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Themaximum power output and control optimization analysis of photovoltaic (PV) systems
are based on accurate and reliable PV cell parameter identification. However, its difficult
problems such as high nonlinearity and multimodality have become obstacles to the
traditional optimization methods to obtain accurate and efficient results. This study uses a
new intelligent optimization algorithm called the mayfly algorithm (MA) to efficiently identify
the triple-diode model (TDM) of PV cells and uses the minimum root mean square error
(RMSE) as the evaluation index to verify the effectiveness of the algorithm. Moreover, by
continuously adjusting the parameters, population number, and iteration times of theMA to
better balance the relationship between global development and local optimization, we can
obtain more efficient and better optimization results. The research case shows that the MA
is superior to other meta-heuristic algorithms in the accuracy and stability of PV cell
parameter identification. For example, the minimum standard deviation (SD) of the RMSE
obtained by the MA is 1,305 times smaller than another algorithm.
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INTRODUCTION

In the past few decades, traditional fuel energy has been overused (Yang et al., 2020), which has led to
the rise of global temperature and the deterioration of the environment (Wang et al., 2021). At the
same time, it has also exacerbated the global energy crisis (Yang et al., 2018a; Wang et al., 2019; Peng
et al., 2020). Therefore, in order to change the human energy structure and maintain long-term
sustainable development (Yang et al., 2018b; Zhang et al., 2019), an energy revolution is necessary.
For sustainable energy development, the development of the technology of solar energy and wind
energy has been very mature (Li et al., 2019) and has attracted extensive attention all over the world
(Zhang et al., 2020). In particular, solar energy has become the focus of attention in the field of new
energy because of its unique advantages (Yang et al., 2016; Sun. et al., 2021).

The PV system has been widely used in solar power generation, which has the advantages of being
ubiquitous and inexhaustible, and its characteristics of nearby power supply also avoid the power loss
caused by long-distance transmission (Chin et al., 2015). In application, accurate PVmodeling based
on measured current-voltage (I-V) data is essential for the dynamic behavior analysis of PV systems.
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So far, three PV models are most widely used, namely, the single-
diode model (SDM) (Humada et al., 2016), double-diode model
(DDM) (Abbassi et al., 2018), and triple-diode model (TDM)
(Khanna et al., 2015). Although the three-diode model has the
highest model complexity and computational burden, it is still the
most accurate model and has broad research prospects.
Therefore, this article studies the parameter identification of
PV cells based on the TDM.

Generally, the accurate identification of PV cell parameters is
not only very important for the accurate modeling of PV cells but
also essential for performance optimization (Youssef et al., 2017),
state analysis, and real-time control of PV cells (Chaibi et al.,
2019; Yang et al., 2019). However, in practical application, due to
various shortcomings and limitations, the result of parameter
identification is neither stable nor accurate. These reasons can be
classified into two points: I) the parameters provided by the
manufacturer can only be applied under standard test conditions
(STC), and the data deviation under actual operating conditions
will greatly change the output characteristics of PV cells; and II)
with the change of service life and weather conditions, the
parameters of PV cells are time-varying (Gomes et al., 2017).

The parameter identification of PV cells is highly nonlinear with
multimodal obstacles. So far, three kinds of methods have been used
to solve this kind of problem, namely, the deterministic technology,
analysis method (Chan and Phang, 1987; Saleem and Karmalkar,
2009), and meta-heuristic algorithm. Generally, the analysis method
has the characteristics of simple calculation and low accuracy (Wolf
and Benda, 2013; Batzelis and Papathanassiou, 2016). Deterministic
technology has strict requirements for model characteristics and
initial operating conditions (Villalva et al., 2009). This kind of
technology is easy to converge prematurely when used in PV cell
parameter identification. In comparison, as the promising method
used to identify PV cell parameters, a meta-heuristic algorithm has
the advantages of easy implementation (Zhang et al., 2021), high
robustness, and high efficiency (Mahdavi et al., 2015).

So far, dozens of heuristic algorithms have been applied to the
parameter extraction of PV cells, for example, gray wolf
optimization (GWO) (Ishaque and Salam, 2011), particle
swarm optimization (PSO) (Ye et al., 2009), and genetic
algorithm (GA) (Jervase et al., 2001).

A novel MA optimization algorithm is proposed in this study,
which is a recently developed heuristic algorithm based on
biology. The MA imitates the social behavior of mayflies,
especially their mating process, which has the advantages of
strong optimization ability and low computational cost.

This study is arranged as follows: PVCell Modeling and Problem
Formulation describes the PV cell modeling and objective function.
Multi-Objective Mayfly Algorithm introduces the main
optimization principles of the MA. Case Study provides the
results of the case study. Finally, Conclusion gives the conclusion.

