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As one indispensable part of power systems, the reliable-operated power transformers are
vital for energy transmission, whereas they are remarkably threatened by potential fault
events. To achieve the satisfying and valid operation of power transformers, any fault
events that may impact their health ought to be evaluated and early warned. With such
motivations, this paper presents original insights on the assessment of power transmission
health states via their internal dissolved gas, and an enhanced Association Rule Mining
(ARM) model incorporating the analysis of High-Impact-Low-Probability (HILP)
components, as well as a dynamic fault event risk evaluation approach, is proposed.
The first step is to differentiate the risky components. Unlike the standard ARM, the rarely
occurred components in each feature can also be assessed explicitly as the common
components to explore the underlying HILP components in the proposed model, rather
than just being viewed as trivial data and directly omitted. The second step is to rate the risk
level of each risky component. A component importance measure-based evaluation
approach is deployed to assess the corresponding risk weights of distinguished risky
components. In this approach, the risk weight is determined straightforwardly via the
impacts of each component on the variation level of total risks in the system, rather than
simply by its frequency of occurrence or data share. Finally, the parameters of the risk
weight evaluation approach can be dynamically adapted in an adjustment framework as
well. This model is testified through an empirical case study, and the leading results can
demonstrate its flexibility and robustness during real applications.

Keywords: transformer diagnosis, dissolved gas analysis (DGA), weighted association rulemining, HILP component,
component importance measure (CIM)

INTRODUCTION

As one core part of power systems, power transformers are one key primary equipment, since their
failure may cause power supply interruption and even blackouts which will result in significant
economic losses. Ergo, it is vital to ensure the safe operation of power transformers. Any transformer
failure may lead to the interruption of power supplies, which will consequently cause great losses (Cui
et al., 2021; Zhang et al., 2021). Power transformers are usually affected by several inner factors such
as thermal stress, overload, and aging of insulating materials. Therefore, the timely and effective fault
diagnosis based on these internal characteristics of transformers will be salutary for the subsequent
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maintenance. Once the countermeasures are implemented, the
potential risks of failure can thus be greatly reduced (Lijun et al.,
2021; Meira et al., 2021).

Unlike the electrical signal parameters which are largely
affected by the electromagnetic environment within the
transformer, there is also a strong correlation between the
fault event and the gas composition in transformer oil.
Therefore, dissolved gas analysis (DGA) is commonly utilized
for transformer fault diagnoses (Cui et al., 2020; Meira et al.,
2021).

At present, many researchers have proposed a large number of
research ideas on the DGA (Bakar et al., 2014), and considerable
progress has been achieved. In the traditional methods, the three-
ratio method, the Rogers ratio method, and the Duval triangle
method based on the DGA have played an important role, but
there are still some drawbacks such as the incomplete state coding
and the absolutely coding boundaries. They might limit the
practical application of these approaches (Malik and Mishra,
2016; Shi et al., 2016).

In recent years, many scholars have applied machine learning
theories to transformer fault diagnosis modeling, and have
achieved satisfying results. The first one is the DGA method
based on the optimization algorithm (Asafuddoula et al., 2018).
To improve the accuracy and reliability of oil-immersed
transformer fault diagnosis, References (Youwen et al., 2021;
Wu et al., 2021) studied a transformer fault diagnosis method
based on genetic algorithm optimization of extreme gradient
lifting, and Siada et al. employed fuzzy logic models to assess the
concentration of each sort of the dissolved gas in (Abu Bakar and
Abu- Siada, 2017), or to reduce the dependency for standardizing
the DGA interpretation techniques by (Abu- Siada et al., 2013). In
(Huanpeng et al., 2017), the Least Squares Dual Support Vector
Machine (LS-TSVM) model was deployed. Based on the genetic
algorithm, and Genetic Algorithm Support Vector Machine (GA-
SVM) along with the crisscross optimizationmethod for the DGA
feature was realized in (Anbo et al., 2016; Jing et al., 2020). These
DGA methods based on the optimization algorithm can often
obtain the intuitive fault probability, but it is necessary to count
the large-capacity data for a long period, which requires a larger
size of input data.

