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The growth of renewable energies, together with their power converter interfaces,
reshapes power systems into more-electronics power systems. Along with this
paradigm shift is the requirement of grid formation by grid-tied power converters.
However, existing grid architectures only allow parallel operation of grid-forming
converters, which excludes high-voltage applications. This article proposes novel
lattice power grids that combine the advantages of multilevel converters and power
grids, thereby allowing both serial and parallel connectivity with modularity and scalability.
Further, we propose control and optimization algorithms for lattice power grids by use of
graph theory. In particular, we investigate H-bridge-based lattice power grids and achieve
several objectives, including desired voltages and currents between any two selective
nodes in lattice power grids as well as efficiency optimization by minimizing switching
actions. To achieve these objectives, this article details control and optimization
methodology for square lattice power grids. Finally, the proposed algorithms and
lattice power grids are validated via simulation results.
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1 INTRODUCTION

The desire to reduce carbon emissions and to meet the rising global energy demand has led to the
drastic increase in penetration of renewable energy sources (U.S. Department of Energy Office of
Energy Efficiency and Renewable Energy, 2018; Chappell, 2021). Unlike traditional power sources
which interface with power grids through synchronous generators (Hooshyar and Vahedi, 2007),
renewable sources such as photovoltaics and wind turbines are usually decentralized geographically
and interface with power grids through grid-tied power converters (Fang et al., 2017; Fang et al.,
2019; Fang, 2021a). Power systems primarily based on grid-tied power converters are known as
more-electronics power systems (see Figure 1) (Fang et al., 2019; Fang, 2021a).

In conventional power systems, stability is guaranteed through the voltage/frequency support and
rotational masses of synchronous generators, and grid-tied converters simply follow the established
grid. However, the growing penetration of grid-tied power converters will necessitate grid-forming
capabilities (Han et al., 2019; Deng et al., 2021; Lin, 2020; Fang, 2021a). As for current grid
architectures, existing grid-forming converters can only be connected in parallel for current sharing,
but they cannot withstand high voltages (Lin, 2020).

To undertake high voltages, multiple power electronic switches are connected in series to form
multilevel converters (Das, 2019a; Fang et al., 2021a; Fang et al., 2021b). Among multilevel
converters, cascaded-bridge converters (CBC), which consist of identical submodules in series,
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and modular multilevel converters (MMC), which replace
individual active switches of two-level converters with CBC
(Das, 2019a; Fang et al., 2021a; Fang et al., 2021b), stand out
due to their modularity and scalability. Recently, research
interests on multilevel converters with parallel connectivity in
addition to serial connectivity have grown (Goetz et al., 2017;
Fang et al., 2021b). Potential benefits of parallel connectivity
include current sharing, reduced conduction losses, and
sensorless voltage balancing. However, multilevel converters
with parallel connectivity essentially connect a string of
submodules (which tie each of their neighboring submodule
with two terminals) in series. From a macroscopic point of
view, such multilevel converters still feature a serial structure,
thereby suffering from limited current ratings (Fang et al., 2021b).

Combining the parallel architecture of power systems and the
serial structure of multilevel converters, this article proposes novel
lattice power grids. A lattice power grid consists of multiple grid-
forming converters arranged in a lattice structure. It shares the same
topologies as the lattice converter, which is a newly developed power
converter that aims to tile the two-dimensional plane or the three-
dimensional space (Fang, 2021b; Fang and Goetz, 2021; Mei et al.,
2022). The benefits of lattice power grids include the applicability to
high-voltage and large-current applications, multiple input/output
ports, as well as modularity and scalability (Fang and Goetz, 2021).
The power converter efficiencies of lattice converters have been
investigated by Mei et al. through simulations of lattice converters
with 10Ω load resistances and 0.01Ω internal resistances. It was
found that 3 × 3 and 4 × 4 lattice converters can achieve power
converter efficiencies of 99.85 and 99.81%, respectively, and we seek
to extend these benefits to lattice power grids. This article addresses
the fundamental challenges of lattice power grids by use of graph
theory.

The remainder of this article is organized as follows.
Fundamentals of Lattice Power Grids section introduces the
fundamentals of lattice power grids and introduces a method of

modeling lattice power grids using graph theory. Objectives of
the Proposed Control and Optimization Algorithms and
Components of Control and Optimization Algorithms for
Square Lattice Grids sections detail the algorithms that
achieve desired voltage and current objectives for square
lattice power grids. Generalizing the Proposed Algorithms for
Various Lattice Structures section generalizes the proposed
algorithms to other lattice types. Simulations and Results
section provides simulation results for the proposed
algorithms. Finally, concluding remarks are given in
Conclusion section.

