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The slime mold algorithm (SMA) is a novel meta-heuristic search that replicates the
characteristics of slime mold during oscillation. This is presented in a novel
mathematical formulation that employs changeable weights to modify the sequence of
both negative and positive propagation waves in order to build a mechanism for linking
food availability with intensive exploration capacity and exploitation affinity. The study
demonstrates how to solve a non-convex and cost-effective load dispatch issue (ELD) in
an electric power system using the SM method. The efficacy of SMA is explored for a
single-area economic load dispatch on small-scale power systems, using 3-, 5-, and 6-unit
test systems, and the results are validated by comparing the results to those of other well-
known meta-heuristic algorithms.
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INTRODUCTION

In the actual functioning of power systems, economic load dispatch (ELD) is a crucial problem to
solve. The role of the power system is to deliver continuous power to the consumers at an affordable
price which is its main feature (Panigrahi et al., 2006), (Jadoun et al., 2015). The objective is to reduce
energy-generating costs while fulfilling load needs and ensuring equality and in-quality constraints.
This fact results in a higher degree of pollution awareness in thermal plants and a lower cost of
diagnosing the problem. Because they operate in conjunction with a collection of viable alternatives,
evolutionary methods are now perfectly suited for discovering answers to optimization problems. All
optimization approaches, including evolutionary ones, are known to be influenced by constraints
(Salcedo-Sanz, 2009). Since the traditional procedure of an evolutionary approach, employing
operators for individuals in a population may violate the constraint rules. The way evolutionary
approaches deal with constraint rules of challenges is a significant aspect that is directly connected to
the quality of solutions created for such problems. By converting the present solution that opposes
the constraints into a viable one, a redesigned method eliminates unattainable solutions.

Wind, solar, thermal, nuclear, renewable, hydro, and other power-producing facilities are used in
most power generation systems. In the case of renewable energy systems, the operational cost will not
change as much as the production. In thermal systems, however, the running cost varies with the
total power output. As a result, the ELD issue, which includes the use of thermal systems as
generators, is considered a critical optimization issue in electric power systems. Maintaining an
economical operation is a difficult challenge for both traditional and smart grid systems. When
power systems are exposed to operational and a transmission imperative, the ELD limits the optimal
outcome for an electric power generation to sustain the load demand with a minimum generation
price. The ELD problem is usually solved by sophisticated computerized approaches that meet the
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operational and power system imperatives via minute-to-minute
monitoring. A little increase in the ELD demonstrates its long-
term reaction to the declining price of the total power output. As a
result, a variety of optimization methods have been developed to
address cost-effective load dispatch issues while producing high-
quality results. Traditional optimization approaches were the sole
option to address ELD concerns for many years. Because of the
limitations of conventional methods, system operators have a
chance to fail to notice the realistic and technological imperatives
of the system’s units. There are two types of simplifications in this
category: first, combined with the accuracy of the generating
unit’s pricing model, particularly for different types of fuels or
taking the valve-point loading impact into account (Cai et al.,
2012; Zhong et al., 2013). Multi-valve steam turbines are widely
seen in real-world generating units. The valve point of the
generating unit is drawn when the steam turbine’s intake valve
opens abruptly, pushing the energy consumption curve upward.

LITERATURE SURVEY

The economic load dispatch problem is a major concern for
the cost-effective operation of electric power systems as it
concentrates on basically assembling the power outputs of the
units by establishing time intervals to decrease generating
costs while still meeting other system requirements. In
general, the traditional ELD problem is reduced to solve the
convex quadratic programming problem (Reid and Hasdorff,
1973), which may now be handled effectively using MOSEK
(Babonneau et al., 2019). Furthermore, the system becomes
non-smoothed, non-convex, and non-continuous when the
valve-point loading effect, transmission loss, and prohibited
operating zones are considered. The objective function arises
as multiples of the local minimum because of these features,
making global minima exceedingly difficult to attain. Aside
from that, the non-smooth nature of the function makes the
derivate-based mathematical programming technique
challenging to apply directly.

Traditional optimization techniques often look at linear,
piece-wise linear, and price functions of generators in
quadratic functions, with just network loss being considered.
These classic techniques include lambda iteration (Zhan et al.,
2014), gradient descent method (Dibangoye et al., 2015), linear
programming (Torreglosa et al., 2016), Newton’s technique
(Wang et al., 2014), dynamic programming (Al-Kalaani, 2009),
gradient search (Subathra et al., 2015), and the Lagrangian
relaxation algorithm (Li et al., 2013; Mohammadi-Ivatloo
et al., 2013). Because of the persistence of severe non-linear
characteristics in real-world practical networks, while dealing
with high-dimensional economic dispatch difficulties, these suffer
disadvantages such as failure to meet imperatives and lengthy
time calculations.