The second type is the DGA method using the neural network
(Jan and Verma, 2021). In (Yingjie and Tienan, 2021), a diagnosis
method based on the improved Elman neural network was
proposed. In order to improve the accuracy and performance
under small sample data scenarios, a method based on the
residual BP neural network was established in reference
(Wenqing et al., 2020). In (Yan and Taihua, 2020), an
optimized probabilistic neural network fault diagnosis method
based on digital twinning technology was proposed. A
transformer condition assessment method based on fuzzy
neural network and local statistics was built in reference
(Rigatos and Siano, 2016). The DGA method based on neural
networks generally has strong stability and fault tolerance, but
they also require large-capacity input data generally.

The third one is the DGAmethod based on the vector machine
(Moazami et al., 2016). Reference (Yiyi et al., 2018) proposed a
transformer fault diagnosis model based on the support vector

machine (SVM) which was optimized by the imperial colonial
competition algorithm, and Rao et al. selected non-linear SVM to
classify diverse types of power transformer faults by (Rao et al.,
2021). In (Jun et al., 2017), the AdaBoost algorithmwas combined
with the quadratic mapping support vector machine to find a
transformer fault diagnosis model. References (Bacha et al., 2012;
Xinbo et al., 2020) applied the support vector machine to realize
the classification and discrimination of transformer faults.
Although the results of the DGA method based on the vector
machine are generally or close to the global optimization, it is
difficult to solve the multi-classification problems.

To handle these, association rule mining (ARM) (Nahar et al.,
2013) is often exploited in the DGA method because it can select
input features or states according to requirements. In (Li et al.,
2015), the diagnosis model is further optimized based on the grid
search (GS) algorithm. An integrated algorithm combining the
set pair analysis and the ARM was created by (Sheng et al., 2018).
In (Tian -en et al., 2019), the probabilistic image model was
applied in the ARM to further improve the efficiency. Remarkable
achievements have been made in the literature, whereas there are
still some improvable aspects. Firstly, the standard ARM
algorithms usually deploy a fixed and uniform importance
measure criterion, thus some components with a lower
frequency of occurrence will be directly screened out without
any assessment. However, there might also be some high-impact
(HI) components that can cause failures in these low-probability
components, hence these high-risk- low-probability (HILP)
components should be extracted and analyzed; Secondly, the
risk weight of the selected HI components ought to be determined
directly by the risks they generate, rather than simply via their
frequency of occurrence; Finally, the predefined parameters in the
ARM need to be adjusted or modified during the diagnosis to
further enhance the performance.

To realize these, this paper proposes a DGA method based on
an improved Weighted Association Rule Mining (WARM) model.
In the preprocessing step, the assessment mapping space is
established for collecting and integrating all the input data. In
this model, the first step is to explore the risky components from
the whole input components. The calculation methods of several
significance selecting criteria are modified to pick out the HILP
components, so that the HILP data can be extracted from the rare
data for further analysis along with the HI components which are
chosen from the common components. The second step is to
evaluate the risk level of the distinguished risky components from
the first step, and a risk weight evaluation approach is proposed in
light of the component importance measure (CIM). In this model,
the influence degree of the HI and the HILP components
themselves on the variation level of total reliability of a
transformer, rather than the proportion in a database or the
frequency of appearance, is incorporated to measure the risk
weights. At last, a dynamic adjustment framework is established
where the parameters in the risk weight evaluation approach can be
periodically adapted and amended in line with the previous
diagnosis performance. An empirical case study is conducted,
and the results demonstrate that the proposed method can
improve diagnostic accuracy, operational efficiency, and
reliability during real-world applications.
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DATA PREPROCESSING

In order to construct a unified processing space for subsequent
analysis, the whole collected fault event records, as well as the
relevant features and including components need to be integrated.

Suppose {tA, t1, t2, . . . ti, . . . , tm} is a vector contains the labels
of totallym fault records, where ti is one fault event while tA is the
label number. Assuming that A � {a1, a2, . . . , aj, . . . , an, aT} is a
vector containing all n features in the database, where aj
(j � 1, 2, . . . , n) is one feature, and aT is the target feature. For
a feature aj, supposing aj � {ej,1, ej,2, . . . , ej,k, . . . , ej,l} is a vector of
all the l elements contained, where ej,k (k � 1, 2, . . . , l) is one
element of the feature aj. This paper selects X �
{xi1, xi2, . . . , xij, . . . , xin} as the whole relevant factors in a fault
event ti, where xi,j can be any one component of the feature aj.
Seven commonly applied types of dissolved gases in transformer oil
as inputs, including the contents of hydrogen (H2), methane (CH4),
acetylene (C2H2), ethylene (C2H4), ethane (C2H6), the relative gas
production rates of carbon monoxide (CO) and carbon dioxide
(CO2) (Rezaie et al., 2022) are considered in this paper as the input
features.

