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The digital power control system for nuclear reactor (DPCSNR) for a nuclear power plant
has dynamic characteristics including dynamic interaction, time dependence, and causal
relationship uncertainty, and it is of great significance to assess its dynamic reliability. This
study aimed to propose an approach for the dynamic reliability assessment of the
DPCSNR with dynamic characteristics. First, the dynamic fault tree analysis (DFTA)
method was used to establish a DFT characterizing the dynamic interaction for the
DPCSNR. Then, the dynamic Bayesian network (DBN) method was used to transform
the DFT into the initial DBN (IDBN) model characterizing the dynamic interaction and time
dependence for the DPCSNR. Furthermore, the fuzzy mathematics (FM) methodwas used
to modify the conditional probability table (CPT) characterizing the causal relationship
uncertainty in the IDBN model and to establish the DBN model characterizing the dynamic
interaction, time dependence, and causal relationship uncertainty for the DPCSNR. Finally,
DBN reasoning was applied to assess the dynamic reliability of the DPCSNR. The results
showed that the system reliability under conditions of periodic tests and predictable
maintenance was 99.959%, and the computer system was the most critical event of the
DPCSNR failure.

Keywords: digital power control system for nuclear reactor, dynamic reliability assessment, dynamic Bayesian
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INTRODUCTION

The digital power control system for nuclear reactor (DPCSNR) for a nuclear power plant (NPP)
consists of hardware, software, and human operations, which uses the redundancy design and digital
control, and it is a complex system with dynamic interaction, time dependence, and causal
relationship uncertainty (Zhou et al., 2014; Ibrahim, 2015; Shukla and Arul, 2017; Ding et al.,
2021). Its functions are to realize the normal startup and shutdown and power regulation of the
nuclear reactor and to ensure the safe and stable operation of the NPP (Lu et al., 2015). Therefore, it is
of great significance to assess its dynamic reliability.

Previous studies have dealt with the reliability assessment of the DPCSNR. Vinod et al. (2008)
used the fault tree (FT) analysis (FTA) method to analyze the influence of software failure on the
system reliability and calculate the system failure probability. Tao and Lu (2013) applied the FTA
method to obtain the risk importance measures, which were used to identify the system’s weak
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points. Wang et al. (2016) used the dynamic flowgraphmethod to
describe the interactions between system hardware and software
and analyze the system reliability. Durga Rao et al. (2009) used
the dynamic FTA method to calculate the system reliability, but
they ignored the effect of loss of power supply on the system.
These studies have made contributions to the reliability
assessment of the DPCSNR, but they have only been
preliminary studies on dynamic interaction, time dependence,
and causal relationship uncertainty for the DPCSNR.

Recently, investigators proposed that the dynamic
characteristics of a complex system should be analyzed and
characterized in terms of its dynamic interaction, time
dependence, and causal relationship uncertainty. Nie et al.
(2020) believed that only when the complex systems in the
NPP used the dynamic reconfiguration technology, their
components, functions, processes, and behavior correlated,
which indicates that the system failure is closely related to the
dynamic interaction between hardware, software, and human
factors. Shukla et al. (2020) believed that due to the influences
from the external environment and hardware aging, the
performance and reliability of the complex system would
decrease with time, which implies that the periodic test and
predictive maintenance should be carried out for the systems’
hardware. Yazdi et al. (2019) and Jafari et al. (2020) argued that
since the FT structure for a complex system was artificially
designed, this could lead to causal relationship uncertainty
between upper and lower events.

In order to characterize the dynamic interaction, investigators
introduced the priority AND (PAND) gate, functional
dependency (FDEP) gate, sequence enforcing (SEQ) gate, and
spare gate into the FT and established the dynamic FT (DFT)
expressing the dynamic logic relationship between events
(Chiacchio et al., 2011a; Manno et al., 2014). This method
solved the problem of how to characterize the dynamic
interaction that the traditional static FT method could not
characterize (Chiacchio et al., 2011b; Gascard and Simeu-
Abazi, 2018). But when the Markov model was used to
analyze the DFT, it was difficult to deal with the state space
explosion (Marquez et al., 2008; Chiacchio et al., 2013) and to
assess the system reliability under test and maintenance
conditions (Nguyen et al., 2015).

The latest studies show that the dynamic Bayesian network
(DBN) method can be applied to determine the conditional
independence relationship among non-parent–child nodes in
the DBN model so as to greatly reduce the computational
complexity (Neil and Marquez, 2012) and to introduce the
maintenance parameters into the state transition probability
formula to express the test and maintenance information
(Jiang et al., 2020). Thus, the DBN method can make up for
the two aforementioned deficiencies of the dynamic DFT
analysis (DFTA) method. Meanwhile, this method can use
the directed arc between time slice nodes to characterize the
time dependence (Marquez et al., 2010; Khakzad, 2015), and it
has strong forward and backward reasoning capability.
Therefore, it should be well suited for the reliability
assessment of a complex system (Kabir and Papadopoulos,
2019).

