectively extract features, resulting in
the longest ART. This method extracts the topological
relationship and time series information of important
attention heads. This method feature extraction ability is
higher than that of the GAT-GRU model, which only extracts
the topological relationship of attention heads on average. Thus,
the output results are easier to reach the stability threshold, and
the TSA evaluation speed is faster. In the case of ensuring a high
accuracy, the ART of this study is 1.01 cycles, which meets the

TABLE 2 | Model performance comparison.

Model ACC/% Recall Precision F1

This study 99.82 0.998 0.995 0.996
GAT-GRU 99.02 0.983 0.989 0.988
GAT 98.26 0.987 0.988 0.987
SVM 95.06 0.897 0.990 0.941
GRU 97.80 0.949 0.986 0.967
LSTM 97.51 0.947 0.991 0.969
CNN 93.23 0.945 0.993 0.968

TABLE 3 | Average evaluation time versus training time.

Method ART/Cycles Training time/s

This study 1.010 95.3
GAT-GRU 1.360 84.6
LSTM 1.672 41.5
GRU 1. 555 32.7
ELM 2.111 156.2
SVM 4 20.2
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requirements of emergency control. At the same time, although
the model layers of this study and GAT-GRU are more and the
offline training time is longer than those of the GRU model and
LSTM model, it does not affect the effect of online evaluation.
This model is still practical.

4.4 Observation Time Window T and
Stability Threshold δ Test
In this study, these two parameters T and δ affect the evaluation
performance. The following figures in Figure 7 and Figure 8 are
the histograms of ACC and ART, respectively.

When T = 8, it means that after the fault is cleared, the input
data of the first eight cycles are used for training and continuous
time series data are used for testing. The maximum accuracy is
about 99.27%, which shows that the input data affect the system
performance. With the increase of T, the overall trend of ACC
increases (there is a small fluctuation), and the TSA time is longer.
The shorter T may damage the integrity of the input data,
reducing the accuracy. Therefore, in the case of T as small as
possible to ensure a high accuracy, T = 8 is the best choice.

When T = 8, δ for the histogram of ACC and ART is obtained
in Figure 9 and Figure 10.

As with the observation time window, the size of δ also affects
ACC and ART. The smaller δ may lead to earlier evaluation.
However, the accuracy rate may be reduced, while the larger δ
produces more accurate results at the expense of evaluation
speed. As can be seen from Figures 9, 10, the increase of δ
leads to the reduction ofACC and the increase ofART. SmallART
and high ACC are the expected results, so the stability threshold
of 0.62 is the best.

To sum up, T is set to 8. δ is set to 0.62 to get the fastest
evaluation time without reducing the accuracy.

4.5 Test of Topology Change
After the fault is removed, the adaptability of the model to
topology changes is tested. Four changes are listed in the
following table, and 1500 test sets are selected for the
performance test in Table 4.

It is found from Table 4 that the accuracy of TSA caused by
generator shutdown is the lowest, but it is still more than 99%
when the load is cut off. In general, the TSA accuracy of this
model is still about 99% in the case of topology changes. The
results show that the features selected in this study are enough to
reveal the system state of the power grid in the case of large
disturbance. The selected model can fully mine the transient

FIGURE 7 | T on the relationship of accuracy.

FIGURE 8 | T on the relationship of ART.

FIGURE 9 | δ on the relationship of accuracy.

FIGURE 10 | δ on the relationship of ART.
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variation law and extract data features. The model with strong
robustness is suitable for complex topology.

4.6 Data Visualization
t-Distributed stochastic neighbor embedding (t-SNE) for the
extracted feature data is conducive to visually verify the
effectiveness of the algorithm. The following is the feature
map of different layers of the GSTGNN framework in
Figure 11, Figure 12, and Figure 13.

t-SNE is used to establish linear projection. The mapping
relationship between approximate high-dimensional data space
and low-dimensional embedded space is obtained. The high-
dimensional input data are mapped to the two-dimensional
space. The stability classification is explained intuitively.
Figure 11, Figure 12, and Figure 13 show the characteristic
diagrams of the input layer, GRU layer, and full dense layer of the
model.With the deepening of the layer, the boundary between the
two categories is more and more obvious, and the spatial
overlapping data are less and less. It shows that the GSTGNN
framework plays an important role in deep structure level
extraction. Finally, it achieves an obvious classification effect.

5 CONCLUSION

In this study, a power system adaptive TSA method based on
GSTGNN is proposed. It learns spatial and temporal correlation
of data to balance assessment accuracy and assessment time. The
New England 10-machine 39-bus system is used for verification,
compared with a variety of verification algorithms to indicate the
following:

1) This study introduces the graph attention depth learning
network and considers the topological relationship between
nodes. It also proposes a new attention head mechanism,
which considers the feature correlation of adjacent nodes from
important attention heads. In the process of aggregation, the
new characteristics of nodes will change according to the
changes of topology and attention coefficient. Therefore, the

TABLE 4 | Results of TSA under topological structure change.

Topological condition ACC/% Recall Precision F1

Line 25–26 cutoff 99.01 0.989 0.996 0.992
Generator 2 shutdown 98.95 0.987 0.986 0.986
Node load 28 resection 99.42 0.995 0.991 0.993
Line 25–26 cut off, generator 2 shutdown, and node load 28 resection 99.25 0.990 0.994 0.991

FIGURE 11 | Input layer.

FIGURE 12 | GRU layer.

FIGURE 13 | Dense layer.
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use of GNN can improve the evaluation accuracy and is more
suitable for the changing and complex power grid structure.

2) This study uses adaptive TSA and GRU layers to capture the
characteristic quantity of input data every moment. As long as
the output data reach the threshold, the result is directly
output. Thus, we can achieve rapid and accurate assessment
with less data.

3) In addition to TSA performance and the response time test,
two basic parameters are introduced for the preliminary
sensitivity test: stability threshold and training observation
window length. The simulation results show that the
parameter configuration has good performance to promote
the improvement of evaluation performance.

In conclusion, the composite framework is specially used to
model sequence data with complex topology and time
correlation. It reduces the training time and response time
without sacrificing the evaluation accuracy. It is suitable for a
more complex large-scale power grid research. However, the
actual noise interference will affect the accuracy of the
evaluation results, which needs to be considered in the future.
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