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A precise and reliable proton exchange membrane fuel cell (PEMFC) parameter
identification performs an essential function in simulation analysis, optimal control, and
performance research of actual PEMFC systems. Unfortunately, achieving an accurate,
efficient, and stable parameter identification can sometimes be problematic for traditional
optimization methods, owing to its strong coupling, inherent nonlinear, and multi-variable
characteristics. Therefore, an advanced bald eagle search (BES) algorithm is designed to
dependably identify the unknown parameters of the electrochemical PEMFC model in this
work. For evaluating and analyzing the overall optimization performance of the BES
comprehensively, it is compared with the genetic algorithm (GA) based on MATLAB
under three cases. According to the simulation results, the optimum root mean square
error (RMSE) achieved by BES is 96.27% less than that achieved by GA in parameter
identification, which fully indicates that the precision, accuracy, and stability of the
optimization results can be remarkably improved via the application of BES.

Keywords: proton exchange membrane fuel cell, parameter identification, bald eagle search algorithm,
metaheuristic algorithm, MATLAB

1 INTRODUCTION

Nowadays, in the context of the ever-increasing energy demand and dwindling fuel reserves (Sun
et al., 2020; Liu et al., 2020; Noman et al., 2021), the transformation of traditional fossil energy (Iqbal
et al., 2021; Bakeer et al., 2021; Erdiwansyah et al., 2021) and utilization of renewable energy have
been brought to global researchers’ attention (Kalyan and Rao, 2021; Liu et al., 2021; Yang et al.,
2020a). The exploitation of renewable energy (Zhang et al., 2019; Murty and Kumar, 2020; Zhang
et al., 2021) has been proven as a significant measure for energy structure optimization (Huang et al.,
2021; Liu et al., 2020; Chen et al., 2018), environmental governance, and ecologic protection (Yao
et al., 2015). Meanwhile, proton exchange membrane fuel cell (PEMFC) (Ahmed et al., 2020) is born
out as efficient alternative energy, in light of its ability to convert hydrogen (chemical energy) into
electricity, with water as the sole by-product.

By virtue of the distinctive superiority of the low operating temperature, high power
density, and easy maintenance, PEMFC has obtained a growingly widespread practice in
multiple engineering fields, such as distributed generation, portable electronic applications,
and transportation fields. For analyzing the characteristics of PEMFC with better accuracy and
reliability, a variety of modeling techniques have been presented, such as isothermal one-
dimensional mathematical model (Kalyan and Rao, 2021), mechanistic modeling (Liu et al.,
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2021; Giner et al., 2018), equivalent electrical circuit (Yang
et al., 2020a), and steady-state electrochemical model (Zhang
et al., 2019). In addition, the steady-state electrochemical
model based on the electrochemical reaction mechanism can
exceptionally demonstrate the voltage-current (V-I)
characteristic under different operating conditions, in
which some unknown yet significant parameters are
required to estimate accurately and reliably.

Due to the highly nonlinear, multiply variable, and strong
coupling characteristics of PEMFC, conventional
deterministic optimization methods are restricted to
obtaining satisfactory parameter identification results.
Over the years, with the rapid advancement of emerging
algorithm/soft computing, meta-heuristic algorithms with
high adaptability and strong robustness have been
universally applied in the field of nonlinear optimization
systems. Hence, the parameter identification of PEMFC is
achieved via various meta-heuristic algorithms. For instance,
the genetic algorithm (GA) was adopted for fitting the Nexa
1.2kW PEMFC real data to obtain an exact identification of
PEMFC parameters (Murty and Kumar, 2020). Zhang et al.
(2021) applied grey wolf optimization (GWO) to achieve
PEMFC parameter identification based on experimental
data, which verifies the practicability of the proposed
algorithm in simulating the electrical function of
commercial PEMFC. Particle swarm optimization (PSO) is
utilized to identify the off-line parameters of the Nexa 1.2kW
PEMFC system at varying loads (Salim et al., 2015).
Meanwhile, other excellent meta-heuristic algorithms were
designed to be a useful tool to achieve optimal parameters,
that is, artificial bee colony (ABC) (Liu et al., 2020), antlion
optimization algorithm (ALO) (Chen et al., 2018), slap
swarm optimizer (SSO) (Yao et al., 2015), flower
pollination algorithm (FPA) (Ahmed et al., 2020), and
improved version of monarch butterfly optimization (IMBO)
(Giner-Sanz et al., 2018).

