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Researchers’ concentration has been on hybrid systems that can fulfill economic and
environmental goals in recent years. In this study, first, the prediction of CO2 emission and
electricity consumption of Saudi Arabia by 2040 is made by employing multi-layer
perceptron (MLP) and support vector regression (SVR) methods to see the rate of
CO2 emission and electricity consumption. In this regard, the most important
parameters such as gross domestic product (GDP), population, oil consumption,
natural gas consumption, and renewable consumption are considered. Estimating CO2

emission by MLP and electricity consumption by SVR showed 815Mt/year and 475 TWh/
year, respectively, where R2 for MLP and SVR was 0.99. Prediction results showed a 31%
and 39% increase in CO2 emission and electricity consumption by 2040 compared to
2020. Second, the optimum combination of components for supplying demand load and
desalination load in residential usages are found where 0% capacity shortage, 20–60$/t
penalty for CO2 emission, sell back to the grid, and both fixed and random grid outages are
considered. Load demands were considered under two winter and non-winter times so
that 4,266, 2,346, and 3,300 kWh/day for Aseer, Tabuk, and the Eastern Region were
shown, respectively. Results show that 0.12, 0.11, and 0.12 (kW (PV))/(kWh/day(load)) and
0.1, 0.08, and 0.08 (kW(Bat))/(kWh/day(load)) are required under the assumption of this
study for Aseer, Tabuk, and the Eastern Region, respectively. Also, COEs for the proposed
systems are 0.0934, 0.0915, and 0.0910 $/kWh for Aseer, Tabuk, and the Eastern Region,
respectively. Also, it was found that renewable fractions (RFs) between 46% and 48% for
all of the case studies could have rational COE and NPCs and fulfill the increasing rate of
CO2 emission and electricity consumption. Finally, sensitivity analysis on grid CO2 emission
and its penalty, load and solar Global Horizontal Irradiance (GHI), PV, and battery prices
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showed 45%–55%, 42%–52%, and 43%–49% RFs for Aseer, Tabuk, and the Eastern
Region, respectively.

Keywords: machine learning, MLP, SVR, HOMER, renewable, CO2 prediction, electricity prediction

1 INTRODUCTION

Increasing the world’s population and energy consumption
would lead researchers to find techno-economical solutions for
reducing greenhouse gases, especially CO2, following the use of
fossil fuels. For sure, renewables such as solar, wind, hydro,
geothermal (Sayed et al., 2021), fuel cells, etc., are among the
best available solutions with enough resources (Forootan Fard
et al., 2020). Furthermore, hybrid systems using various
resources would lead to more reliable energy systems and
more flexible power supply systems than single-source
systems (Tee et al., 2016). The share of renewables in the
world’s power generation was 28.6% in 2020, while this value
for 2010 was 19.91%. Despite the increasing share of
renewables, total CO2 emission increased from 30.4 Gt in
2010 to 31.5 Gt in 2020 (IEA, 2021). It means that the share
of clean energies in power generation should be increased as
well as other feasible energy saving methods.

It is no secret that electricity consumption depends on such
major factors as population, air temperature, gross domestic
product (GDP), etc. Also, CO2 emission depends on fossil fuel
consumption, which is directly connected with GDP,
electricity consumption, and other factors (Nishan, 2020;
Altikat, 2021; Bamisile et al., 2021; Qu et al., 2021; Xu
et al., 2021). One of the issues regarding the design of
power supply systems is having an estimation of needed
electricity, and if the reduction of CO2 is essential, having
its accurate and appropriate estimation (Ibrahim et al., 2020;
Ming et al., 2020). In this regard, artificial intelligence methods
such as machine learning methods could be a rational option
(Shabani et al., 2021).

Ghalandari et al. (2020) predicted CO2 emission of four
European countries by employing MLP and group method of
data handling (GMDH) and concluded that both methods
were well aligned for forecasting based on their R2 (0.99) and
preferred MLP to GMDH due to its lower error value.
Mamdouh El Haj Assad et al. (2021) used the MLP
method for the prediction of CO2 emission of Middle
Eastern countries and concluded that the logsig transfer
function for the hidden layer has a high R2 (0.99) and low
mean absolute error (MSE). Heydari et al. (2019) used
different ANN methods such as MLP and RBF to forecast
the CO2 emission of Iran, Italy, and Canada. Their results
showed that MLP and other employed methods have
acceptable accuracy according to the obtained mean
absolute error. Zhu et al. (2020) predicted peak values of
CO2 emission of China for the transportation industry by
using SVR and obtained very low MSE, showing the accuracy
of their model. Singh et al. (2021) considered random forest
regressor, SARIMAX, Holt-Winters (H-W), and SVR to
predict CO2 emission from the paddy crop in India and

found that H-W and SVR had a lower value of MSE than
other methods.

1.1 An Overview of Saudi Arabia’s Energy
System
Saudi Arabia is in the Middle East, where the weather is warm
and dry. It holds 15% of the world’s oil reserves. Ten
quadrillion British thermal units of total primary energy in
2020 were consumed in this country, where oil and natural gas
were 62% and 38% of the country’s total energy consumption,
respectively. In the central and eastern parts of this country,
most of the electricity generation is from natural gas, while due
to the lack of accessibility to natural gas in the western part,
power production is dependent on petroleum liquids (U.S.
EIA, 2021). Although the share of renewable energies for
power generation is meager, this country has provided some
significant plans for installing solar systems to diversify power
supply systems and reduce greenhouse gas emissions. Hence,
studying the current energy system and investigating some of
the most important related trends in population, GDP,
electricity, and CO2 emission and providing technical and
economical solutions for using hybrid renewable systems
seem essential (Barhoumi et al., 2020; Taylan et al., 2020).