2 FUNDAMENTALS OF LATTICE POWER
GRIDS
2.1 Grid-Forming Converters and Multilevel
Converters
Amore-electronics power system consists primarily of generators
and loads that interface with the power grid through individual
power converters (Fang, 2021a; Fang et al., 2017; Fang et al.,
2019). These power converters feature many different topologies,
among which single-phase and three-phase bridges are popular,
such as the H-bridge converter shown in Figure 2 (Das, 2019a;
Fang et al., 2021b). This article is applicable to various grid-
forming converters. As one example, we will focus primarily on
single-phase H-bridge grid-forming converters.

The H-bridge converter is power electronic equipment that
consists of a DC voltage source Vdc, four semiconductor switches,
and passive filters. As the proposed lattice power grids allow the
removal of passive filters, we illustrate the operation of H-bridge
converters via Figure 2 (Das, 2019b). As seen, an H-bridge
converter can take on one of the four states:

1) The H-bridge outputs a positive voltage.
2) The H-bridge outputs a negative voltage.
3) The H-bridge is in bypass mode, acting as a short circuit.
4) The H-bridge acts as an open circuit.

Existing grid architectures for more-electronics power
systems do not allow high-voltage applications of grid-
forming converters, only allowing for current sharing
through parallel operation (Lin, 2020). To allow for high-
voltage DC and AC applications, we can turn to the benefits
of multilevel converters.

In recent decades, multilevel converters have emerged as a
technology of substantial interests due to their wide-ranging
applications. Common multilevel converters include CBC and
MMC (Das, 2019a; Fang et al., 2021a; Fang et al., 2021b). Such
power converters often consist of half-bridge or H-bridge
submodules in serial connection to allow for the creation and
transmission of high voltages using lower-voltage components.
As a result, multilevel converters have found a wide variety of
applications across the field of power electronics (Fang et al.,
2021b; Flourentzou et al., 2009). The concept of multilevel
converters can be expanded to more-electronics power systems
as well, with each grid-tied power source (solar PV, wind turbine,

FIGURE 1 | Schematic of more-electronics power system.
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etc.) representing a submodule in a power grid (Fang et al., 2017;
Fang et al., 2019; Fang, 2021a).

A drawback of existing multilevel converters is that serial
connection does not allow for current sharing, thus limiting
current ratings. Recent research has investigated the potential
of multilevel converters that allow for parallel connectivity (Goetz
et al., 2015; Goetz et al., 2017; Das, 2019a; Fang et al., 2021a; Fang
et al., 2021b). Connecting CBC branches in parallel allows for a
greater amount of current to be delivered and the use of
components with lower current ratings (Fang et al., 2021b).

2.2 Square Lattice Power Grids and Their
Graph Model
The square lattice power grid consists of several grid-forming
H-bridge converters connected in a lattice structure (see
Figure 3A). Lattice power grids can be modeled using
graph theory, with each H-bridge converter represented as
an edge and each terminal between converters represented as a
node (Fang, 2021b; Fang and Goetz, 2021; Mei et al., 2022).
Figure 3B depicts the graph model of the lattice power grid
depicted in Figure 3A.

Wemodel the lattice power grid architecture depicted inFigure 3 as
a square lattice graph, whose topology forms a square regular tiling
(Weisstein, 2021). The size of the graph is determined by the number
of nodes along its height, n, and the number of nodes along its width,
m. From Figure 3B, n � 3 and m � 3, and the graph can be
described as a “3 × 3 square lattice,” consisting of a total of 9 nodes and
12 edges.

To specify the location of a node, the graph can be considered
as a coordinate system, with the coordinate (0, 0) representing the
bottom-left node. If a node is located at coordinate (i, j), it is
given the number n(i − 1) + j − 1, where, as before, n
represents the total number of nodes along the width of the graph.

In other words, the bottom-left node is assigned to be the node
number 0, and the node number counts upwards from left to right
along each row.When the rightmost node of a row is reached, the next
node counted is the leftmost node of the row directly above. The top-
rightmost node is the highest-numbered, with node numbermn − 1.
This numbering system, applied to a 3 × 4 square lattice graph, is
depicted in Figure 4. Individual edges/converters can be referenced by
the twonodes adjacent to them. For instance, “edge 2–3” or “converter
2–3” can be equivalently used to reference the H-bridge converter
connecting node 2 and node 3.

FIGURE 2 |H-bridge converter states. (A)ON state (+Vdc). (B)ON state
(−Vdc). (C) Bypass state (Short Circuit). (D) OFF state (Open Circuit).