Many meta-heuristic algorithms with terrific effects are
adopted to identify unknown parameters of PEMFC despite
the complication of certain algorithms’ operation mechanisms
and the ideal solutions, which are difficult to obtain with high
precision and good stability. What is more, there are still many
possibilities to attempt new ones. By simulating the actual
operation of the cell in multi-functional environments, this
work proposes bald eagle search optimization (BES) (Atlam
and Dndar, 2021) to gain the optimum result of parameters in
Amphlett’s model (PEMFC model) and tackle the
aforementioned defects.

The main objectives and novelties of this study can be
summarized as follows:

• A new optimization algorithm using BES is discussed for
unknown parameter identification of the PEMFC
electrochemical model;

• BES is a simple optimization technique, in which fewer
parameters are required to be applied in the calculation
process owing to the conciseness of its operation mechanism;

• Compared with GA, BES designed in this work presents a
faster practical convergence speed in PEMFC parameters
identification;

• Experimental results indicate that BES can efficiently
identify parameters with fast convergence speed, high
accuracy, and robustness owing to its strong ability to
escape from the local optimum of Ballard-Mark-V PEMFC.

The rest of this article is organized as follows: the steady-state
electrochemical model of PEMFC and objective function are
described in Section 2. Besides, Section 3 thoroughly
illustrates the execution mechanism and parameter
identification of BES. Section 4 provides the simulation and
analysis results in comprehensive cases. Lastly, Section 5
summarizes several conclusions along with future perspectives.

2 PROTON EXCHANGE MEMBRANE FUEL
CELL MODELING
2.1 Electrochemical ReactionMechanism of
Proton Exchange Membrane Fuel Cell
A typical PEMFC includes two electrodes (cathode and anode)
and a proton exchange membrane (PEM), while electrodes are
mainly composed of a gas diffusion layer and a platinum-based
alloy catalyst layer. Hydrogen is decomposed into hydrogen ions
H+ and electrons e− through catalytic reaction after passing
through the anode catalytic layer. Subsequently, oxygen
provided by the cathode catalytic layer integrates with
electrons and hydrogen ions to generate water and heat.
Figure 1 describes the structure of the reaction mechanism
diagram, a single PEMFC, and a PEMFC stack of PEMFC.
The electrochemical reaction mechanism in PEMFC is
expressed as follows:

At anode,

H2 → 2H+ + 2e− . (1)
At cathode,

2H+ + 2e− + 1
2
O2 → H2O. (2)

Overall chemical reaction,

2H2 +O2 → 2H2O + heat + Electricity. (3)

2.2 Mathematical Modeling
The net output voltage of the electrochemical model is affected by
three kinds of polarization, namely, activation, ohmic, and
concentration polarization, while the voltage characteristic
function of electrochemical can be written as (Amphlett et al.,
1995)

Vc � Enernst − Vact − Vohmic − Vcon, (4)
where Enernst indicates the open-circuit voltage (V); Vact means
the activation voltage drop (V); Vohmic denotes the ohmic voltage
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drop (V); and Vcon represents the concentration voltage
drop (V).