This time-consuming calculation in optimization methods
prompted researchers to develop meta-heuristic optimization
strategies to solve large-scale problems. The meta-heuristic
method (Gjorgiev and Čepin, 2013) takes into consideration
non-convex pricing functions and non-smooth operating

functions as well as other imperatives. This includes
techniques such as synergic predator–prey optimization
(SPPO) (Singh et al., 2016), seeker optimization algorithm
(SOA) (Shaw et al., 2012), genetic algorithm (GA) (Amjady
and Nasiri-Rad, 2010), (Elsayed et al., 2014), evolutionary
programming (EP) (Sinha et al., 2003), firefly algorithm (FA)
(Yang et al., 2012), particle swarm optimization (PSO) (Neyestani
et al., 2010), (Safari and Shayeghi, 2011), (Wang and Singh, 2009),
artificial bee colony (ABC) (Aydın and Özyön, 2013), colonial
competitive differential algorithm (CCDE) (Ghasemi et al., 2016),
bacterial foraging algorithm (BFA) (Farhat and El-Hawary,
2010), improved Tabu search algorithm (ITS) (Whei-Min Lin
et al., 2002), ant colony optimization (ACO) (Pothiya et al., 2010),
group search optimizer (GSO) (Zare et al., 2012), harmony search
algorithm (HAS) (Jeddi and Vahidinasab, 2014), biogeography-
based optimization (BBO) (Bhattacharya and Chattopadhyay,
2010), and differential evolution (DE) (Jiang et al., 2013).
Many researchers used slime mould algorithm to bring better
results and few such algorithms are Dispersed Foraging Slime
Mould Algorithm (DFSMA) (Hu et al., 2022), Chaos-opposition-
enhanced slime mould algorithm (CO-SMA) (Rizk, 2022),
Opposition based learning slime mould algorithm (OBLSMA)
(Houssein et al., 2022), Multi-objective slime mould algorithm
(MOSMA) (Houssein et al., 115870), Equilibrium optimizer slime
mould algorithm (EOSMA) (Yin et al., 2022). In this work, SMA is
used to identify solutions to economic load dispatch problems on a
variety of test systems. Other new and popular approaches
outcomes are compared to analyze the results.

MATHEMATICAL FORMULATION FOR
SINGLE-AREA ECONOMIC LOAD
DISPATCH
The goal of the ELD problem is to lower the entire fuel cost of
power systems by finding the optimum combination of power
outputs from all generating units while congregating load
demand and operational constraints (Dubey et al., 2013).

Single-Area Economic Load Dispatch
The fuel cost for unit generation is represented as a quadratic
function, with the assumption that the collective cost curves of the
generating units develop as linear functions over time. The
mathematical equation for the single-area ELD for an hour is
as follows in Eq. 1:

fc(pg) � ∑ng
n�1

[an(pg
n)2 + bnp

g
n + cn], (1)

where n ∈ ng.
The dispatching of power-generating units for “Hr” hours can

be represented as follows:

fc(pg) � ∑Hr

hr�1
∑ng
n�1

[an(pg
n)2 + bnp

g
n + cn], (2)

where n ∈ ng; hr ∈ Hr.
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The right mathematics for ED is Eq. 2. Because the load
demand changes over time, “hr” is changed from a single hour
to “Hr” hours.

The aforementioned objective functions are subjected to the
following equality and inequality constraints:

Power Balance Constraint
The total power generation is equal to total power demand plus
system power loss.

∑ng
n�1

pg
n � pd + pl, (3)

where pd indicates the requirement of power, and the power loss
pl can be written as follows:

pl � ∑ng
n�1

∑ng
m�1

pg
nBnmP

g
m, (4)

In presence of loss coefficients Bi10 and B010 matrices, Eq. 4
can be written as follows:

pl � pg
nBnmP

g
m +∑ng

n�1
pg
n × Bi0 + B00. (5)

The extension of Eq. 5 is as follows:

pl � [p1p2........png]⎡⎢⎢⎢⎢⎢⎣B11 B12 B1n

B21 B22 B2n

Bn1 Bn2 Bnn

⎤⎥⎥⎥⎥⎥⎦⎡⎢⎢⎢⎢⎢⎢⎢⎣ p1

p2

png

⎤⎥⎥⎥⎥⎥⎥⎥⎦ + [p1 p2 png ]
⎡⎢⎢⎢⎢⎢⎣ B01

B02

B0ng

⎤⎥⎥⎥⎥⎥⎦ + B. (6)

Generator Limit Constraint
The true power output of each generator is controlled by the
upper and lower operational limits.

py
n(min imum) ≤p

y
n ≤p

y
n(max imum), n � 1, 2, 3, ., ng (7)

where py
n(min imum) implies the lowest real power allocated at unit

and py
n(max imum) announces the highest real power allotted at

until n.