Renewable energies are essential for Gulf Cooperation Council
(GCC) countries such as Saudi Arabia, and different renewable
resources can provide a significant part of needed energy in the
form of hybrid off/on-grid systems (Almasri and Narayan, 2021).
Bilal Awan (2019) investigated an off/grid hybrid system with
various sizes of components and concluded that a combination
of DG/WT/PV/Bat systems has the best performance, as it has a
COE of 0.164 ($/kWh) and led to reduction of CO2 by 46.5%
compared to the only diesel system. Tazay (2020) studied grid-
connected hybrid systems including PV/Wind/Bat for energy
supply in different cities of Saudi Arabia, including Tabuk, and
considering the current electricity tariffs, concluded that the grid/
PV system is the best choice with the COE of 0.0688 ($/kWh),
where RF is 50% and will reduce CO2 emission by 54.3%. Alharthi
et al. (2018) optimized grid-connected PV/Wind systems and found
it economical compared to the only grid without any renewable
system, considering the CO2 emission of both systems. Other
hybrid renewable systems are presented in Table 1.

Considering the growth rate of CO2 emission and electricity
consumption in designing hybrid systems is an important issue
not seen in similar studies. Also, considering the combination of
planned and random outages in peak hours to find the optimum
ranges of RFs for the case study regions could lead to filling
previous gaps in the studies mentioned in the literature review. In
this research, as the first step, machine learning methods such as
multi-layer perceptron (MLP) and support vector regression
(SVR) are employed to predict CO2 emission and electricity

Frontiers in Energy Research | www.frontiersin.org April 2022 | Volume 10 | Article 8793732

Almutairi et al. Grid-Connected Hybrid PV, CO2 Emission

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


consumption for Saudi Arabia by 2040. The obtained results
show the importance of using renewable energies according to the
variation of CO2 emission and electricity consumption rates.
Then, considering some assumed grid blackouts in the peak
hours of days to supply the demand load by renewables and
reduce pressure on the grid at these times, optimum renewable
hybrid systems are designed for Aseer, Tabuk, and the Eastern
Region of Saudi Arabia as the three different coastal regions in
this country. As the final step, sensitivity analysis on the social
cost of CO2 emission coupled with different amounts of
emissions, sensitivity analysis on the load connected with solar
global horizontal irradiance (GHI), and sensitivity analysis on the
amount of PV and battery prices are considered to see the
optimum RF and NPC changes for two main purposes: first,
generalizing the results for all of the coastal regions of the
country, and second, generalizing the results for other parts of
the world, especially for the neighbor countries, with similar or
different weather conditions.

2 MACHINE LEARNING (MLP AND SVR)

The following presents the structure of the MLP and SVR
methods and their characteristics. For both of them, mean
absolute error (MAE) is calculated through Eq. 1, where n is
the number of samples, Y is the real output, and Ŷ is the predicted
output (Zhang et al., 2021).

MAE � 1
n
∑
n

i�1

∣∣∣∣∣∣∣Y − Ŷ
∣∣∣∣∣∣∣ (1)

2.1 MLP
MLP is considered as a supervised learning method including
some neurons and hidden layers which are determined according
to the complexity of the model based on inputs (X), the number of
features (X: [f1, f2, . . ., features]), and their correlation and
outputs (Y: [y1, y2, . . .]. Figure 1 shows the structure of this
neural network (Ramezanizadeh et al., 2019). Neurons in the
hidden layers apply coefficients on the inputs and a function to
transform the values into the outputs. Also, MLP uses the square
error loss function as in Eq. 2, where W is the weight matrix, Ŷ is
the predicted value, Y is the actual value, and α is its
hyperparameter.

Loss(ŷ, y,W) � 1
2

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ŷ − y

∣∣∣∣∣∣∣
∣∣∣∣22 +

α

2

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣W

∣∣∣∣∣∣∣
∣∣∣∣22 (2)

2.2 SVR
SVR is one of the support vector machine’s (SVM) forms. This
method’s separation of input data is based on different lines or
surfaces (kernels), as shown in Figure 2A (Singh et al., 2020),
which are used for training the model for the following
predictions. The structure of SVMs is demonstrated in
Figure 2B (Buyukyildiz et al., 2013).

TABLE 1 | Renewable hybrid systems in Saudi Arabia.