PV CELL MODELING AND PROBLEM
FORMULATION

This section establishes an accurate photovoltaic cell model,
which is very important for studying the characteristics ofT
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photovoltaic cells. On this basis, the PV system can be better
optimized by extracting the output I-V and P-V characteristics of
PV cells. Up to now, the three SDM, DDM, and TDM used PV
cell models.

Mathematical Modeling
The model of the triple-diode PV cell is summarized in Table 1
to provide a more comprehensive display. As demonstrated in
Table 1, Iph represents the photogenerated current, which is
directly proportional to the daylighting area and light intensity
of the PV cell; Id represents the unidirectional current flowing

through the PN junction; IL represents the current output by
the PV cell to the external load; RL represents the external load
resistance; Rs represents the equivalent series resistance inside
the PV cell; Rsh represents the equivalent bypass
resistance inside the PV cell; and Ish is the current flowing
through which, VT represents the thermal voltage, which is
demonstrated as

VT � KT

q
, (1)

where T denotes cell temperature; K � 1.38 × 10−23 J/K denotes
the Boltzmann constant; and q � 1.6 × 10−19 C denotes the
electron charge, respectively.

Objective Function
The purpose is to minimize the error between experimental data
and simulation data by finding appropriate parameters. In
particular, the root mean square error (RMSE) is selected as
the objective function for quantitative evaluation, which is
defined as follows:

RMSE (x) �
�������������������
1
N

∑N

k�1(f(VL, IL, x))2√
, (2)

TABLE 3 | Parameters of the MA for parameter identification of the PV cell.

Parameter Range Value

a1 a1>0 1.0
a2 a2>0 1.5
a3 a3>0 1.5
β β >0 2
fl fl >0 1
r −1≤ r ≤1 0.8
d d > 0 0.8
tmax tmax > 0 5,000
n n > 0 70

FIGURE 1 | Application process of the MA for parameter identification of the PV cell.

TABLE 2 | Error functions of the TDM.

Model Error function Solution vector

TDM fTDM(VL, IL , x) � Iph − I01[exp(q(VL+ILRs)
a1Vt

) − 1] − I02[exp(q(VL+ILRs)
a2Vt

) − 1] − I03[exp(q(VL+ILRs)
a3Vt

) − 1] − VL+ILRs
Rsh

− IL x � {Iph , I01 , I02 , I03 , Rs , Rsh , a1 , a2 , a3}
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where x denotes the solution vector, and N represents the
number of experimental data.

Table 2 summarizes the error functions f(VL, IL, x) of the
three PV models in detail, and it is necessary to minimize the
value of the objective function by optimizing the solution vector x
so as to reduce the error between the experimental data and the
simulation data.

MULTI-OBJECTIVE MAYFLY ALGORITHM

Movements of the Male Mayfly
A novel intelligent optimization algorithm was proposed, which
simulates the flight andmating process of a mayfly. Moreover, the
MA integrates the strength of evolutionary and intelligent
optimization algorithms.

In addition to the parameter identification of the TDM, this
study attempts to find the solution of the MA with stronger

search ability and faster convergence speed. Each male mayfly
can be adjusted by the experience of itself and adjacent
individuals. xt

i represents the position of the ith individual at
time t in the search space, and the position of the individual can
be determined by the speed v at the next time vt+1i , which is
described as

xt+1
i � xt

i + vt+1i . (3)
In general, the speed of male mayflies can be calculated as
follows:

vt+1ij � vtij + a1e
−βr2p(pbestij − xt

ij) + a2e
−βr2g(gbestj − xt

ij), (4)
where vtij is the mayfly i in dimension j at time t, and a1 and a2
represent the attraction coefficients. pbest and gbest represent
the historical optimal position and the optimal position of the
mayfly, respectively. The visibility coefficient is β, and rp and rg
represent the distance between the current position and pbest
and the distance between the current position and gbest,
respectively. In addition, the calculation method of the
distance is described as

‖x −Xi‖ �
��������������∑n

j�1(xij −Xij)2√
. (5)

The best mayfly individuals in the population must constantly
change their speed, which is calculated as follows:

vt+1ij � vtij + dpr, (6)
where the value range of r is (−1,1); moreover, the dance
coefficient is d.

TABLE 4 | I-V data set of the benchmark experiment.