Ramp Rate Limits
The output power of the generating unit is boosted between the
lower and higher limits of active power generation.

1) By increasing the generated power,

pg
n ≤p

g0
0 ≤ urn, n � 1, 2, 3, .., ng (8)

2) By reducing the amount of generated power

pg
n ≤p

g0
0 ≤ urn, n � 1, 2, 3, . . . . . . , ng (9)

Therefore, the generator ramp rate is shown in the following
equation:

max imum[max imum[pg
n(max imum), (urn − pg

n)]
≤min imum[pg

n(min imum), (pg0
n − drn)], (10)

where n = 1,2, 3, . . ., ng, andpg0
n is the current active power of the

nth generation unit.

Prohibited Operating Zones
Prohibited operating zones (POZ) are allocated to the graph
for input–output powers in the generating unit, which may be
discontinuous due to functional constraints of the generator
produced by a defective mistake in the machine parts or the
machine itself. The discontinuous input–output power
limitations are as follows in Eq. 11:

⎧⎪⎪⎨⎪⎪⎩
pn(min imum) ≤pn ≤ppoz

n (min imum), 1
ppoz
n(max imum),m−1 ≤pn ≤ppoz(min imum), m

ppoz
n(max imum),m ≤ ni ≤pn(max imum);m � npoz

. (11)

SLIME MOLD ALGORITHM

It is known that the behavior of the organism can be imitated
and molded to tackle the mathematics of unconstrained and
non-convex characteristics. Researchers have framed to
imitate the guiding principles to develop computations and
algorithms. The slime molds have received significant
courteousness for the past few years. Scientifically, slime
mold is titled as Physarum polycephalum (Howard, 1931).
The slime mold undergoes few changes in its structure, that
is, it repositions its front position into a fan-shaped model, and
its interconnected venous network allows the cytoplasm to
flow inside at some level in relocation series. This stretchable
venous network helps in searching for food in multiple places
and grabs the food from food points. The slime mold has the
ability to creep up to 900 sq.m if it finds rich food points in the
environment.

Mathematical Modeling of Slime Mold
Algorithm
The mathematical modeling of SMA is discussed in three stages,
namely, approaching food, wrapping food, and food grabble (Li
et al., 2020).

Technique of Approaching Food
Step 1: The slime mold identifies the food based on the smell
present in the air. The mathematics to explicate the
contraction phase and update its position during the food
search process is presented in the following expression which
depends on x and p:

Y(τ + 1)���������→ � Yb(τ)�����→+ vb
→

× ( �w × YA(τ)������→− YB(τ)�����→), x>p (12)

Y(τ + 1)���������→ � vc→ × Y(τ), x>p, (13)
where vb

→
is the parameter which ranges from [−d, d].
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The maximum limit p is as follows:

p � tanh
∣∣∣∣F(t) − bf

∣∣∣∣, (14)
where t = 1, 2,.n, F(t) is the fitness of the slime mold’s location
and bf is the fitness value from all the steps. Eq. 4 describes the
range of the parameter vb

→
.

vb
→ � [−d, d], (15)

d � arctan h[ − ( τ

maxτ
) + 1]. (16)

The equation �W is expressed as follows:

W[Stenchindex(τ)]������������������������→ �
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 + x log(OpF − F(t)
OpF − lF

+ 1)
1 − x log(OpF − F(t)

OpF − lF
+ 1)

, (17)

Stenchindex � sort(F), (18)
where F(t) ranks first half of the population and random value x
lies in the interval [0,1].

Technique of Wrapping Food
The slime mold’s updated location is numerically given as
follows:

Yl
→

�
⎧⎪⎪⎪⎨⎪⎪⎪⎩

rand × (Uub − Ulb) + Uub, rand< z
Yb(τ)�����→ + vb

→
× ( �W×YA(τ)

������→

− ×YB(τ),
������→

x>p)vc→×YA(τ),
������→

x>p.

(19)
The upper and lower bounds of search ranges are given as Uub

and Ulb, respectively, and rand and x indicate the random values
in the interval [0,1].

Technique of Food Grabble
The slimemold’s location gets upgraded in the search process and
the value varies within the limits and fluctuates between [-1, 1]
and falls to zero. The flowchart of the proposed optimizer is
shown in Figure 1.