As for the target feature aT, the states of a transformer are
selected as the components of the target, and assumes T �
{T1, T2, . . . , To, . . . , Tm} is a vector that includes the target
features in all fault event records. In this paper, seven states of
one transformer are taken into account: normal operation, low
temperature overheating, medium temperature overheating, high
temperature overheating, low energy discharge, high energy
discharge, and partial discharge. Hence, To may belong to any
one of all the seven states, that is
To � T(β) ∈ {T(g1), T(g2), . . . , T(g7)}. Combined with the
supposition of the factor set X, an association rule or more
specifically, the component-risk patterns can be delineated
as X → T

Based on the above assumptions, the assessment mapping
space can be constructed as a matrix form H:

H �

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

tA a1 . . . aj . . . an aT
t1 x11 . . . x1j . . . x1n T1

..

. ..
.

1 ..
.

1 ..
. ..

.

ti xi1 . . . xij . . . xin Ti

..

. ..
.

1 ..
.

1 ..
. ..

.

tm xm1 . . . xmj . . . xmn Tm

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(1)

where each row (except the first row) indicates one record of a
fault event, xij is an entry in the i -th fault record, that is, any one
element ej,k corresponding to feature aj. Thus, in an event ti,
xi,1, xi,2, . . . , xi,j, . . . , xi,n are the corresponding components in
each feature, Ti is the result.

WARM MODEL

Background of ARM
Assuming that there is a set I containing all items, a subsetX of I
is called the item set. Supposing the database D � {t1, t2, . . . , tm}

contains all the fault records. An association rule can be expressed
as X → T, which means that if the item set X appears, the target
T will also occur.

The establishment of association rules generally depends on
the discovery of the large item sets as well as the frequent rules,
and the selection criteria for them are called the significance
selecting criteria. The most commonly-used significance selecting
criterion is called the support (supp(X)), which describes the
proportion of X in D (Hipp et al., 2000). In addition, there are
some evaluation criteria focusing on the selection of frequent
rules. The confidence (conf(X → T)) refers to the proportion of
X that contains T simultaneously (Doostan and Chowdhury,
2017); The rule power factor (rbf(X → T))measures the weight
of confidence by X → T (Hipp et al., 2000); The certainty factor
(cf(X → T))measures the change degree of the probability of T
appearing simultaneously in the rules containing X (Ochin et al.,
2016). Based on the aforementioned criteria, if the score of the
item sets or rules canmeet or above the corresponding thresholds,
these item sets and rules will be considered as the large item sets
and frequent rules.

Refinement of Significance Selecting
Criteria
Among the input components, there are often some that occur
less frequently. However, a part of these rare feature quantity
values will also lead to transformer failures, then cause serious
losses. Therefore, those HILP components cannot be simply
ignored. The standard ARM algorithm employs the same and
fixed score calculation methods of significance selecting criteria,
which makes the rare variables be discarded directly without any
analyses. Therefore, based on the standard significance selecting
criteria, this paper designs the weighted significance selecting
criteria that consider the rare variables.

In the ARM, large item sets and frequent rules are filtered by a
uniform calculation approach which results in the dominance of
common components that account for a large proportion of the
database. In other words, rare components along with the HILP
components will be screened out. In order to properly handle
these rare data, this paper establishes four weighted significance
selecting criteria.

Firstly, an association rule can be redefined as:

Xf +Xr → T (2)
where Xf and Xr represent the item sets containing common
components and rare components, respectively.

If the association rule contains at least one rare element in a
feature aj, the weighted significance selecting criteria can be
built as:

suppj �
∣∣∣∣ti ∈ H(i, 1);Xf ⊆ G ≠ 0;H(i, j) ∈ Xr ≠ ϕ

∣∣∣∣∣∣∣∣ti ∈ H(i, 1);H(i, j) ∈ Xr ≠ ϕ
∣∣∣∣ × 100%

(3)
confj,β �

∣∣∣∣ti ∈ H(i, 1);Xf ⊆ G ≠ 0;H(i, j) ∈ Xr ≠ ϕ;H(i, n + 1) � T(β)∣∣∣∣∣∣∣∣ti ∈ H(i, 1);H(i, j) ∈ Xr ≠ ϕ
∣∣∣∣ × 100%