FIGURE 3 | Square lattice grids and its graph model. (A) ON 3 × 3 lattice power grid. (B) Graph model of grid.
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2.3 Triangular Lattice Power Grids and Their
Graph Model
A triangular lattice graph is formed by a regular tiling of
equilateral triangles. However, the rows of a triangular lattice
can be shifted, as shown in Figure 5, so that the lattice lies on
an m × n square arrangement of nodes. Thus, it is evident that
an m × n triangular lattice is very similar to an m × n square
lattice.

There are two embodiments of triangular lattices, which will
be referred to as “type 1” and “type 2”, respectively. A type 1
triangular lattice is the one whose bottom left node has exactly
three adjacent nodes, as shown in Figure 5A. In a type 2
triangular lattice, the bottom left node has exactly two
adjacent nodes, as shown in Figure 5B.

2.4 Hexagonal Lattice Power Grids and
Their Graph Mode
The nodes of a hexagonal lattice graph can also be shifted to
lie in anm × n square arrangement, as shown in Figure 6. The
hexagonal lattice takes on a “bricklaying” pattern. Vertical
edges are connected in the same way as in a square lattice.
However, a node is never connected horizontally to the right
if there is already a node connected to its left. Furthermore, if
a row begins with a pair of connected nodes, then the row
above it must begin with a pair of unconnected nodes.

There are also two embodiments of hexagonal lattices. Type 1
has its bottom left node connected to exactly two other nodes,
while type 2 has its bottom left node connected to exactly one
other node (see Figure 6). In other words, the bottom row of a
type 1 lattice begins with two connected nodes, while the bottom
row of a type 2 lattice begins with two unconnected nodes.

2.5 Additional Lattice Types
This paper has discussed lattice power grids based on the three
regular tilings: square, triangular, and hexagonal. However, the
models and algorithms detailed in this paper are not limited to
these three lattice types. As discussed later in Generalizing the
Proposed Algorithms for Various Lattice Structures section,
through the use of adjacency matrices, all of these concepts
can be fully extended to any grid topology that is based on a
simple, undirected graph. Several other lattice converter
topologies have been proposed by Fang (2021b). In two
dimensions, this includes the eight Archimedean tilings in
addition to the three regular tilings. In three dimensions,
novel lattice converters based on polyhedral tilings, or
honeycombs, have been investigated as well. These include the

FIGURE 4 | Node numberings for 3 × 4 lattice.

FIGURE 5 | Triangular lattice graphs. (A) 3 × 3 Triangular lattice (Type 1).
(B) 3 × 3 Triangular lattice (Type 2).

FIGURE 6 | Hexagonal lattice graphs. (A) 4 × 4 Hexagonal lattice (Type
1). (B) 4 × 4 Hexagonal lattice (Type 2).
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cubic honeycomb lattice converter, as well as 28 lattice converter
topologies based on Archimedean honeycombs (Fang, 2021b).
Because these aforementioned topologies can all be represented
using simple, undirected graphs and their adjacency matrices, the
concepts discussed in this paper can be fully extended to them.

3 OBJECTIVES OF THE PROPOSED
CONTROL AND OPTIMIZATION
ALGORITHMS
This section details the objectives of lattice power grids. These
include controlling grid-forming converters with a desired
voltage difference between two nodes, allowing for enough
current availability between those two nodes, and optimizing
grid state changes while minimizing switching actions of power
converters.

3.1 Voltage and Current Parameters
The goal is to create control and optimization algorithms that can
satisfy a set of input parameters. Each node in a lattice power grid
can be viewed as an I/O terminal. The algorithm should be able to
accept two arbitrary nodes and create a desired voltage difference
along a path between them. To carry an enough current between
two nodes, it is sometimes necessary to create two or more paths
in parallel between them, allowing for current sharing between
the H-bridge voltage sources along the paths.

These are the two main objectives of any grid state outputted
by the algorithm: achieving a desired voltage between two nodes
and creating a desired number of parallel paths between them.
Figure 7 depicts a grid state of a 4 × 4 square lattice power grid,
where node 2 is the “start” node and node 13 is the “destination”
node. Edges colored in blue represent H-bridge converters in the
bypass mode (shorted), and edges in red represent converters in
the ON state, either outputting +Vdc or −Vdc. Uncolored edges
represent converters acting as an open circuit. In the grid state
shown in Figure 7, there is a voltage difference of +3Vdc between

the start and destination nodes, and three paralleled paths
between them.