Item 1 2 3 4 5 6 7 8 9 10 11 12 13

VL 0.2057 0.1291 0.0588 0.0057 0.0646 0.1185 0.1678 0.2132 0.2545 0.2924 0.3269 0.3585 0.3873
IL 0.7640 0.7620 0.7605 0.7605 0.7600 0.7590 0.7570 0.7570 0.7555 0.7540 0.7505 0.7465 0.7385
Item 14 15 16 17 18 19 20 21 22 23 24 25 26
VL 0.4137 0.4373 0.4590 0.4784 0.4960 0.5119 0.5265 0.5398 0.5521 0.5633 0.5736 0.5833 0.5900
IL 0.7280 0.7065 0.6755 0.6320 0.5730 0.4990 0.4130 0.3165 0.2120 0.1035 −0.010 −0.123 −0.210

TABLE 5 | Parameter bounds of the TDM.

Parameter TDM

Lower bound Upper bound

Iph(A) 0 1
I0 , I01 , I02 , I03(μA) 0 1
Rs(Ω) 0 0.5
Rsh(Ω) 0 100
a1 , a2 , a3 0 2

TABLE 6 | Statistical results of the RMSE obtained by various algorithms for the TDM.

Algorithm RMSE

Min Median Mean Max SD Sig

MA 9.8248E-04 9.8248E-04 9.8260E-04 9.8602E-04 6.4574E-07 +
PSO 9.8638E-04 1.4948E-03 1.8828E-03 3.8209E-03 8.4347E-04

TABLE 7 | Model parameters identified by various algorithms for the TDM.

Algorithm Iph(A) I01(μA) I02(μA) I03(μA) Rs(Ω) Rsh(Ω) a1 a2 a3 RMSE Rank

MA 0.7608 2.2211E-07 2.2598E-07 7.2929E-09 0.0367 55.4849 2.0000 1.4810 1.4510 9.8248E-04 1
PSO 0.7607 1.0000 0.0564 56.7914 0.0370 56.7914 2.0000 1.4569 1.4313 9.8634E-04 2
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Movements of the Female Mayfly
Female mayflies do not congregate but fly to male individuals to
reproduce. yt

i is used to represent the mayfly i at time t, which is
expressed as

yt+1
i � yt

i + vt+1i . (7)
Since the attraction between male and female individuals is
random, it can be modeled as a deterministic process. While
considering the minimization problem, the calculation process of
speed is represented as follows:

vt+1ij � { vtij + a2e
−βr2

mf (xt
ij − yt

ij), if f(yi)>f(xi)
vtij + flpr, iff(yi)≤f(xi) , (8)

where rmf is the distance between the female andmale mayfly, and
fl represents the random walk coefficient.

Mayfly Mating
An individual is selected from male and female populations to
complete mating. The way of selecting parents is the same as that
of males attracting females. In particular, the selection can be
random or based on their fitness function. Crossover can produce
two offspring, and the process is represented as follows:

of f spring 1 � Lpmale + (1 − L)pfemale
of f spring 2 � Lpfemale + (1 − L)pmale

, (9)

where male and female represent male and female parents,
respectively, and L denotes a random number.

MA for PV Parameter Identification
Optimization Variables
The optimization variables of the TDM of photovoltaic cells are
shown in Table 2. In order to make the parameter identification
more accurate and effective, various optimization variables are
within the upper and lower bounds, which is expressed as

xmin
j ≤ xj ≤xmax

j , j � 1, 2 . . . , J, (10)
where xj is the optimization variable; xmin

j denotes the lower
bounds of the jth variable; and xmax

j denotes the upper bounds of
the jth variable. In addition, j is the number of variables.

In the process of calculation, mayflies cannot exceed these
constraint limits; otherwise, their positions will be reset randomly
within the limits, as follows:

xj � xmin
j + r2(xmax

j − xmin
j ), (11)

where r2 is a random value between 0 and 1.

Parameter Setting
In PV cell parameter identification, nine parameters should be
carefully set, including a1, a2, a3, β, fl, r, d, tmax, and n. The two
most important parameters are the population size n and the

FIGURE 2 | Boxplot of the RMSE obtained by two algorithms for
the TDM.

FIGURE 3 | Comparison between actual data and the model curve
obtained by the MA for the TDM (A) I-V curve and (B) P-V curve.
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maximum number of iterations tmax. Generally, the size of tmax

and n is directly proportional to the probability of obtaining the
optimal solution and inversely proportional to the computational
cost. Table 3 shows parameters obtained by the trial and error
method.

Application Process
Figure 1 shows the application flow of the MA in parameter
identification. The input of the MA is the historical data of the
output voltage and current of the PV cell, which can be converted
into the objective function through Eq. 2. TheMA further executes

FIGURE 4 | Convergence graph of various algorithms for the TDM.

FIGURE 5 | Radar graph of two algorithms for the TDM.
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the optimization program, according to the TDM. Finally, the MA
outputs the identification parameters of photovoltaic cells.