(4)
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rpfj,β �
∣∣∣∣ti ∈ H(i, 1);Xf ⊆ G ≠ 0;H(i, j) ∈ Xr ≠ ϕ;H(i, n + 1) � T(β)∣∣∣∣∣∣∣∣ti ∈ H(i, 1);H(i, j) ∈ Xr ≠ ϕ

∣∣∣∣
· confj,β × 100% (5)

cfj,β �
(confj,β − |ti ∈ H(i,1);H(i,j) ∈ Xr ≠ ϕ;H(i,n+1)�T(β)|

|ti ∈ H(i,1);H(i,j) ∈ Xr ≠ ϕ| )
(|ti ∈ H(i,1);H(i,j) ∈ Xr ≠ ϕ;H(i,n+1) ≠ T(β)|

|ti ∈ H(i,1);H(i,j) ∈ Xr ≠ ϕ| ) × 100%

(6)
where G1×n � H(i, 2 ~ (n + 1)); | · | represents the cardinality of
the fault event records that meet all the inside conditions; T(β)
denotes the states under study. For the confidence, rule power
factor, and certainty factor, the superscript β shows that there are
seven different forms of these criteria corresponding to seven
different transformer states.

Establishment of Risk Weight Evaluation
Model
Since different components in each feature have different impacts
on the states of a transformer, further investigation of the relative
magnitude of the risk weight of each component is indispensable.
In most current studies, the evaluation of risk weights relies on
the proportion in a database or the frequency of occurrence.
However, they are not equal to the influence of a component on
the state of the entire transformer. Therefore, the relative risk
weights of each component are determined based on the degree of
influence on the transformer itself in this paper.

This paper describes the overall fault risk of a transformer
based on the system risk structure theory, and the principle of the
CIM is utilized to describe the impact of different components, so
as to design the risk weight evaluation model. For the purpose of
distinguishing the relative risk weights of rare components, this
paper forms two independent processing subspaces of H: Sf

contains all the records, while Srj only includes the records of
either rare component in a certain feature aj. In addition, afj and
arj represent all the common and rare components in that feature,
respectively.

The CIM can measure the impact of each component on the
overall risks. In this paper, the risk of a component, that is, the
risk of an element ej,k, means that a fault event is related to that
element ej,k in a feature aj. The overall risk of a transformer
indicates the comprehensive likelihood of a failure in that
transformer. This paper deploys two CIM indicators. The risk
achievement worth (RAW) (Vesely et al., 1983) describes the
relative rise in the overall risk due to the presence of elements
ej,k , and its mathematical expression is:

IRAW(ej,k) � 1 − R(0k, p)
1 − R(p) (7)

where 1 − R(0k, p) denotes the overall risk when the element
ej,k is confirmed to be related; 1 − R(p) represents the
overall risk.

Similarly, the risk reduction worth (RRW) (Vesely et al., 1983)
represents the relative decline in the overall risk if the element ej,k
does not appear, and its mathematical expression is:

IRRW(ej,k) � 1 − R(p)
1 − R(1k, p) (8)

where 1 − R(1k, p) denotes the overall risk when the element ej,k
is ensured to be irrelevant.

In a fault record, even if a component changes, this fault may
no longer occur. Ergo, the occurrence of the fault requires that all
the corresponding elements of each feature in this record are
confirmed to be relevant. Based on this, the mathematical form of
the overall risk can be written as:

1 − R(p) � 1 −∏n+1
j�2

R(1k, p) � 1 −∏n+1
j�2

⎛⎝ ∑
∣∣∣∣ti∈Srj∣∣∣∣
i�2

∣∣∣∣ti ∈ H(i, 1);H(i, j) � ej,k;H(i, j) ∈ Xr
∣∣∣∣∣∣∣∣ti ∈ H(i, 1);H(i, j) ∈ aj

∣∣∣∣ ⎞⎠ (9)

In this paper, the relative risk weight of an element ej,k is
composed of two parts, which can be expressed as:

ωej,k � ωf
j,k + ωr

j,k (10)
where ωf

j,k represents the risk caused by common elements, ωr
j,k

represents the risk from rare elements.
The mathematical expression of ωf

j,k is:

ωf
j,k �

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, if ej,k ∈ afj

∑|ti∈Sf |
i�2

∣∣∣∣H(i, j) � ej,k
∣∣∣∣

|m| , if ej,k ∈ arj

(11)