In addition, Enernst calculated from the Nernst equation can
be determined by (Ariza et al., 2018)

Enernst � ΔG

2F
+ ΔS

2F
(Tk − Tref) + RT

2F
[ln(PH2) + 1

2
(PO2)], (5)

where ΔG is the increment in Gibbs free energy (J/mol); F
indicates Faraday’s constant (96,487 C/mol); ΔS means the
increment of entropy (J/mol); R denotes the universal gas
constant [8.314 J/(K mol)]; Tk and Tref represent the
operation ambient and reference temperature (K), respectively;
PH2 and PO2 stand for the partial pressures of hydrogen and
oxygen, respectively (atm), which are formulated as (Ali et al.,
2017)

PH2 � 0.5 × RHa × Psat
H2O

× ⎡⎢⎢⎢⎣⎛⎝RHa × Psat
H2O

Pa
× exp⎛⎝1.635(icellA )

T1.334
k

⎞⎠⎞⎠−1

− 1⎤⎥⎥⎥⎦ ,
(6)

PO2 � RHc × Psat
H2O

× ⎡⎢⎢⎢⎣⎛⎝RHa × Psat
H2O

Pc
× exp⎛⎝4.192(icellA )

T1.334
k

⎞⎠⎞⎠−1

− 1⎤⎥⎥⎥⎦ ,
(7)

where RHa and RHc, respectively, denote the relative humidity of
vapor at anode and cathode (atm); Pa and Pc are the inlet
pressures of anode and cathode (atm), respectively; and Psat

H2O
represents the saturation pressure of water vapor (atm), which is
defined as (Ali et al., 2017)

Tc � Tk − 273.15, (8)
log10(Psat

H2O
) � 2.95 × 10−2 × Tc − 9.19 × 10−5 × T2

c

+ 1.44 × 10−7 × T3
c − 2.18. (9)

Moreover, the activation voltage Vact demonstrates the
slowness of the reaction occurring on the electrode surface,
which can be given as follows (Ariza et al., 2018):

Vact � ε1 + ε2Tk + ε3Tkln(Co2) + ε4Tkln(icell), (10)
where εi (i = 1,2,3,4) indicates the semi-empirical coefficients
and Co2 is the oxygen concentration (mol/ cm3), which is
determined by (Ali et al., 2017)

CO2 �
PO2

5.08 × 106 × e(−498
Tk
). (11)

Ohmic voltage drop Vohmic is mathematically expressed as
follows (Ali et al., 2017):

Vohmic � icell(Rm + Rc), (12)
where Rc is the equivalent contact resistance (Ω) and Rm
represents the equivalent resistance provided to PEM
conduction (Ω), which can be defined by

Rm � ρm( l

A
), (13)

where l means the membrane thickness (μm), A is the effective
electrode area (cm2), and ρm stands for the specific membrane
resistance (ΩΔ cm) described by (Amphlett et al., 1995)

FIGURE 1 | Structure of PEMFC. (A) Electrochemical mechanism of PEMFC; (B) single PEMFC, and (C) PEMFC stack.
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ρm �
181.6 × [1 + 0.03 × (icellA ) + 0.062 × (Tk

303)2(icellA )2.5][λ − 0.634 − 3 × (icellA )] exp[4.18 × (Tk−303
Tk

)] , (14)

where λ stands for an empirical parameter.
Furthermore, concentration voltage loss Vcon influenced by

the concentration can be formulated as (Ariza et al., 2018)

Vcon � −bln(ln J

A × Jmax
), (15)

where b means the parametric coefficient (V), J is the actual
current density, and Jmax defines the upper bound current
density (A/cm2).

On the whole, after referring to the mentioned Eqs 4–15 for
PEMFC, there are seven crucial parameters demand to be
identified: ε1 , ε2 , ε3 , ε4 , b, λ, and Rc.

2.3 Objective Function
To precisely build a mathematical model of PEMFC based on the
aforementioned unknown parameters, it is crucial to utilize an
objective function to reliably evaluate parameter identification. In
addition, the objection function based on the root mean square
error (RMSE) can commendably mirror the deviation between
the actual and estimated values.

Consequently, RMSE is accounted as the objective function
given by

RMSE (x) �
��������������������������
1
N

∑ N
i�1[Vactual(i) − Vestimate(i)]2

√
, (16)

where N indicates the total quantity of actual datasets, Vactual is
the actual voltage, and Vestimate denotes the estimated voltage.

Additionally, the restraints of crucial parameters can be
written as

s.t.