All converters that are outputting voltages should be creating a
voltage increase along its path in the direction from start to
destination. For example, along the leftmost path of Figure 7,
there should be a voltage increase of Vdc from node 2 to node 1,
another from node 1 to node 0, and another from node 0 to node
4, creating a total voltage increase of +3Vdc along the path.

A new convention can be introduced here to determine
whether an individual H-bridge converter is in the positive
output state or the negative output state. If the converter
creates a voltage increase from the lower-numbered node to
the higher-numbered node, it is in the positive output state.
On the other hand, if the converter creates a voltage increase from
the higher-numbered node to the lower-numbered node, it is in
state 2. For instance, in Figure 7, converter 1–2 is outputting
−Vdc, while converter 2–3 is outputting + Vdc.

3.2 Efficient Grid State Changes
Another objective can be considered when changing from one state to
another. There may be multiple different states that fulfill the same
parameters. If the lattice grid is in an initial state, and it is desirable to
change states to fulfill a different set of parameters, there are often
several possible end states to select from. The most efficient way to
perform this change is by selecting the end state that requires the fewest
number of individual converter-level state changes from the initial grid
state. This is the final objective of the optimization algorithm.

FIGURE 7 | Example grid state for a 4 × 4 square lattice.

FIGURE 8 | Formation of 2 × 3 square lattice. (A) Unconnected lattice.
(B) Connecting node 0. (C) Connecting node 1. (D) Connecting node 2. (E)
Connecting node 3. (F) Connecting node 4. (G) Connecting node 5.
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4 COMPONENTS OF CONTROL AND
OPTIMIZATION ALGORITHMS FOR
SQUARE LATTICE GRIDS
This section details the development and the components of
control and optimization algorithms for square lattice grids.

4.1 Creating a Square Lattice Graph
In the beginning, the lattice graph is implemented through a class
called Graph. This class contains two main attributes: an integer
representing the number of nodes in the graph and a dictionary
indicating node adjacencies. If a graph contains v nodes, then its
dictionary includes v keys 0, 1, ..., v − 1. The value
corresponding to key x is a list containing all nodes that are
adjacent to node x in the graph.

The Graph class also contains the function addEdge(a, b),
which appends node b to the list corresponding to key a in the
dictionary, indicating that node a is adjacent to node b. A graph g
consisting of v nodes can be initialized using the statement
g � Graph(g), creating a graph of v unconnected nodes,
which can then be connected using addEdge.

To create an mx n square lattice from an initially unconnected
graph g, the createGrid function iterates through all nodes in the

graph. For a node with position (i, j) and node number x, createGrid
uses addEdge to connect it with the node to its right, if one exists,
and the node above, if one exists. If j + 1 ≤ n, then node x + 1
(the node to the right) is connected to x. If i + 1 ≤ m, then node x +
n (the node above) is connected to x.This process is demonstrated in
Figure 8 for a 2 × 3 square lattice graph. After iterating through all
nodes in the graph, the result is an m × n square lattice grid.

4.2 Pathfinding Algorithm
The pathfinding component of the control and optimization
algorithms will address the desired voltage difference
parameter. The inputs to this algorithm are the desired
dimensions m and n of the square lattice graph, the start and
destination node numbers, and the desired voltage difference to
be created between them.

Conceptually, to create a voltage difference between two nodes
of +kVdc, where k is an integer, a path of length k or greater must
be found between the nodes. If a path has length l, where l ≥ k,
the first k edges along the path can each create a voltage increase
of Vdc in the direction from start to destination, while the
remaining l − k edges in the path can be bypassed. It can be

FIGURE 9 | Example grid state and path matrix. (A) Example grid state.
(B) Associated path matrix.

FIGURE 10 | Example output of LeastChanges. (A) Grid end state. (B)
Associated path matrix.
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noted that these “paths” consist of H-bridge converters connected
in series; this is essentially a cascaded-bridge multilevel converter.

Two caveats will be addressed here; firstly, only integer values
of k will be considered, as non-integer multiples of Vdc can be
achieved through pulse-wave modulation. Secondly, it is not
necessarily required that the first k edges in the path output
voltage and the rest remain bypassed. It would be a valid solution
to distribute the l − k bypassed edges in any possible way
throughout the path. However, for the sake of simplicity and
for preserving the efficiency of the algorithm, the only solutions
that will be considered are those where all bypassed edges are
located towards the end of the path, near the destination node.