This paper selects the mean value of the impact of formula (7-
8) to measure the risk from rare elements, so ωr

j,k can be
expressed as:

ωr
j,k � { (ARAW + ARRW)/2, if ej,k ∈ arj

0, if ej,k ∈ afj
(12)

where ARAW and ARRW illustrates the risks from the risk increase
and the risk decrease, respectively, and namely:

ARAW �
1 −∏l

k�1(∑
∣∣∣∣ti∈Srj∣∣∣∣
i�2

∣∣∣∣ti ∈ H(i, 1);H(i, j) � ej−k;H(i, j) ∈ Xr
∣∣∣∣∣∣∣∣ti ∈ H(i, 1);H(i, j) ∈ aj

∣∣∣∣ )
1 −∏n+1

j�2(∑
∣∣∣∣ti∈Srj∣∣∣∣
i�2

∣∣∣∣ti ∈ H(i, 1);H(i, j) � ej−k;H(i, j) ∈ Xr
∣∣∣∣∣∣∣∣ti ∈ H(i, 1);H(i, j) ∈ aj

∣∣∣∣ )

ARRW �
1 −∏n+1

j�2(∑
∣∣∣∣ti∈Srj∣∣∣∣
i�2

∣∣∣∣ti ∈ H(i, 1);H(i, j) � ej−k;H(i, j) ∈ Xr
∣∣∣∣∣∣∣∣ti ∈ H(i, 1);H(i, j) ∈ aj

∣∣∣∣ )
1 −∏l

k�1(∑
∣∣∣∣ti∈Srj∣∣∣∣
i�2

∣∣∣∣ti ∈ H(i, 1);H(i, j) ≠ ej−k;H(i, j) ∈ Xr
∣∣∣∣∣∣∣∣ti ∈ H(i, 1);H(i, j) ∈ aj

∣∣∣∣ )
(13)

Formation of Adjustment Framework
During the application of the diagnosis method, the occurrence of
failures varies in different periods. Moreover, with the increase in
application time, the parameters ought to be adjusted according
to the previous performance to further improve the accuracy of
weight evaluations.

In this paper, 1 year is supposed as a research cycle. Therefore,
let Dy ∈ D � {D1, D2,/, Dy,/, DZ} denote the records of
1 year in the database D, that is, the records of all faults
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within that year. Thus, the parameters in the model will be
dynamically modified per year, which is shown in Figure 1.

To start with, the initial parameters can be determined from
the previous knowledge or engineering experiences. Next, the
parameters will be amended in line with the diagnosis
performance of the previous cycle. If the actual number of
faults in the investigated system is higher than the predicted
number of faults according to the comparison between the
predicted results and the actual consequences at the end of a
year y. In this case, the model needs to “identify”more faults in
the next period y + 1, i.e., the thresholds of significance
selecting criteria should be reduced. Therefore, the
threshold needs to be adjusted downward compared to their
foregoing values in y. On the contrary, when the actual
number of faults is less than the predicted numbers, the
thresholds need to be updated upward. In summary, the
dynamic adjustment of the method is achieved by resetting
the threshold of the significance selecting criteria. Also, the
importance scores solved by the weighted criteria calculation
method are updated directly in accordance with the new
annual database Dy+1. By combining these two, the
proposed approach can be updated based on the rules via
the different years of input data.

EMPIRICAL CASE STUDY

Database
In this case study, the transformer maintenance records from a
high-voltage transmission system in a central province of
China are selected as input data. The total number of
sample records is 1,564 which covers the contents of five
gases (H2, CH4, C2H2, C2H4, C2H6) and relative gas
production rates of two (CO, CO2). Seven states of a
transformer (normal operation, low temperature
overheating, medium temperature overheating, high
temperature overheating, low energy discharge, high energy
discharge, and partial discharge) are incorporated as the target.

Validation Tools
In this paper, two 10-fold cross-validation test cases are
generated: the general case which is conducted separately
according to all states of a transformer; the state case that
studies the individual influence of the events by each kind of
the state.

When comparing the diagnosis results with the test data,
the receiver operating characteristic (ROC) and the
precision-recall (PR) curves are deployed to validate the
performance (Ziege, 2012). On the basis of these two
curves, the area under the curve (AUC) (Swets, 2016) is
implemented as the performance indicator, and the
higher the AUC value is, the more accurate the diagnosis
will be.