References City Power usage Hybrid system Grid COE ($/kWh) RF (%)

Tazay et al. (2020) Al Baha University PV/WT//Bat/FC Off-grid 0.289 100
Salameh et al. (2021) Neom Industry PV/DG/Bat On-grid 0.4 95
Awan et al. (2019) Sharurah Residential PV/DG/Bat On-grid 0.178 37
Kharrich et al. (2021) Yanbu Residential PV/Biomass Off-grid 0.208 100
Seedahmed et al. (2022) Makkah Residential WT/DG/FC/Bat Off-grid 0.271 100
Dehwah and Krarti, (2019) Eastern Region Residential PV/WT On-grid 0.143 32
Al Garni et al. (2018) Makkah Residential PV On-grid 0.049 35

FIGURE 1 | Schematic of the MLP method.
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2.3 Prediction of CO2 Emission by 2040
This part presents the most influential parameters on CO2

emission and their trend by 2040, along with optimized input
parameters of MLP and SVR models. For the prediction of CO2

emission, the most important parameters such as GDP, oil
consumption, natural gas consumption, and renewable
consumption are considered as inputs’ features. Figures 3A–D
show the values of selected features from 1980 to 2019 along with
their assumed values till 2040 based on employed appropriate
trend lines and their R2 as an accuracy criterion.

2.4 Prediction of Electricity Consumption by
2040
For prediction of electricity consumption, goal consumption,
population, air temperature, unemployment rate, and
renewables are considered as inputs’ features. Figures 3E–H
show the mentioned feature values from 1980 to 2019 and
their predicted values based on trend lines.

2.5 Hybrid System Modeling
In the following, an introduction of the case studies, load profiles,
and proposed hybrid system are presented.

2.5.1 Characteristics of the Case Studies
Figure 4 shows Saudi Arabia and the case study regions. As can
be seen, selected case studies, including Aseer, Tabuk, and the
Eastern Region, are all in the coastal parts of the country.

2.5.2 Aseer
As it can be seen in Figure 4, Aseer is one of the southwest
provinces of Saudi Arabia. According to a household energy
survey conducted in 2017 (Survey, 2017), the number of
households in this province is 398,969, and total electricity
consumption was 10.9 billion kWh/year. Hence, each
household used 75 kWh/day on average, that is, 29 kWh/day
in winter and 47 kWh/day for the rest of the year. The latitude
and longitude of the selected case study region are 19°N, 42°E,
respectively.

Figure 5A presents a deferrable load of 140 kWh/day in total
so that water usage is assumed to be 0.07 m3/day for each person
and 4 kWh/m3 for desalination (Wu et al., 2018; Eltamaly et al.,
2021), and the demanded load of 2,850 kWh/day in winter
months (January-February-December) and 4,680 kWh/day for
the rest of the year is scaled on the defined distribution of
residential usage in HOMER software. As it can be seen, peak
times occur from June to September, and it is evident that this
happens between 1 and 6 p.m., known as peak times in Saudi
Arabia. Also, Figure 5B shows solar radiation with an average of
5.97 kWh/m2/day for this province, which is very good as a
renewable resource.

2.5.3 Tabuk
Tabuk is located in the northwest of Saudi Arabia, as shown in
Figure 4, where the number of its households was 166,845, and
total electricity consumption was 2.6 billion kWh/year.

FIGURE 2 | (A) A kind of kernel employed in the SVR method. (B) General structure of support vector machines.
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FIGURE 3 | (A) Estimation of GDP by 2040 based on trend line. (B) Estimation of oil consumption based on trend line. (C) Estimation of natural gas consumption by
2040 based on trend line. (D) Estimation of renewable consumption based on trend line. (E) Estimation of coal consumption by 2040 based on trend line. (F) Estimation
of population by 2040 based on trend line. (G) Estimation of air temperature by 2040 based on trend line. (H) Estimation of the unemployment rate by 2040 based on
trend line.
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FIGURE 4 | Overview of Saudi Arabia and the case study regions.

FIGURE 5 | (A) Annual load profile for selected case study located in Aseer. (B) Solar radiation and clearness index in Aseer. (C) Annual load profile for selected
case study located in Tabuk province. (D) Solar radiation and clearness index in Tabuk province. (E) Annual load profile for selected case study located in Eastern Region
province. (F) Solar radiation and clearness index in Eastern Region province.
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Accordingly, each household’s share in electricity usage was
43.3 kWh/day, that is, 18.2 kWh/day in winter and 25 kWh/
day for the rest of the year in 2017 (Survey, 2017). The
latitude and longitude of the selected case study region in this
province are 28°N, 36°E, respectively.

In Figure 5C, like Aseer, the deferrable load is assumed to be
140 kWh/day and demand load is 2,346 kWh/day, that is,
1,820 kWh/day in winter and 2,500 kWh/day for the rest of
the days. The mentioned values are applied to HOMER
software’s defined distribution load demand for residential
usages. Based on the obtained values, peak times occur in
June–October at 1–6 p.m. Solar radiation and clearness index
for this province are shown in Figure 5D, where average
radiation is considered to be 5.84 kWh/m2/day.

2.5.5 Eastern Region
The biggest province in Saudi Arabia is the Eastern Region, where
households were 758,916 in number, and total electricity consumption
was 11 billion kWh/year. According to the conducted survey (Survey,
2017), electricity consumption on average for each household was
56 kWh/day, that is, 19 kWh/day in winter and 37 kWh/day for the
rest of the year in 2017. It includes almost all of the entire southeast
and east of the country. Since this province is so long, its middle part
with the latitude of 26°N and longitude of 49°E is selected as the case
study region as marked in Figure 4.