⎧⎪⎪⎪⎨⎪⎪⎪⎩
εi,min ≤ εi ≤ εi,max

λmin ≤ λ≤ λmax

Rc,min ≤Rc ≤Rc,max

bmin ≤ b≤ bmax

,∀i ∈ {1, 2, 3, 4}. (17)

3 BALD EAGLE SEARCH ALGORITHM

3.1 Optimization Mechanism
The BES algorithm (Atlam and Dndar, 2021) is an innovative
meta-heuristic algorithm enlightened by biological activities
in nature. Individual search strategies can be established
through their own mobile or global experience in the
group random optimization process to optimize complex
problems in the real world. In particular, the self-search
and exploration of individuals in the search space are
performed by simulating the predation behavior of bald
eagles (e.g., prey on salmon living in a specific area). The
bald eagles have a specific predation strategy, which can help
them consume the least energy while maximizing the
probability of predation success.

The bald eagle’s predation strategy has three major aspects:
selecting the appropriate search domain, searching in the selected
space, and the best chance to swoop on the prey.

In the select stage, the selected search space is related to the last
movement of the bald eagle, which can be expressed as

Pnew,i � Pbest + α × r(Pmean + Pi), (18)
where Pbest means optimal spatial search position, α is parameters
affecting location update, 1.5 ≤ α ≤ 2, r denotes a random number
between 0 and 1, Pmean indicates average distribution position of
the bald eagle after the previous search.

After determining the search space, the bald eagle will
search the space that flies spirally to search for prey and
find the best-accelerated dive position. The change of the
search position is expressed in polar coordinates as follows
(Salim et al., 2015):

Pnew,i � Pi + y(i) × (Pi − Pi+1) + x(i) × (Pi − Pmean), (19)
x(i) � xr(i)

max(|xr|), y(i) � yr(i)
max(∣∣∣∣yr∣∣∣∣), (20)

xr(i) � r(i) × sin[θ(i)], yr(i) � r(i) × cos[θ(i)], (21)
θ(i) � a × π × rand, r(i) � θ(i) + R × rand, (22)

FIGURE 2 | Overall flowchart of BES-based PEMFC parameter
identification.
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where x(i) and y(i) are values between 0 and 1 for
determining the positions of the bald eagle on the
corresponding polar axis, respectively; r(i) and θ(i) denote
the polar diameter and polar angle of the spiral flight in polar
coordinates, respectively; a indicates a parameter that takes a
value from 5 to 10; R represents a parameter that controls the
search period, between 0.2 and 2; and rand is a random
number in [0,1].

In the swooping stage, the bald eagle swoops to the prey at the
optimal position, while other bald eagles in the population also
move to the best position and dive down to attack the prey. The

position updates during the swooping are expressed in polar
coordinates as (Oliva et al., 2014)

Pnew,i � rand × Pbest + x1(i) × (Pi − c1 × Pmean) + y1(i)
× (Pi − c2 × Pbest), (23)

x1(i) � xr(i)
max(|xr|), y1(i) � yr(i)

max(∣∣∣∣yr∣∣∣∣), (24)
xr(i) � r(i) × sinh[θ(i)], yr(i) � r(i) × cosh[θ(i)], (25)

θ(i) � a × π × rand, r(i) � θ(i), (26)

TABLE 1 | Range of PEMFC parameters for identification.

Parameter ε1 ε2 ε3 ε4 λ Rc (Ω) b (V)

Lower bound −1.1997 0.001 3.6 × 10−5 −0.00026 10 0.0001 0.0136
Upper bound −0.8531 0.005 9.8 × 10−5 −0.0000954 23 0.0008 0.5

TABLE 2 | PEMFC parameter identification results.

Parameter ε1 ε2 ε3 ε4 λ Rc

(Ω)
b
(V)

RMSE
(V)

BES −1.1034 3.4690× 10−3 4.5716× 10−5 −1.8981× 10−4 23.0000 6.5121× 10−4 0.0160 1.8220× 10−5

GA −0.8629 3.0564× 10−3 7.1590× 10−5 −1.9406× 10−4 19.8077 1.8306× 10−4 0.0153 3.0946× 10−4

Bold values represents the best results.