General Case
In the very beginning, this paper takes all types of transformer
faults as a whole, and applies the WARM-based DGA method
to diagnose whether the transformer is faulty or not,
i.e., the transformer has only two states: faulty and normal
operation.

To verify the effectiveness of both the significance selecting
and risk weight evaluation enhancements in the proposed
WARM model, two standard ARM algorithms are taken for
comparison: the Relim and the Apriori methods. These two
algorithms are different in item searching, recording, and
sorting, whereas sharing similar procedures in significance
selecting and weight evaluation steps. In that case, two DGA
techniques (WARM(Relim), WARM(Apriori)) that adopt the
improved significance selecting criteria and risk weight
evaluation model but apply the Relim and the Apriori
algorithms, respectively, will be compared with the two
standard forms (WARM(Relim), ARM(Apriori)). The
comparison of the ROC and PR curves of these DGA
methods are shown in Figure 2.

It can be concluded from Figure 2 that the WARMmethod
which is based on the refined significance selecting criteria
and risk weight evaluation model can achieve more accurate
transformer fault diagnoses than the ARM model. It can be
concluded that the accuracy of the results obtained by the
Relim and the Apriori algorithms is relatively close. That is,
these two algorithms cannot notably improve the diagnosis
precision compared with each other. However, compared
with the DGA method based on the ARM, the AUC of the
ROC and PR curves of both two algorithms with the WARM
model is raised by 19.6 and 14.1% on average. This
indicates that the proposed WARM model can successfully
enhance the diagnostic performance for either one of the two
algorithms.

State Case
Next, the separate diagnoses of all the seven states are carried
out, and the comparison is illustrated in Figure 3, where NO-
normal operation, LTO-low temperature overheating, MTO-
medium temperature overheating, HTO-high temperature
overheating, LED-low energy discharge, HED-high energy
discharge, and PD-partial discharge are applied.

FIGURE 1 | An illustration of dynamic parameter adjustment framework.
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From Figure 3, the enhancements in diagnoses
performance can be achieved via the significance selecting
and risk weight evaluation in the WARM model for all the
seven transformer conditions. Among them, the diagnosis of
the LTO is the most precise one whereas the HED gets the
lowest scores in both two evaluations. According to the input
database, the HED events seldom happen in recent years
while the LTO is one most frequent events. This is in line
with the different data volumes of each transformer state, so
as the performance. Nevertheless, the significant
enhancement of the HED is conducted through the
WARM model. Ergo, the benefits of the WARM can be
verified especially when the input data is limited.
Furthermore, the WARM-based method is also able to
operate during some extreme scenarios.

CONCLUSION

For the purpose of handling some limitations in the standard
ARM-based DGA method, such as ignorance of the HILP data,
the simple evaluation of risk, and the static parameters during
applications, this paper proposes an enhanced WARM-based
DGA technique. The main works can be summarized as:

1) In the first step, the risky components ought to be
distinguished from the whole input data. Unlike the
common components, the rarely distributed components
are generally viewed as trivial components and simply
discarded. Nonetheless, some HILP components which may
also cause fault events should be extracted from the rare
components. To this end, the calculation approach of four

FIGURE 2 | Performance comparison of general case: (A) ROC, (B) PR.

FIGURE 3 | Performance comparison of state case by AUC statistics: (A) ROC, (B) PR.
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significance selecting criteria is rebuilt, and the records with
any rare component of each feature will be explored once
again to decide the HILP components according to the
different distributions of rare components in every feature.
This can improve the diagnostic accuracy and cover some
potential extreme situations during applications;

2) In the second step, the risk level of each risky component
will be assessed. In real scenarios, the correlation between a
component and the fault event risk is not simply equal to its
percentage in the database or frequency of occurrence. That
is, a frequent component may not be a risky one whereas a
rare component might be a risky one. Ergo, based on CIM,
the risk weight of each extracted HI or HILP component
can be measured straightforwardly according to the
corresponding impact on the variation direction and
amounts of the overall risks of a transformer, rather
than simply by the frequency of appearance or the data
share;

3) During applications, the predefined default parameters might
not be suitable or optimal within different scenes or periods.
In this paper, these parameters will be modified or adapted in
accordance with the previous diagnostic performance, and
can thus further improve the accuracy, especially within
dissimilar conditions in future periods.

The results of an empirical study validate that the proposed
DGA method can ameliorate the precision, practicability, and
efficiency within real scenarios.
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