The pathfinding algorithm itself, named findPaths, utilizes
Depth-First Search (DFS) of a graph to search for viable paths
(Goodrich and Tamassia, 2001; Yadav, 2021a; Yadav, 2021b). While
traversing a graph, it is possible to visit the same node twice, which is
not possible in a binary search tree. This must be avoided during
DFS, so the algorithm also tracks which nodes have been visited
(Yadav, 2021a). As the algorithm traverses the graph, visited nodes
will be marked as such and will not be revisited. While the algorithm
is backtracking, nodes removed from the path will again be marked
as “unvisited,” allowing for new paths to be found.

This DFS algorithm traverses all possible paths through the
graph originating from the start node. The other two input
parameters to findPaths are the destination node number and

the desired voltage difference k. With every edge traversal,
findPaths checks if the current visited node is the same as the
destination node. If this is the case, findPaths then checks
whether this path from start to destination is of length k or
greater. If both conditions are met, then the algorithm has found a
viable path, which is stored in a list of lists. When the DFS
algorithm has finished running, this list of lists contains all
viable paths from start to destination and is returned by
findPaths.

Suppose the inputs to findPaths arem � 2, n � 3, start node 0,
destination node 5, and k � 3. Then the output of findPaths is the
following list of lists:

{[0, 1, 2, 5], [0, 1, 4, 5], [0, 3, 4, 1, 2, 5], [0, 3, 4, 5]}
Thus, there are four viable paths that meet the desired

parameters in this example: three paths of length 3 and one
path of length 5.

4.3 Parallel Paths Algorithm
The parallel paths component of the control and optimization
algorithms, called currentPaths, will meet the requirement of
current sharing. As real-world power converters are non-ideal
and are limited by current ratings, it is often necessary to share
current by connecting voltage sources in parallel. In the case of
lattice grids, the amount of available current depends on the
number of paralleled paths between the source and
destination nodes.

For two paths to be considered parallel, they must meet at the
start and destination nodes and cannot share any edges.
Intersections between two or more paths are possible; however,
at the point of intersection, all paths must yield the same voltage to
avoid a conflict. Figure 7 depicts an example of a 4 × 4 lattice with
three paralleled paths between node 3 and node 12.

The algorithm works as follows. Given an m × n square lattice
graph, a pair of start/destination nodes, and a desired voltage
difference, all viable paths can be determined by the pathfinding
algorithm findPaths as described previously. These viable paths
are outputted in the form of a list of lists, with each list containing
a path. In each of these lists, the first element is the starting node,
and the final element is the destination node.

Suppose that p is the desired number of paralleled paths. Then
currentPaths arranges viable paths in permutations of size p. For
each permutation, the algorithm iterates through each path
contained in the permutation. The voltage of each node in the
lattice is tracked and updated by the algorithm as it iterates
through the paths. If a voltage conflict is detected between two
paths in a permutation, then it is considered an invalid
intersection and the permutation is discarded.

Furthermore, two parallel paths cannot share an edge. Thus,
the algorithm also tracks which edges are occupied using an
(mx n) x (mx n) matrix similar to an adjacency matrix. This
matrix is initially all zeros, but elements are replaced with a value
of 1 when a path traverses the associated edge. If another path
attempts to traverse this edge, then an edge conflict arises, and the
permutation is discarded. The remaining path permutations are
thus considered valid and are returned by currentPaths.

FIGURE 11 | Formation of 2 × 3 triangular lattice. (A) Unconnected
lattice. (B) Connecting node 0. (C) Connecting node 1. (D) Connecting node
2. (E) Connecting node 3. (F) Connecting node 4. (G) Connecting node 5.
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Recall the example output from Pathfinding Algorithm section
given by findPaths for a 2 × 3 square lattice graph with start node
0, destination node 5, and desired voltage difference 3:

[[0, 1, 2, 5], [0, 1, 4, 5], [0, 3, 4, 1, 2, 5], [0, 3, 4, 5]]
Now, suppose that two parallel paths are desired to provide

current sharing. Then, the four viable paths are placed in every
possible permutation of size two, of which there are six:

1) [[0, 1, 2, 5], [0, 1, 4, 5]].
2) [[0, 1, 2, 5], [0, 3, 4, 1, 2, 5]]
3) [[0, 1, 2, 5], [0, 3, 4, 5]]
4) [[0, 1, 4, 5], [0, 3, 4, 1, 2, 5]]
5) [[0, 1, 4, 5], [0, 3, 4, 5]]
6) [[0, 3, 4, 1, 2, 5], [0, 3, 4, 5]]

Of these six permutations, the second and fourth can be
discarded due to voltage. All except the third can also be
discarded due to edge conflicts (e.g., edge 0–1 in permutation
1). The algorithm concludes that the two paths [0, 1, 2, 5] and [0,
3, 4, 5] from permutation 3 are in fact parallel and represent the
only valid solution to the given parameters as no conflicts arose.