Furthermore, the latest studies have shown that the fuzzy
mathematics (FM) method is feasible in dealing with the causal
relationship uncertainty. Zarei et al. (2019) and Wang et al.
(2021) used the FM method to study the problems with causal
relationship uncertainty.

Therefore, in this study, the DFTA method was used to
establish the DFT for the DPCSNR, which can characterize
the hardware–software–human dynamic interaction; the DBN
method was used to establish the initial DBN (IDBN) model
based on the transformation strategy from the DFT to the DBN
model, which can characterize the dynamic interaction and time
dependence; the FM method was used to modify the CPT in the
IDBNmodel to characterize the causal relationship uncertainty in
the IDBN model and to establish the DBN model, which can
characterize the dynamic interaction, time dependence, and
causal relationship uncertainty; and the Monte Carlo (MC)
method was to be used to verify the effectiveness of the DBN
model. The objective of this study was to propose an approach for
dynamic reliability assessment of the DPCSNR with respect to its
dynamic characteristics including dynamic interaction, time
dependence, and causal relationship uncertainty.

BRIEF DESCRIPTION OF THE DIGITAL
POWER CONTROL SYSTEM FOR
NUCLEAR REACTOR
DPCSNR is a computer-based feedback control system, and its
function is to control the reactor power within the range of 10−7

FP−100% FP according to the demand for NPP. Computer
systems and various sensors are integrated to measure the
reactor power and monitor the actuation of reactivity devices
in the DPCSNR. The structure of the DPCSNR is shown in
Figure 1 (Vinod et al., 2008). It contains subsystem A and
subsystem B and a power supply system (PSS). The two
subsystems have the same configuration and structure, and
each one of the subsystems including the computer system,
automatic conversion unit (ACU), and manual conversion
unit (MCU) can control the reactor power. If one computer
system fails, the ACU or MCU can transfer the control to another
normal computer system. The PSS, which includes main power,
cold spare power, and sensors, supplies power to the subsystems.

PROPOSED APPROACH

Theoretical Framework
The theoretical framework of the approach for dynamic reliability
assessment of the DPCSNR was established by using DFTA,
DBN, FM, and MC methods, and it is shown in Figure 2.

Establishment of the Dynamic Fault Tree for
the Digital Power Control System for
Nuclear Reactor
The DFT for the DPCSNR was established by using the DFTA
method, and the steps were as follows:
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Step 1Identify the factors influencing the DPCSNR failure.
The structure and function of the DPCSNR were investigated,

and the factors influencing its failure were identified in terms of
hardware, software, and human operations.
Step 2Identify the failure events resulting in the DPCSNR failure.

The failure events including failure causes, failure modes, and
failure consequences of the DPCSNR were identified by using the
failure mode and effect analysis method, and the failure causes,
failure modes, and failure consequences were defined as the basic
events, intermediate events, and top events in the DFT for the
DPCSNR.
Step 3Characterize the dynamic interaction for the DPCSNR.

The dynamic and static logic gates were introduced to analyze
the hardware–software–human interactive behavior for the
DPCSNR, and the dynamic interaction for the DPCSNR was
characterized. After the analyses, the introduced dynamic logic
gates included the PAND gate, FDEP gate, and cold spare (CSP)
gate in spare gates, and the introduced static logic gates included
AND gate and OR gate.

By using the three aforementioned steps, the DFT for the
DPCSNR was established, as shown in Figure 3, and the symbols
and their descriptions in the figure are given in Table 1.

Establishment of the Dynamic Bayesian
Network Model for the Digital Power
Control System for Nuclear Reactor
In the BN model, a node Xi is given, and it is conditionally
independent of all the other nodes, except its parent and child
nodes. For a two-state system with n nodes, its joint probability
distribution can be determined from the following equation
(Khakzad et al., 2017; Sundaramoorthy et al., 2021):

P(X1, X2,/, Xn) � ∏n
i�1

P(Xi|Pa(Xi)), (1)

where Pa(Xi) represents the parent set of Xi and P(Xi|Pa(Xi)) is
the conditional probability distribution.

The DBN is an extension of the static BN in time (Hearty et al.,
2009; Khakzad, 2019). By combining the static BN with time
information, the transition model between two neighboring time
slices for the DBN model can be established as follows
(Maldonado et al., 2019):

P(Xt|Xt−1) � ∏N
i�1

P(Xt,i

∣∣∣∣Pa(Xt,i)), (2)

FIGURE 1 | Structure of the DPCSNR.
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where Xt and Xt-1 represent the nodes at time slice t and t-1,
respectively; Xt,i is the i-th node in time slice t; and Pa(Xt,i) is its
parent node set.

In the DBN model, the joint probability distribution of
multiple time slices can be calculated from the following
equation (Khakzad et al., 2016; Guo et al., 2021):

P(X1: T) � ∏T
i�1

∏N
i�1

P(Xi
t

∣∣∣∣pa(Xi
t)), (3)

where X1: T � {X1, X2,/, XT}.
Based on the established DFT and by using the DBN and FM

methods, the DBN model for the dynamic reliability assessment
of the DPCSNR was established, and the steps were as follows
(Mamdikar et al., 2021):
Step 1Determine the nodes and CPT in the IDBN model.