The distribution of demand load is shown in Figure 5E, and it is
similar to the Aseer andTabuk provinces except for wintermonths;
during the rest of the year, electricity consumption is significant.
For this case study, the deferrable load is assumed to be 140 kWh/

day and on average 3,299 kWh/day, so that 19 kWh/day inWinter
and 39 kWh/day for the rest of the year are considered and
imposed on the default load in HOMER software for residential
usage. Also, the solar radiation of 5.72 kWh/m2/day is averagely set
for this case study. Solar radiation and clearness index in this
province are presented in Figure 5F.

2.6 The Proposed Hybrid System,
Assumptions, and Components
For all of the case studies, the proposed system is shown in
Figure 6. It includes PV, DG, battery, converter, grid, electrical,
and deferrable load. It must be mentioned that the value of
considered demand load for each city is set in HOMER according
to an almost equal number of households for all three selected
case studies based on the consumption reported through the
conducted survey in 2017.

The characteristics of the components and input parameters
are presented inTable 2, where the project’s lifetime is considered
to be 20 years. Since the loads are based on residential usage,
annual capacity shortage, as a percent of blackout which can
occur in a year, should be considered about 1%–2%. However, in
this study, simulations are done for three annual capacity
shortages, including 0%, 1%, and 2%, to see the differences
between results and select the rational annual capacity
shortage for the rest of the study. The discount and inflation
rates are considered to be 6% and 3%, respectively. Also, PV
panels include the Horizontal Tracker system.

2.6.1. Components’ Technical Description
2.6.1.1 Photovoltaic Panels
In HOMER software, Eq. 3 is used to calculate the output power
from PV panels where it considers both environmental and
structural factors such as wind speed and solar radiation.

The output power of PV is as follows:

PV � RC*DF*(SRI
IR

)p[1 + TCPp(CT − CTSTC)] (3)

where RC presents rated capacity(kW) of PV considering the
Standard Test Condition (STC). DF is defined as the derating
factor (%) of PV. SRI is the Solar Radiation Incident (kW/m2) in
the current time step. TCP is the temperature coefficient of power
(%/°C). CT and CTSTC are PV’s cell temperature (°C) at reality
and STC, respectively.

2.6.1.2 Converter
Usually, most PV panels produce DC current that cannot be used
directly in residential applications. This equipment is used to
convert DC current to AC. The details of the selected converter
are described in Table. 2.

2.6.1.3 Battery
Increasing the reliability of the power generation systems is an
essential factor, especially in peak hours when pressure on the
grid is significant. Using batteries can release this pressure by
supplying demand load when it is necessary, especially in
blackouts and night hours when there is no solar irradiation.

FIGURE 6 | Schematic view of the proposed system.
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The characteristics of the selected battery in this study are
presented in Table. 2.

2.6.2. Economic Equations in HOMER
2.6.2.1 Net Present Cost (NPC)
HOMER software’s total net present cost is calculated as in Eq. 4.
It includes all the expenses that are spent on the project, such as
initial capital, operation and maintenance, fuel, replacement cost,
and other related expenses. It also considers the project’s income
(salvage) throughout its lifetime.

NPC � Cinitial + Creplecement + CO&M − Salvage

CRF(i, n) (4)

where CRF is the capital recovery factor that can be calculated
through Eq. 5, and n is the project’s lifetime (years). Eq. 6
presents i, where f is the specific inflation rate and i and i’ are
real and nominal interest rates, respectively.

CRF(i, n) � i(1 + i)n
(1 + i)n − 1

(5)

i � i’ − f

1 + f
(6)

2.6.2.2 Cost of Energy (COE)
The cost of energy of the project is defined as Eq. 7. It means how
much money is spent for generation of 1 kWh electricity and is
calculated by dividing the system’s total annualized cost by the
total electrical load (kWh/year).

COE � CRF(i, n)pCNPC

Eserved, ACprime + Eserved,DCprime + Eseved,def + Egrid,sales
(7)

where Eserved,me Eserved,ACprime are the total energy spent on DC
and AC loads, Egrid,sales is the amount of energy sold to the grid,
and Eseved,def is the served deferrable load of the system.

2.6.3 Grid Electricity Prices and Employed Constraints
Considering load profiles in Figures 5A,C,E and electricity
consumption for all case studies based on the reported survey in
2017, power usage is significantly lower than that in the rest of the

year in the winter months. Accordingly, consumption is considered
shoulder mode for December, January, and February. For the rest of
the year, three differentmodes are assumed so that 11 p.m. to 7 a.m. is
considered off-Peak hours and the rest of the day is considered as
shown in Figure 7A. The prices of grid sales and purchases for three
modes are presented in Figure 7B. The other assumption in this
study is the constant blackouts in the peak hours of the day, especially
in June, July, August, and September, coupled with ten random
blackouts where each one is 30min. In order to reduce pressure on
the grid, constant grid blackouts are just assumed since supplying
electricity in peak hours of the day using renewable energies is one of
this study’s goals. For July, August, and September, 2 and 3 p.m. are
considered, and for the rest of the non-winter months, 1 h between 2
and 3 p.m. is deemed to be shown in Figure 7C.