The algorithm in its current version assumes that paralleled
paths start and end at the same nodes. Thus, the maximum
number of paralleled paths is limited by the number of nodes
adjacent to the start or destination nodes. The maximum number
of paralleled paths can be theoretically increased through edge
contraction, in which the start/destination nodes can be
combined with neighboring nodes via short circuit (Belloch,
2012), essentially forming a “supernode” that can
accommodate a greater number of paralleled paths. While not
implemented in the current version of the algorithm, edge
contraction represents a possible area for further exploration.

4.3 Least Changes of Converters Algorithm
The leastChanges algorithm deals with time-variant state
changes of grid-forming converters. Assuming that the lattice
power grid is in some initial state, it is then required to change the
state to fulfill new objectives, then the most efficient way to do so
is to select the end state that requires the smallest number of
individual converter-level state changes, thus minimizing
switching actions. In other words, out of all possible end states
that fulfill the new objectives, the most efficient end state is the
one that is the “most similar” to the initial state.

The “similarity” between two grid states can be compared
using adjacency matrices. A grid consisting of v nodes will
have an associated adjacency matrix of size v × v. In graph
theory, adjacency matrices typically allow for two states: 0,
indicating a pair of non-adjacent nodes, or 1, indicating an
adjacency. However, as described in Fundamentals of Lattice
Power Grids section, H-bridge converters can yield four
possible states. Thus, the adjacency matrices introduced
here also have four possible values for each element. 0
represents an open circuit, 1 and −1 represent an H-bridge
converter outputting + Vdc and −Vdc, respectively, and 0.01
represents the bypass state, with the value chosen to represent
a negligible voltage difference.

This adjacency matrix indicates the states of each H-bridge
converter and will be referred to as the “path matrix.” This is
meant to distinguish from the “graph matrix,” a separate
adjacency matrix that is discussed later in Generalizing the
Proposed Algorithms for Various Lattice Structures section. An
example of the path matrix is depicted in Figure 9, where a grid
state of a 3 × 3 lattice is shown in Figure 9A and its associated
path matrix P is shown in Figure 9B.

Each converter-level state change is associated with two
changes in the path matrix (changing the state of edge a-b will
change elements Pab and Pba in path matrix P). The leastChanges
algorithm thus obtains the path matrix of the initial state, along
with the path matrices of all viable path permutations outputted
by currentPaths. The most efficient end state is the one whose
path matrix has the fewest number of differences from the initial
path matrix. If there are d differences between the initial and end
path matrices, then d/2 converter state changes must have
occurred.

Suppose that the state depicted in Figure 9A is taken to be the
initial state. Then suppose that a set of new requirements is
desired: +4Vdc voltage difference, only one current path, start
node at node 0, and destination node at node 8. The end state

FIGURE 12 | Formation of 3 × 3 hexagonal lattice. (A) Unconnected
lattice. (B)Connecting node 0 (connect = 1), Connecting node 1 (connect = 0).
(C) Connecting node 0 (connect = 1), Connecting node 1 (connect = 0). (D)
Connecting node 4 (connect = 1), Connecting node 5 (connect = 0). (E)
Connecting node 6 (connect = 1), Connecting node 7 (connect = 0). (F) Final
lattice.
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selected by leastChanges and its associated path matrix are
shown in Figure 10.

Out of all viable end states that fulfill the desired parameters,
the state shown in Figure 10A is the one that requires the smallest
number of converter-level state changes from the initial state.
Seven converter-level state changes are required in this example
(Note that edges 1–4 and 4–5 flipped in polarity).

4.5 Combined Algorithm
The components of the proposed control and optimizations algorithm
can now be integrated into one. The final optimization algorithm runs
on a while loop. On the first loop, the user is prompted for the
dimensions m, n of the square lattice, and the graph is created using
createGrid. The initial state on the first loop has all converters turned
OFF, so all elements in its path matrix are filled with 0. The user then
inputs desired specifications for the end state: start, destination, target
voltage, and number of parallel paths. The algorithm calls findPaths
and currentPaths to identify all path permutations that fulfill the
parameters. These permutations are inputted into leastChanges,
which identifies the most efficient end state.

The previous end state then becomes the new initial state. The
algorithm can prompt the user to input new parameters, and the

process can continue indefinitely. On each loop, the algorithm
outputs the following: the path permutation of the end state, the
path matrix of the end state, and the number of converter-level
state changes from the initial state. The end state is then plotted
using the networkx Python package.