CASE STUDY

In this part, the PV cell TDM is used to extract the parameter
based on the MA. To the end, in order to enhance the accuracy of
parameter identification, 26 pairs of benchmark current and
voltage data sets are used for comparison (Easwarakhanthan
et al., 1986). Table 4 denotes the data sets from a 57-mm
diameter R.T.C. In addition, the conditions of the French solar
cell are G = 1000W/m2 and T = 33°C. This data set is widely used
to verify the parameter identification algorithm of PV cells in
previous studies (El-Naggar et al., 2012; Gong and Cai, 2013;
Oliva et al., 2017; Yu et al., 2017; Chen et al., 2018). Moreover, the
benchmark I-V data are only extracted under the conditions of
G = 1000W/m2 and T = 33°C, so there is only one fitted I-V curve.

The MA is compared with the PSO algorithm (Oliva et al.,
2014). In particular, their maximum number of iterations is
designed to be the same, that is, 5,000, and all methods are
carried out in 30 independent runs to get a wider range of
statistical results. In addition, the population size of the MA is
set to 70. The parameter limits of the TDM are shown in Table 5.

In particular, the best simulation results of both methods are
shown in bold. All cases are calculated by MATLAB 2020a
through a personal computer, which uses Intel CoreTMi5
CPU with 3.0 GHz and 8 GB memory.

Results and Discussion on the TDM
The results obtained by the two algorithms applied to the TDM
are shown in Table 6, as shown in which, the minimum,
maximum, average, median, and standard deviation of the
RMSE calculated by the MA is the best. Symbols “+,” “−,” and
“ = ”indicate that the optimization result of the MA is better than,
lower than, or close to its comparison algorithm. For example, the
minimum value, median value, and average value of the RMSE
obtained by the MA are 0.4, 52.51, and 91.61% lower than the
PSO (suboptimal) algorithm, respectively. More importantly, the
MA has good accuracy in parameter identification. Therefore, the
MA has the most satisfactory performance for the TDM.

Table 7 shows the best parameter identification results of the
two algorithms for the TDM. Obviously, theMA achieves the best
RMSE, followed by the PSO algorithm.

Figure 2 shows the boxplot of MA and PSO algorithms, and
Figure 3 shows the output I-V and P-V curves obtained by the MA.
It can effectively verify the accuracy of the extracted PV cell
parameters. It can be seen that compared with other algorithms,
theMAhas strong competitiveness in solution accuracy and stability.

Finally, the convergence diagrams of the two algorithms are
given in Figure 4. It is obvious that the MA has
strong optimization ability, fast convergence speed, and can
well balance local optimization. Compared with the MA, the
optimization effect of PSO is not satisfactory.

In particular, Figure 4 demonstrates the convergence
diagrams of the two algorithms, in which the PSO algorithm
is difficult to converge quickly and obtain high-quality optimal

solutions. In addition, the MA can easily get a better result
through strong search ability and reasonable balance ability.

Statistical Analysis
It is noted that the standard deviation of the RMSE indicates the
reliability of parameter extraction. On the TDM, the MA can
obviously achieve better performance than the PSO algorithm, thus
effectively verifying the excellent reliability of theMA. For example, in
the TDM, the standard deviation of the RMSE obtained by the MA is
more than 1,305 times smaller than the optimal value of PSO.

In addition, through 30 independent operations of the TDM,
the results of the two methods are shown in Figure 2. Moreover,
the superior performance of theMA addition can be shown by the
distribution of solutions. The radar charts of the MA and PSO are
shown in Figure 5. In particular, the best ranking is two points
and then decreases by one point in turn. One can easily identify
the comparison of optimization accuracy, convergence stability,
and speed between MA and PSO algorithms in PV cell parameter
extraction. It can be illustrated by the radar chart that MA’s
optimization accuracy is better than that of the PSO algorithm.

CONCLUSION

This study adopts a powerful and novel MA to accurately and
effectively estimate the parameters of the triple-diode model of
PV cells. The algorithm includes the following three
contributions/innovations:

• The MA can dynamically balance between local optimization
and global optimization to obtain a better solution;

• The MA is applied to the TDM to verify its feasibility and
effectiveness;

• Through the case study, it is found that the MA can obtain a
higher precision solution than other meta-heuristic algorithms
when applied to parameter identification.

The convergence speed and optimization accuracy of the algorithm
can be the main directions of future research. Based on the MA, the
optimization efficiency can be verified by online parameter estimation
of PV cells, which is necessary in practical engineering.
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NOMENCLATURE

Iph photocurrent, A

Id, Id1, and Id2, diode’s currents, A

I0, I01, I02, and I03 diode’s reverse saturation currents, A

Rs series resistor, Ω
Rsh shunt resistor, Ω
a, a1, a2, and a3 ideality factors of the diode
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