2.6.4 Grid Pollutant Emission
About 97% of the total electricity generation in eastern parts of Saudi
Arabia is through natural gas; however, due to the lack of gas pipelines
in the western regions, almost all power generation is based on
petroleum liquids (U.S. EIA, 2021). Some studies considered grid
pollutant emission as follows: 632 g/kWh of carbon dioxide, 1.79 g/
kWh of carbon monoxide, 0.2 g/kWh of unburned hydrocarbons,
0.14 g/kWh of particular matter, 1.47 g/kWh of sulfur dioxide, and
1.60 g/kWh of nitrogen oxides (Tazay, 2020). It should be mentioned
that about 28% of total CO2 emission in Saudi Arabia is related to the
power sector. Also, 65% of total fuel for electricity generation is natural
gas and the rest (35%) is from oil (U.S. EIA, 2021; Climate
Transparency Report, 2020). In this study based on the kind of
fuels used in each region of Saudi Arabia and other related reports
of power plants’ emission, CO2 emission of the grid is considered to be
850 g/kWh and 550 g/kWh for the western and eastern regions of
Saudi Arabia, respectively. Also, based on a conducted study in the
United States, the social cost of CO2, CH4, and N2O emission are
considered to be 40, 1,500, and 17,000 $/t (U. S. Government, 2013).

3 RESULTS AND DISCUSSION

In this section, machine learning results and optimization results
are presented in two separate parts.

TABLE 2 | Characteristics of the proposed components.

Component PV DG Converter Battery

Model Sharp ND-250QCS Generic Medium Genset — 1 kWh Li-Ion
Capital cost ($/kW) 1,500 450 300 400
Replacement ($/kW) 1,200 380 300 400
O&M ($/year) 30 18 6 10
Lifetime 20 years 15,000 h 15 years 15 years
Cell type Polycrystalline silicon — — —

Operating temperature 47.5°C —

Temperature coefficient −0.485%/°C — — —

Efficiency 15.3% — 95% 90%
Minimum load ratio — 25% — —

Rated RPM — 1,500 — —

Nominal capacity 0.25 kW 0, 5, 10, 15 kW — 1 kWh-167 Ah
Nominal voltage — — — 6 V
Charge and discharge current — — — 167, 500 A
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3.1 Estimated CO2 Emission and Electricity
Consumption
There are some criteria through which the accuracy of
regression methods is evaluated. In this study, R2 and MAE
are employed. Considering similar studies in which prediction
is made by using MLP and SVR methods, the obtained R2s and
MAEs are acceptable (Ghalandari et al., 2020; Fan et al., 2021).
In Table 3, results of MLP and SVR methods for predicting
CO2 emission and electricity consumption are presented.
Different kernels such as linear, RBF, and polynomials were
used in the SVR method, and it was concluded that
polynomials had better performance for the current data.
As it can be seen for CO2 emission, MLP has higher R2 and
lower error than SVR, while for prediction of electricity
consumption, SVR has shown better accuracy. Accordingly,
MLP and SVR are employed to predict CO2 emission and
electricity consumption, respectively.

The outputs of the models are shown in Figures 8A,B.
Considering the predicted outputs of predicted CO2 emission
and electricity consumption, the rate of increasing emission is
9.5 Mt/year and that for electricity consumption is 6.3 TWh/year.
It means that if the dependent parameters such as GDP,
population, and oil consumption grow according to Figures
3A–H, CO2 emission and electricity consumption will increase
by 31% and 39%, respectively, by 2040 compared to 2020. Hence,
using renewable energies should be higher than CO2 emission
and electricity consumption rates.

3.2 Simulation Results
In this section, the obtained outputs of HOMER software are
presented and discussed. First, results, including the optimized
components’ sizes, emission, and economic parameters, are
shown in Table 4 under three different annual capacity
shortages. Second, three sensitivity analyses, including the
amount of CO2 emission coupled with its penalties, amount of

FIGURE 7 | (A) Grid rate schedule. (B) Purchase (from) and sale (to) grid prices. (C) Assumed random and constant grid outages.

TABLE 3 | Results of MLP and SVR methods.

Method R2 MAE Input parameters Goal

MLP 0.996 2.3 Learning rate: 0.1/alpha:0.005/solver: lbfgs Layers:2/nodes:20 CO2 prediction
SVR 0.991 2.8 Kernel: poly/degree:3/epsilon:0.1
MLP 0.98 4.1 Learning rate: constant/alpha:0.02/solver: lbfgs/layers:1/nodes:9 Electricity prediction
SVR 0.99 3.3 Kernel: poly/degree:3/epsilon:0.1
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solar GHI and load, and the price of PV and battery, are done for
the best-selected capacity shortage according to the previous
section to see RF and NPC changes. Finally, technical analyses
of the optimized systems are presented.

3.2.1 Optimized Systems for Aseer, Tabuk, and
Eastern Region
The outputs of the proposed system under three annual capacity
shortage values are presented in Table 4. Considering the
literature review in the introduction section, where the RFs are
between 32% and 50%, the corresponding COEs are between
0.049 ($/kWh) and 0.178 ($/kWh). Comparing the obtained
COEs with similar on-grid studies in Saudi Arabia shows that
the COEs are rational (Alharthi et al., 2018; Al Garni et al., 2018;
Awan et al., 2019; Dehwah and Krarti, 2019).

- In Aseer, COE values show 0.0015 $/kWh increase for 1%
and 2% capacity shortage compared to 0% while NPC is
0.05M($) lower for 1% and 2% shortage compared to 0%. RF
in 0% shortage is 48% while 44.6% and 44.8% values are

obtained for 1% and 2% shortage, respectively, which show
6% decrease compared to 0% shortage. Consequently, PV
capacity is obtained as 11% and 10% lower in 1% and 2%
shortages compared to the other one. CO2 emission is also
3% and 2.8% lower in 0% shortage compared to 1% and 2%
shortages, respectively. Also, unmet load in 1% and 2% is 1.7
and 1.6 times higher in 1% and 2% shortages compared to
0% shortage.