5 GENERALIZING THE PROPOSED
ALGORITHMS FOR VARIOUS LATTICE
STRUCTURES
5.1 Graph Matrices
To allow for the creation of arbitrary graphs, the “graphmatrix” is
introduced here. The graph matrix is another adjacency matrix
that indicates which nodes are connected by H-bridge converters
(edges). For a graph containing v nodes, its graph matrix will
contain v × v elements. If an edge exists between nodes a and b,
then elementGab andGba will be filled with 1. Otherwise, it will be
filled with 0. This is distinct from the path matrix described
earlier, which indicates the state of each converter (+Vdc, −Vdc,
shorted, or OFF).

The function used to create the desired graph matrix is called
createGM (rather than createGrid). A graph matrix can be used to
create a Graph object by iterating through each element of the
matrix and using the addEdge function to connect nodes as directed.
The graph matrix outputted by createGM is passed into findPaths,
which uses it to create a Graph object, and the rest of the algorithm
works exactly as described in Components of Control and
Optimization Algorithms for Square Lattice Grids section.

Any simple, undirected graph can be created using graph
matrices. Besides square lattice graphs, there exist two other types
of lattice graphs: triangular and hexagonal. Creating a Triangular
Lattice and Creating a Hexagonal Lattice sections explain how
graph matrices can be used to generate triangular and hexagonal
lattice graphs.

5.2 Creating a Square Lattice
The graph matrix for the square lattice graph is generated in
exactly the same way as described in Creating a Square Lattice
Graph section, except by filling in the elements of a graph matrix
instead of directly using the addEdge function.

The process starts with an (m × n) × (m × n) matrix G,
consisting of all zeroes. The createGM function iterates
through all nodes in the graph. For a node with position
(i, j) and node number x � n(i – 1) + j − 1, elements Gx,x+n

and Gx+n,x are flipped to 1 if i + 1 ≤ m, and elements Gx,x+1

and Gx+1,x are flipped to 1 if j + 1 ≤ n. This connects the
node with the node to its right, if one exists, and the node
directly above, if one exists. Upon repeating this process for
every node in the lattice, createGM outputs the graph matrix
for an m x n square lattice graph.

5.3 Creating a Triangular Lattice
Recall that a triangular lattice simply consists of diagonal
connections added to a square lattice (see Figure 5). Thus,
the procedure for forming a graph matrix for a triangular lattice
graph matrix is the same as the procedure for a square lattice

FIGURE 13 | Flowchart of algorithms.
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graph, with the addition of diagonal connections. For a type 1
triangular lattice, each node x is connected to the node directly
to its top right if one exists. In other words, for a node with
position (i, j) and node number x � n(i – 1) + j – 1, node,
graph matrix elements Gx,x+n+1 and Gx+n+1,x are flipped to 1 if
i + 1 ≤ m and j + 1 ≤ 1. This connects node x with node x +
n + 1. Horizontal and vertical connections are handled as they
were for a square lattice.

For a type 2 triangular lattice, each node x is connected to the
node directly to its top left if one exists. In other words, graph
matrix elements Gx,x+n−1 and Gx+n−1,x are flipped to 1 if i +
1 ≤ m and j − 1 ≥ 0. This connects node x with node x + n −
1.

Upon repeating this process for every node in the lattice,
createGM outputs the graphmatrix for anm × n triangular lattice
graph (see Figure 11).

5.4 Creating a Hexagonal Lattice
Recall that a hexagonal lattice can also be placed on a square
arrangement of nodes (see Figure 6), forming a “brick” pattern.
In this pattern, pairs of horizontally adjacent nodes alternate
between being connected and unconnected across the rows and
columns of the lattice.

This pattern is achieved through the addition of a Boolean
value named connect, which determines whether the current
node will be connected to the right. For a type 1 lattice, when
createGM reaches the first node in any row i, connect is set to
FALSE if the row is even (i% 2 � 0), or set to TRUE if the
row is odd (i% 2 � 1). Row 1 is considered to be the bottom
row. Then, as createGM iterates across the row, the value of

connect flips with each iteration. These alternating
horizontal connections form the “brick” pattern seen in
Figure 6.

Upon repeating this process for every node in the lattice,
createGM outputs the graphmatrix for anm x n hexagonal lattice
graph (see Figure 12).

5.5 Final Optimization Algorithm
The final version of createGM essentially consists of six ‘if’
statements, one for each potential type of graph. If the user
inputs “G” for “general,” createGM prompts the user to input
the desired graph matrix row by row, allowing for any arbitrary
graph. The user inputs “S” for a square lattice, “T1” or “T2” for a
type 1 or type 2 triangular lattice, and “H1” or “H2” for a type 1
or type 2 hexagonal lattice. If the user inputs one of these lattice
types, createGM will also prompt the user to input dimensions
m and n of the lattice. The final output of createGM is the
desired graph matrix.