FIGURE 3 | Comprehensive analysis of BES and GA under case 1. (A) Average RMSE. (B) Boxplot of RMSE. (C) Convergence curves. (D) Comparison of model
datasets by BES with experiment datasets.
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where c1 and c2, respectively, stand for moving velocities toward
the optimal and central positions and are both between 1 and 2.

3.2 Overall Optimization Procedure
On the basis of the BES algorithm, Figure 2 illustrates the
flowchart of PEMFC overall parameter identification. Firstly, it
is vital to determine which parameters in the steady-state
electrochemical model are identified. After that, the output
voltage and current data selected as the actual PEMFC will be
regarded as the inputs of BES, while the data are transformed into
the objective function according to Eq. 16. Furthermore, BES is
employed to identify the parameters in accordance with the built
model. Finally, the optimal parameter identification results of
PEMFC are output after multiple iterations.

4 CASE STUDIES

In this section, simulation experiments are performed on PEMFC
under three different temperatures and relative humidity of vapor to

identify seven crucial parameters (i.e., ε1 , ε2 , ε3 , ε4 , b, λ, and Rc)
which are in comparison with those of BES and GA, respectively.
Additionally, under two conditionsTk= 333.15K,RHa= 50%, andRHc

= 50% andTk= 313.15K,RHa= 75%, andRHc= 75%, alongwithTk=
353.15K, RHa = 100%, RHc = 100%, 25 pairs of V-I data are extracted
from Ballard-Mark-V PEMFC, where film thickness is 178 μm and
effective area is 50.6 cm2. What is more, the boundary conditions of
seven unknown parameters are illustrated in Table 1.

For a fair comparison between twometa-heuristic algorithms, each
algorithm runs independently 10 times to obtain results, while their
maximum iteration number is chosen as kmax = 500, and the
population size is set to be identical psize = 40. The simulations are
executed on MATLAB 2019b through a personal computer with
IntelR CoreTM i5 CPU at 2.9 GHz and 16 GB of RAM.

4.1 Case 1 (Tk = 333.15K, RHa = 50%, and
RHc = 50%)
When the experimental condition is set as Tk = 333.15K, RHa

= 75%, and RHc = 75%, the simulation values of seven

TABLE 3 | PEMFC parameter identification results.

Parameter ε1 ε2 ε3 ε4 λ Rc

(Ω)
b
(V)

RMSE
(V)

BES −1.1034 3.4690× 10−3 4.5716× 10−5 −1.8981× 10−4 23.0000 6.5121× 10−4 0.0160 2.8419× 10−5

GA −0.8969 2.8658× 10−3 5.0525× 10−5 −1.8904× 10−4 13.4305 2.5975× 10−4 0.0146 7.6268× 10−4

Bold values represents the best results.

FIGURE 4 | Comprehensive analysis of BES and GA under case 2. (A) Average RMSE. (B) Boxplot of RMSE. (C) Convergence curves. (D) Comparison of model
datasets by BES with experiment datasets.

Frontiers in Energy Research | www.frontiersin.org April 2022 | Volume 10 | Article 8854616

Yang et al. Parameter Identification of PEMFC

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


unknown parameters are generated by BES and GA
algorithms. The satisfactory results of parameter
identification and minimum RMSE of the PEMFC model
are illustrated in Table 2. Particularly, RMSE acquired by
BES is 94.11% lower than those acquired by GA, respectively.
Hence, the advisable performance of BES is significantly
greater than that of GA, which can be attributed to its
consideration of accuracy, reliability, and high efficiency.

What is more, Figure 3A depicts the average RMSE acquired
by the two algorithms under 10 independent runs. It is
transparent that the accuracy of BES is significantly higher
than that of GA, which fully demonstrates BES’s superior
performance. Given that the average RMSEs of BES and GA
algorithms hardly consist in the same order of magnitude, and
the value of GA is about 12 times higher than that of BES, the
BES’s effect of the actual data approximation is much better
than GA.