- In Tabuk, comparison of COEs shows a 0.0008 $/kWh
increase in 1% and % shortages compared to 0% shortage
while NPC has not been changed at all. Also, RF, the size of
PV, batteries, Gen, and other parameters have not had any
significant change and are almost equal for all three
considered shortages.

- In the Eastern Region, a 0.0002 $/kWh decrease happens for
COE of 0% shortage compared to two other shortages while
NPC for 0% shortage is 0.01M($) more than the other
shortages. Comparison of RF values shows 4% increase in
1% and 2% shortages compared to 0% shortage.
Consequently, the size of PV for 0% shortage is 271(kW),

FIGURE 8 | (A) Predicted CO2 emission by MLP. (B) Predicted electricity consumption by SVR.

TABLE 4 | Obtained results under three different annual capacity shortages—Aseer, Tabuk, and the Eastern Region.

Aseer

Annual
capacity
shortage
(%)

COE
($/kWh)

NPC ($) Initial
capital

($)

RF
(%)

PV
(kW)

Battery
(kW)

Gen
(kW)

CO2

emission
(kg/yr.)

Unmet
load
(kWh/
yr.)

Capacity
shortage
(kWh/yr.)

0 0.0934 2.57M 1.03M 48 507 411 5 809,510 305 1,559
1 0.0949 2.52M 895,899 44.6 447 323 5 834,642 822 5,102
2 0.0949 2.52M 901,030 44.8 454 317 5 832,268 801 4,807

Tabuk

0 0.0915 1.37M 511,984 46.2 257 178 5 457,998 9.05 422
1 0.0907 1.37M 514,992 46.7 257 173 5 457,161 12.2 512
2 0.0907 1.37M 514,992 46.7 257 173 5 457,161 12.2 512

Eastern

0 0.0910 1.91M 760,062 46.7 380 271 5 411,209 3.04 1,225
1 0.0922 1.90M 716,545 44.8 358 265 5 417,963 67 2,200
2 0.0922 1.90M 719,545 44.8 358 265 5 417,963 67 2,200
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which is 2% higher than 1% and 2% shortages. Results show
a 1% increase in CO2 emission for 1% and 2% shortages
compared to 0% shortage. Also, unmet load for 1% and 2%
shortage is 22 times more than 0% shortage.

The optimized results, based on the economic parameters,
especially NPC and COE values, show that increasing annual
capacity shortage have not had a significant effect on the NPC and
COE and will not change the size of components, while its impact

FIGURE 9 | (A) Sensitivity analysis on the grid CO2 emission and its social penalties. (B) Sensitivity analysis on solar GHI and Load. (C) Sensitivity analysis on the
price of PV and battery.
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on the unmet electricity are remarkable and CO2 emission will be
higher. Hence, it would be rational to select a 0% annual capacity
shortage for supplying power with the lowest unmet electricity.
Considering equal obtained RFs (46–48) % and equal households
for all cases, the PV panels’ size for supplying electricity in Aseer,
Tabuk, and the Eastern Region is 507, 257, and 380 kW,
respectively. The size of DG for all cases is obtained as 5 kW,
and it will be used just as a small essential backup.

3.2.2 Sensitivity Analysis on the Amount of Grid CO2

Emission and Its Penalty-0% Shortage
In this section, 450–1,000 g/kWh CO2 emission is considered for
Aseer and Tabuk provinces as the cases using petroleum liquids
for power production and 400–700 g/kWh CO2 is considered for
the Eastern Region since it is using natural gas as fuel. For all
cases, penalties’ ranges are considered to be 20–60 $/t according
to the mentioned study in the grid pollutant emission section.
Heat maps in Figure 9A show the obtained results.

- According to this figure for Aseer, reducing CO2 emission by
450 g/kWh (e.g., using natural gas in this area) while CO2

penalty is 20 $/t, 45% RF would be enough with an NPC of
2.2M($). However, if the penalty is 60 $/t, 49% RF will be the
optimized value and increase NPC by 14%. Also, the results
show that by increasing CO2 by 1,000 g/kWh along with 60
$/t of CO2 penalty, the RF of 48% will not be changed in
optimization while NPCwill be 36% higher than when 20 $/t
is the penalty. Changes in CO2 emission from 450–1,000 g/
kWh, where the penalty is 20 $/t, will not significantly affect
NPC, while RF will be increased 45%–48%.

- Changes in CO2 and its penalty for Tabuk province would
lead to 45% RF where CO2 emission is decreased by 450 g/
kWh and 20 $ penalty while considering 60$/t penalty, 46%
RF is enough, and it increases NPC by 18%. Here, the
emission is 1,000 g/kWh and changing the penalty from
20 to 60 $/t will not affect RF, while NPC will be increased by
about 24%. Considering 20 $/t penalty and changing
emission from 450 to 1,000 g/kWh would lead to 45%
and 46% RF and increase in NPC by 13%. Also, where
the penalty is 60 $/t, changing emission from 450 to 1,000 g/
kWh caused 46% RF and increased NPC by 24%.