TEST SYSTEM RESULTS AND
DISCUSSIONS

In this section of the article, the IEEE bus systems in small size test
systems were considered, and comparison was done with other
methods, to see how well the slime mold optimization algorithm
performed on the ELD issue.

FIGURE 1 | Flow Chart of SMA Algorithm.
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Case Study
The input test data and loss coefficient matrices were obtained
from Sharma and Moses (2016), which shows a three-generator
test system with a power requirement of 150 MW assessed. The
input test data are displayed in appendix. In this case, the ELD
issue was cracked without a valve-point effect. Table 1 indicates
that the slime mold algorithm’s fuel price is 1590.627083 Rs./h,

which was the lowest of all the algorithms satisfying the system
constraints. The convergence curve of the SMA obtained by
simulation which was stable is shown in Figure 2A.

Case Study
With a power demand of 730MW, a five-unit test system with a
valve-point loading effect was used, and its input test information

TABLE 1 | (Case I) Slime mold algorithm results for economic dispatch of 3-unit system (without valve-point effect).

Method Transfer of Power Generating units

Fuel price
(Rs./hr)

Required power
in demand(MW)

G1 G2 G3 Loss in
power, PLoss(MW)

Grey Wolf optimizer (Kamboj et al. (2016)) 1597.4815 150 30.4998 64.6208 54.8994 2.3444
Quadratic programming (Zaraki and Othman (2009)) 1596 150 32.8116 64.5973 54.9329 2.3419
Lambda method (Sharma and Moses (2016)) 1599.98 150 33.4701 64.0974 55.1011 2.6686
Particle swarm optimization 1597.48 150 32.8101 64.595 54.9369 2.342
(Sharma and Moses (2016))
Genetic algorithm (Sharma and Moses (2016)) 1600 150 34.4895 64.0299 54.1534 2.6728
Slime mold algorithm 1590.627083 150 10 76.42812 64.24508 0.336600019

Bold values represent the best cost.

FIGURE 2 | Convergence curve for 3 and 5-generating units system.

TABLE 2 | Slime mold algorithm results for economic dispatch of 5-unit system (with valve-point effect).

Method Transfer of power-generating units

Fuel
price
(Rs./h)

Required
power

in demand
(MW)

G1 G2 G3 G4 G5 Loss in
power,
PLoss

(MW)

Genetic algorithm (Coelho and Lee
(2008))

2412.538 730 218.0184 109.0092 147.5229 28.37844 227.0275 NR

Particle swarm optimization (Coelho and
Lee (2008))

2252.572 730 229.5195 125 175 75 125.4804 NR

Lambda (Coelho and Lee (2008)) 2412.709 730 218.028 109.014 147.535 28.380 272.042 NR
APSO (Coelho and Lee (2008)) 2140.97 730 225.3845 113.020 109.4146 73.11176 209.0692 NR
Slime mold algorithm 2034.972427 730 229.5195832 102.9830227 112.6813882 74.9999977 209.816008 0

Bold values represent the best cost.
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was taken from Coelho and Lee (2008) with the loss coefficient
matrix set to zero, which is given in appendix. Table 2 shows that
the slime mold algorithm obtained a fuel price of 2034.972427 R/
h, satisfying all the constraints and was the best fuel price among
all algorithms. The convergence curve of SMA obtained by
simulation which was stable is shown in Figure 2B.

In order to intuitively analyze the location and fitness changes
of the slime mold during foraging, the qualitative analysis
findings of the SMA in lowering the fuel cost in ELD are
provided in Figures 2A,B. During the iteration phase, the
convergence curve reveals the ideal fitness value of the slime
mold. The convergence curve shows how the average fitness of
the slime mold’s ideal fitness value changes over time. We can see
the slime mold’s convergence rate and the moment when it
transitions between exploration and exploration gradation by
looking at the decline of the curve.

CONCLUSION

In this study, the slime mold optimization approach was used
to solve economic load dispatch problems in electric power
networks. This method’s effectiveness was tested on
conventional IEEE bus systems with 3 and 5 producing

units in small, medium, and large power systems.
According to the statistics, the slime mold optimizer was
clearly the best choice for dealing with economic load
dispatch issues since it contributes reduced fuel costs and
less transmission loss. It has a higher rate of convergence than
other well-known optimizers. By establishing a balance
between exploration and exploitation, the slime mold
optimizer achieved maximal avoidance in the local
optimum. As a result, this algorithm provided improved
solutions for load dispatch difficulties that were cost-
effective.
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