Figure 3B shows a boxplot of BES and GA, demonstrating
the distribution range and upper/lower bounds of simulation
explicitly and comprehensively. It can be seen from the chart
that the error fluctuation interval and average RMSE of BES
are far less than that of GA. Thus, the BES algorithm has
accurate searching ability in PEMFC parameter identification
and significant global searching ability.

Meanwhile, convergence graphs of the two algorithms are
depicted in Figure 3C, while BES attains a stable optimal
solution rapidly in approximately 60 iterations based on a
global search.

As a single individual optimization and group cooperation
mechanism, BES performs excellent local exploitation and
global exploration, by which the accuracy and efficiency of
parameter identification can be drastically improved.

Figure 3D describes the output V-I fitting curve on the
basis of global optimal parameters identification by BES,

TABLE 4 | PEMFC parameter identification results.

Parameter ε1 ε2 ε3 ε4 λ Rc

(Ω)
b
(V)

RMSE
(V)

BES −0.8553 2.5240× 10−3 3.6000× 10−5 −1.9219× 10−4 23.0000 1.0000× 10−4 0.0136 2.8878× 10−4

GA −1.1568 3.5739× 10−3 4.22673× 10−5 −1.9254× 10−4 22.9145 2.3111× 10−4 0.0137 5.3607× 10−4

Bold values represents the best results.

FIGURE 5 | Comprehensive analysis of BES and GA under case 3. (A) Average RMSE. (B) Boxplot of RMSE. (C) Convergence curves. (D) Comparison of model
datasets by BES with experiment datasets.

Frontiers in Energy Research | www.frontiersin.org April 2022 | Volume 10 | Article 8854617

Yang et al. Parameter Identification of PEMFC

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


upon which one can readily discover that the model curve
achieved from BES approximates the experimental data to a
great extent. It is undeniable that BES has superb
performance in PEMFC parameter identification due to
superior optimization ability and effectiveness.

4.2 Case 2 (Tk = 313.15K, RHa = 75%, and
RHc = 75%)
When the simulation is in the condition of Tk = 313.15K,
RHa = 75%, and RHc = 75%, the statistical results of seven
unknown parameters and RMSE based on BES and GA are
shown in Table 3. In particular, RMSE obtained by BES is
significantly smaller than GA, while BES is 96.27% smaller
than the RMSE of GA. Upon them, it is obvious that BES can
considerably improve the accuracy of PEMFC model
parameter identification.

Figure 4A presents the average RMSE obtained by BES and
GA, illustrating that BES can acquire a lower average RMSE
under 10 independent runs. Thus, BES has better accuracy
and stability in the unknown parameter identification of
PEMFC.

In addition, the RMSE boxplot obtained by BES and GA is
depicted in Figure 4B, upon which the distribution range and
upper/lower bound of BES are lower than those of GA. One
can easily observe that the balance between global
exploration and local exploitation of BES is better than
that of GA.

In the meantime, convergence curves of BES and GA are
shown in Figure 4C, where BES has about 55 iterations to
achieve convergence, while GA needs 200 iterations to
achieve convergence stability. Besides, RMSE after BES
convergence is smaller than that of GA, while it can be
perceived that BES identifies the unknown parameters of
the PEMFC model with more accuracy and efficiency.

Figure 4D demonstrates the output V-I fitting curve
obtained by the optimal results of BES, where data via BES
are highly fitted with experiment data. The result efficiently
reflects that BES has a superior ability for PEMFC parameter
identification.

4.2 Case 3 (Tk = 353.15K, RHa = 50%, and
RHc = 50%)
Table 4 illustrates the best PEMFC electrochemical model
parameters and minimum RMSE under the condition of Tk =
353.15K, RHa = 50%, and RHc = 50% through BES and GA
algorithm. In light of the result, BES represents the optimal
performance owing that the minimum RMSE value acquired
by BES is 46.13% lower than GA, which can accomplish
parameter identification tasks in PEMFC with higher quality
and accuracy.