- The Eastern Region shows different treatment compared to
Aseer and Tabuk. For CO2 emission of 400 g/kWh, changing
the penalty from 20 to 60 $/t caused 46% and 47% RF and
increased NPC by 15%. Also, when the emission is 1,000 g/
kWh, changing the penalty from 20 to 60 $/t caused 46% and
47% RF and increased NPC by 20%. Where CO2 emission of
the grid is changed from 400 to 700 g/kWh and penalty is 20
$/t, the constant value of 46% and 1.7M ($) for RF andNPC are
the best values, respectively. Where the social penalty is 60 $/t,
47% of RFwill be selected as the optimumvalue for the range of
400–700 g/kWh emission, but it increases NPC by 30%.

3.2.3 Sensitivity Analysis on Solar GHI and Electrical
Load-0% Shortage
In order to see the effect of various loads and solar GHIs on RF and
NPC, sensitivity analysis was conducted, and results are presented

in Figure 9B. The ranges for loads are 30% different from primary
annual averages, including 4,266, 2,346, and 3,300 kWh/day for
Aseer, Tabuk, and the Eastern Region, respectively. Also, solar GHI
is set to 4.5 to 7 kWh/m2/day near most parts of Saudi Arabia.

- In Aseer province, where the load is 3,000 kWh/day,
4.5—7 kWh/m2/day GHI caused 45% and 52% RF,
respectively, while NPC has not been changed. For the
5,500 kWh/day load, changing GHI from 4.5 to 7 kWh/m2/
day caused 46% and 52% RF, respectively, and decreased NPC
by about 5%. Changing the load between 3,000 and 5,500 kWh/
day where GHI is 4.5 kWh/m2/day increases RF from 45% to
46% and the value of NPC by about 55%.Where GHI is 7 kWh/
m2/day, changing the load between 3,000 and 5,500 kWh/day
will not affect RF, but it will increase the NPC by 43%.

- In Tabuk province, where demand load is 1,600 kWh/day,
having 4.5 and 7 kWh/m2/day values of GHI causes 43% and
47% RF, respectively, and NPC will not change more than
5%. In loads near 3,000 kWh/day, changing GHI from 4.5 to
7 kWh/m2/day would result in 42% and 46% RF,
respectively, and decrease NPC by 4%. If the location has
had 4.5 kWh/m2/day radiation and the load changes from
1,600 to 3,000 kWh/day, RF will be almost constant (42.5%)
while NPC will be increased by about 50%. For GHIs of
about 7 kWh/m2/day, optimum obtained RFs for loads
between 1,600 and 3,000 kWh/day are about 46.5%, while
the NPC increases up to 66%.

- The sensitivity analysis results for the Eastern Region show
that where the load is 2,300 kWh/day, changing GHI from 4.5
to 7 kWh/m2/day causes 44% and 49% RF while NPC has
almost a constant value of 1.3M ($). Also, where the load is
4,300 kWh/day, the range of 4.5–7 kWh/m2/day for GHI
would cause 43% and 49% RF, respectively, and decreases
NPC by about 12%. Where GHI has a constant value of
4.5 kWh/m2/day, the range of 2,300–4,300 kWh/day demand
load has an almost constant value of RF (43.5%) while NPC
will be increased by 70%. Also, in GHIs, about 7 kWh/m2/day
RF will be constant (49%), while NPC increases about 60%.

3.2.4 Sensitivity Analysis on the Price of PV and
Battery- 0% Shortage
One of the most important issues for designing hybrid renewable
systems is the price of components. Following the obtained
results in Table 4, PV and battery are the main parts of the
optimized systems.

Hence, in this section, for all selected case studies for the
capital cost of PV and battery, 40% and 20% tolerance are
considered, respectively, to see the changes in RFs and NPCs
as shown in Figure 9C.

- In Aseer province, by reducing 20%of the capital cost of batteries
for the range of 0.6–1.4 of PV’s capital cost, RF changes from
53% to 45%, and NPC increases by 65%. Also, when the capital
cost of batteries is 1.2 times more, altering the price of PV by
0.6–1.4 of the capital cost would result in 55% and 46% RFs,
respectively, and increaseNPCby about 70%. The changes in the
batteries’ price will not significantly affect RFs and NPCs.
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- In Tabuk province, if the price of batteries decreases by 20%,
for the range of 0.6–1.4 of the prices of PV, the optimum RFs
will be 51% and 43%, respectively, and NPC will increase by
25%. Also, if the price of batteries increases by 20%,
increasing the capital cost of PVs by 0.6–1.4 would result
in 52% and 44% RFs and increase the NPC by 30%. Like
Aseer province, changing battery prices by 20% does not
significantly affect RFs and NPCs.

- Obtained results for the Eastern Region show that a 20%
reduction of the price of batteries and changing the price of
PVs in the ranges of 0.6–1.4 times of the capital cost would
cause 49% and 45% RFs and increase the NPC by about 28%.
Also, if the price of batteries increases by 20% and the price
of PVs changes from 0.6 to 1.4 times the capital cost, RFs will
be 49% and 46%, respectively, and the NPC will be increased
by about 33%. Changing the price of batteries by 20% will
not affect RFs and NPCs as well.