The integrated optimization algorithm is the same as
described in Components of Control and Optimization
Algorithms for Square Lattice Grids section, except
createGrid is replaced with createGM. The graph outputted
by createGM is passed into findPaths, where all viable paths
fulfilling the desired parameters are outputted. currentPaths
then finds viable permutations of parallel paths. leastChanges
determines which permutation requires the smallest number
of converter-level changes from the initial state. This
permutation is then printed and drawn. A flowchart of the
overall control and optimization algorithms is depicted in
Figure 13.

FIGURE 14 | Simulated 3 × 4 lattice power grid with measurement apparatus.

Frontiers in Energy Research | www.frontiersin.org May 2022 | Volume 10 | Article 87859210

Zhang et al. Algorithms for Lattice Power Grids

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


6 SIMULATIONS AND RESULTS

6.1 Simulations of the Lattice Grid
The lattice grid was simulated under the MATLAB Simulink/
SimScape environment. The H-bridge converters were built with
the “Full-Bridge Converter” block in SimScape (Mathworks,
2021). In the converter subsystem, the Full-Bridge Converter
block is connected to a 1 kV DC voltage source for simplicity. It is
given an on-state resistance of 10–3Ω and a snubber resistance of
106Ω, as well as an infinite snubber capacitance. A control signal
entering the gating port consists of a 1 × 4 array controlling the
four semiconductor switches in the converter (Mathworks, 2021).
The matrices [0 1 1 0] and [1 0 0 1] correspond to the positive and
negative ON-states, respectively. Thematrix [1 0 1 0] (or [0 1 0 1])
corresponds to the bypass state, while [0 0 0 0] corresponds to the
OFF-state.

Figure 14 shows the complete simulated model of a 3 × 4
square lattice power grid. In all, this model contains 17 H-bridge
converter submodules, along with 17 × 4 gating signals to control
them. As a 3 × 4 lattice contains 12 nodes, the path adjacency
matrix (PAM) representing any given grid state will be a 12 × 12

matrix. Thus, the controller block is a MATLAB function block
which accepts a 12 × 12 matrix as the input and demultiplexes it
into 17 × 4 output gating signals. The grid state can then be set by
inputting the appropriate path adjacency matrix into the
controller block.

6.2 Simulation Results
We inputted the following parameters into the control and
optimization algorithms:

Enter the Desired Lattice Type: S
Enter the height m of the grid: 3
Enter the width n of the grid: 4
Enter the starting node number: 0
Enter the destination node number: 11
Enter the desired voltage difference: 3
Enter the desired number of paralleled

paths: 1
These parameters returned a grid state and path adjacency

matrix shown. This path adjacency matrix was placed into
the model. An RLC load was connected between nodes 0 and
11 of the model, with a resistance of 5Ω, an inductance of
10 mH. Voltage and current measurement blocks were
connected accordingly as well (see Figure 14). (Note: In
Figure 14, submodule blocks were colored in manually to
indicate converter states).

The current and voltage measurements after running the
simulation are shown in Figure 15. The results are as desired
and expected, with the voltage difference between nodes 0 and
11 being +3 kV and the current approaching 0.6 kA by Ohm’s
law. As there is only one path, the current rating of each
submodule must be at least 0.6 kA for this grid state to be
possible.

When measured between nodes 0 and 3, the voltage difference
was found to be +3 kV. When measured between nodes 3 and 11,
the voltage difference was found to be 0 V. This agrees with
expectations, as submodules between nodes 3 and 11 are in the
bypass state and do not output voltage.

7 CONCLUSION

This article proposes the concept of lattice power grids. Lattice
power grids allow for serial and parallel connectivity of multiple
grid-forming converters, thereby allowing both voltage and
current sharing. Due to unparalleled voltage and current
capabilities, lattice power grids are suitable for high-voltage
applications and large-scale integration of renewable energies
in more-electronics power systems. Specifically, this article
proposes square, triangular, and hexagonal lattice power grids
and their models by use of graph theory. More importantly, we
propose a general control and optimization methodology and the
relevant algorithms for various lattice power grids. The proposed
lattice power grids can achieve current and voltage objectives
while minimizing switching actions and maximizing system
efficiency. Finally, simulation results validate the proposed
lattice power grids as well as the control and optimization
algorithms.

FIGURE 15 | Simulated voltage and current measurements.
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