The average RMSE obtained by BES and GA under 10
independent runs is shown in Figure 5A, while the value of
the former is about one-quarter of the latter in the case of
multiple operations, which is a lot smaller. Hence, BES

outperforms GA in parameter identification and shows
good stability and global optimization ability.

As is depicted in Figure 5B, it can be observed from the boxplot
of BES and GA that the fluctuation range and average value of
RMSE optimized by BES are lower than those of GA with 10
independent runs, which, from the perspective of either its stability
or accuracy, effectively confirms the outstanding performance of
BES in identifying the accuracy of PEMFC parameters. Moreover,
Figure 5C presents the convergence curve of the two algorithms.
BES converges at about 90 iterations, while GA does not reach a
stable value until 480 iterations. After iterating 270 to 480 times,
GA falls into a locally optimal solution and results in low efficiency
and reduced accuracy. In general, BES is superior in convergence
stability and precision for its exceptional global optimization
ability.

In the end, Figure 5D describes convergence graphs of BES
algorithms, which indicates that, in the case of parameter
identification of BES, the experimental data and model fitting
data are highly coincident, while the error is extremely small due
to superior accuracy.

5 CONCLUSION

For the precise and reliable parameter identification of the
PEMFC model, a meta-algorithm BES with superior
performance is applied in this work, which includes three
main contributions/novelties:

• BES is employed to obtain an accurate and credible
parameter identification of PEMFC for the first time;

• In line with the simulation results, BES represents significant
stability, faster convergence speed, and higher accuracy
comparedwith theGA algorithmunder two operation stations;

• Three common case studies (e.g., Tk = 333.15K, RHa = 50%,
and RHc = 50%; Tk = 313.15K, RHa = 75%, and RHc = 75%;
and Tk = 353.15K, RHa = 100%, and RHc = 100%) are
emulated, which can validate that BES holds tremendous
potential in PEMFC parameter identification, converging to
the optimal stable solution rapidly because of the dynamic
and proper balance between local exploitation and global
exploration. Especially, the errors of BES convergence are
significantly reduced by 94.11%, 96.27%, and 46.13%,
respectively, in three cases of parameter identification
compared with GA.

Future studies will be undertaken as follows:

• BES is proposed as a promising optimization method that
remarkably improves the accuracy of the solution in
PEMFC parameter identification. It also has the merits
of universality and versatility in the meantime,
contributing to the realization of parameter
identification of more complex models or other FCs;

• In addition, it is worthwhile to perform online identification
of PEMFC parameters, while the actual response speed and
optimization capability of BES need to be further improved.
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GLOSSARY

ABC artificial bee colony

ALO antlion optimization algorithm

BES bald eagle search

FC fuel cell

FPA flower pollination algorithm

GA genetic algorithm

GWO grey wolf optimization

PEMFC proton exchange membrane fuel cell

PEM proton exchange membrane

SSO slap swarm optimizer

A effective electrode area of the cell, cm2

b parametric coefficient, V

CO2 Concentration of oxygen, mol/cm3

c1 moving velocities toward the optimal, between 1 and 2

c2 moving velocities toward the central positions, between 1 and 2

Enernst open-circuit voltage, V

PH2 partial pressures of hydrogen, atm

PO2 partial pressures of oxygen, atm

ρm specific membrane resistance, ΩΔ cm

Pbest optimal spatial search position

Pmean average distribution position

Vc PEMFC’s output voltage, V

Vact activation voltage drop, V

Vohmic ohmic voltage drop, V

Vcon concentration voltage drop, V

Jmax upper bound current density, A/cm2

J actual current density, A/cm2

l membrane thickness, μm

r random number between 0 and 1

R parameter that controls the search period, between 0.2 and 2

Rm membrane resistance to proton conduction, Ω

Rc contact resistance to electron conduction, Ω

ε1<b> ε2,</b> <b> ε3,</b> ε4 <b> ε2,</b> <b> ε3,</b> ε4semi-
empirical coefficients

λ empirical parameter

α moving velocities toward the central positions, between 1 and 2
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