3.3 Technical Analysis and Cash Flow
Diagrams
For all the case studies, cash flow diagrams along the project’s
lifetime (20 years) are illustrated in Figure 10. Initial capital cost

includes most of the total NPC, and the maximum capital cost is
related to PV in all cases. Also, at year 15, batteries and converters
need to be replaced. The other important issue inferred from this
figure is that at the end of the project, such components as
batteries and converters will remain that can be sold to the
market, which is considered salvage. As mentioned before, the
generator has less cost among the components and will not be
replaced over the 20 years.

The load and power generation of the selected case studies
along with grid purchases and sales are shown in Figure 11 for a
typical week. Considering the fixed and random blackouts of the
grid at peak times, PV panels will supply outages between 2 and 3
p.m., and if the random outages occur at night, batteries can
provide the demand loads. As shown in Figure 11, DG is not
being used, so it is only used as a backup component so that when
the batteries could not provide all of the demand load, DG would
help them supply electricity. Take the curve of Aseer’s technical
analysis on August 18, 3 p.m., as an example; at this time, one of
the blackouts has occurred, and grid purchase is at its minimum
state while PV is generating electricity and batteries are helping it.

At this specific time, since the PV is exposed to intense
radiation in addition to the supplying demand load, it can sell
the excess electricity to the grid. Taking Tabuk’s performance

FIGURE 10 | Cash flow diagrams, including components’ cost in 20 years.
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curves into account on September 2 at 4 p.m., it is shown that
when outages finish, batteries have a significant role in providing
electricity at the begging time of the grid exposed to intense
radiation; in addition to the supplying demand load, it can sell the
excess electricity to the grid. Taking Tabuk’s performance curves
into account on September 2 at 4 p.m., it is shown that when
outages finish, batteries have a significant role in providing
electricity at the begging time of grid connection while PV’s
power is not enough. The last state of the battery’s usage is when
one of the random grid outages (30 min) occurs.

As seen in the Eastern Region’s curves on June 25 at 9 p.m.,
batteries are lonely supplying the demand load when there is no
other component helping them. In this study, charging batteries
through the grid and selling from the battery to the grid are
prohibited. For this reason, all of the sales to the grid occur when
PVs are generating electricity.

4 CONCLUSION AND FUTURE WORK

In this work, the results of machine learning methods employed
to predict CO2 emission and electricity consumption in Saudi

Arabia by 2040 showed that the rates of increasing CO2 emission
and electricity consumption were 6.3 Mt/year and 9.5 TWh/year,
respectively. In the prediction process, such essential factors as
GDP, oil consumption, and population are considered. This study
investigates grid-connected hybrid renewable systems under
different annual capacity shortages when there are fixed grid
outages and random ones. Aseer, Tabuk, and the Eastern Region
of Saudi Arabia are selected as three coastal provinces so that
demand loads are 4,266, 2,346, and 3,300 kWh/day, respectively.
In order to find the best range of RFs for each province, some
sensitivity analyses are employed under changes of grid CO2

emission and its penalties, demand load and solar GHI, and PV
and batteries’ capital cost. Considering all the assumptions and
input parameters in this study, the most important findings are as
follows:

• MLP and SVR methods showed more accuracy for
predicting CO2 emission and electricity consumption,
respectively. Also, results showed that the increasing rate
of using renewable energies should support 31% increasing
CO2 emission and 39% electricity consumption by 2040
compared to 2020.

FIGURE 11 | Technical performance of the optimized systems in a typical week.
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• Despite having residential usage, considering 0% annual
capacity shortage has no significant impact on the financial
results and the size of components compared to 1% and 2%
yearly capacity shortage. Also, unmet electricity is highly
affected when 1% and 2% shortages are considered and
increases up to 1.5–22 times more than 0% shortages in
addition to increasing CO2 emission in Aseer and the
Eastern Region.

• The range of 46%–48% RF would be the best for all cases
from economic and environmental points of view.

• A PV/Battery system including a partial amount of DG
as a backup supplier would be the best combination for
all cases. Also, COEs of the optimized system for Aseer,
Tabuk, and the Eastern Region are 0.0934, 0.0915, and
0.0910 $/kWh, respectively. Furthermore, RFs of the
mentioned cases are 48%, 46.2%, and 46.7%,
respectively.

• Overall, changes in grid CO2 emission and its social penalty
(20–60$) do not change the optimum value of RFs, while
increasing one or both will significantly increase the NPC
values for all case studies.

• Considering the different loads and GHIs (4.5–7 kWh/m2/
day), the ranges of 45%–52%, 42%–47%, and 43%–49% RFs
in Aseer, Tabuk, and the Eastern Region, respectively, while
the range of loads for these cases is 3,000–5,500 kWh/day,
1,600–3,000 kWh/day, and 2,300–4,300 kWh/day, would
lead to an optimum system.

• Sensitivity analysis on the price of PV and battery when the
range of the battery’s cost is 320–480 $/kW, and PV’s price
range is 900–2,100 $/kW shows that the optimum ranges of
RFs for Aseer, Tabuk, and the Eastern Region are 45%–55%,
43%–52%, and 45%–49%, respectively. Also, it was found
that changing the battery price at the mentioned ranges will

not affect NPC, while PV’s prices will significantly change
the NPC values.

For future work, we suggest using other renewable energies
such as wind and bio-power. Investigating various kinds of
trackers can also be considered.
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