Using the transformation strategy from the DFT to the DBN
model, the basic events, intermediate events, and top events in the
DFT for the DPCSNR were transformed as root nodes,
intermediate nodes, and leaf nodes (Cai et al., 2013; Yazdi and
Kabir, 2017), and the static logic gates and dynamic logic gates
were transformed as CPT in the IDBN model (Liang et al., 2017).

Step 2Determine the prior probabilities for root nodes.
At the initial moment, t = 0, it can be assumed that

hardware for the DPCSNR was completely reliable, which
indicates that their prior probabilities were 0. By referring to
the probabilistic safety analysis report for the NPP (U.S.
Nuclear Regulatory Commission, 2017; Gertman et al.,
2005), the prior probabilities of software failures and
human failures were assumed to be 0.0001 and 0.1,
respectively.
Step 3Determine the state transition probabilities for root nodes.

There is lack of failure rates of hardware for the DPCSNR. By
referring to the probabilistic safety analysis report for the NPP
(Durga Rao et al., 2009; U.S. Nuclear Regulatory Commission,
2017; Gertman et al., 2005), the operation and maintenance and
reliability data for the DPCSNR, the expert experience, and the
failure rates of hardware for the DPCSNR were determined,
which were used to calculate the state transfer probabilities in
the DBN model, as given in Table 2.

It was assumed that the hardware of the DPCSNR had two
states including work (W) and failure (F); they were
independent, and their failure probabilities followed the
exponential distribution. The probability density for

FIGURE 2 | Theoretical framework for the approach.
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hardware failures can be calculated from the following equation
(Oh and Lee, 2020):

f(t) � τe−τt, (4)
where τ denotes the failure probability.

The time interval between two neighboring time slices was set
to 1 day (24 h). Taking the hardware failure of the MCU as an
example, its state transition probabilities were calculated as
follows:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
P(X(t + 1) � W|X(t) � W) � e−τΔt � 0.993064,
P(X(t + 1) � F|X(t) � W) � 1 − e−τΔt � 0.006936,
P(X(t + 1) � F|X(t) � F) � 1,
P(X(t + 1) � W|X(t) � F) � 0,

(5)

Similarly, the state transition probabilities for other hardware
were calculated.

Due to the complexity and uncertainty of software and human
failures for the DPCSNR, it was assumed that their state transition
probabilities were 0.
Step 4Characterize the causal relationship uncertainty.

The IDBN model transformed from the DFT cannot
characterize the causal relationship uncertainty for the
DPCSNR. The CPT in the IDBN model should be modified.

The senior experts on operation, maintenance, equipment
management, reliability assessment, and probabilistic safety
assessment for NPP were invited to participate in the assessment.
They used their risk knowledge and experience and gave the
assessment language for the causal relationship uncertainty. The
triangular fuzzy number and trapezoidal fuzzy number were used to
quantitatively present the assessment languages (Yazdi, 2020). The
corresponding fuzzy number form and λ-cut set for the assessment
language are given in Table 3.

TABLE 1 | Symbols and their descriptions in Figure 3.

Symbol Description Symbol Description

A1 ACU A hardware failure F1 ACU A failure
A2 ACU A software failure F2 ACU B failure
A3 Computer system A failure E1 Subsystem A automatic conversion function (ACF) failure
A4 MCU A hardware failure E2 MCU A failure
A5 Human error E3 Subsystem B ACF failure
P1 Main power failure E4 MCU B failure
S Sensor failure E5 Sensor failure prior to main power failure
B1 ACU B hardware failure E6 Main power and cold spare power failures
B2 ACU B software failure M1 Subsystem A failure
B3 Computer system B failure M2 Subsystem B failure
B4 MCU B hardware failure M3 Computer systems A and B failure
B5 Human error M4 Loss power supply
P2 Cold spare power failure D DPCSNR failure

TABLE 2 | Failure rates of hardware for the DPCSNR.

No. Hardware Failure rate (τ/h−1)

1 ACU A hardware 5.2e-5
2 ACU B hardware 5.2e-5
3 Computer system A 8.1e-6
4 Computer system B 8.1e-6
5 MCU A hardware 3.0e-4
6 MCU B hardware 3.0e-4
7 Main power 4.0e-7
8 Cold spare power 5.0e-7
9 Sensor 1.5e-6

TABLE 3 | Fuzzy number form and λ-cut set.

Assessment language Fuzzy number form λ-Cut set

Very low f1 � (0,0, 0.1,0.2) fλ1 � [0,−0.1λ + 0.2]
Low f2 � (0.1,0.2, 0.3) fλ2 � [0.1λ + 0.1,−0.1λ + 0.3]
Relatively low f3 � (0.2,0.3, 0.4, 0.5) fλ3 � [0.1λ + 0.2,−0.1λ + 0.5]
Medium f4 � (0.4,0.5, 0.6) fλ4 � [0.1λ + 0.4,−0.1λ + 0.6]
Relatively high f5 � (0.5,0.6, 0.7, 0.8) fλ5 � [0.1λ + 0.5,−0.1λ + 0.8]
High f6 � (0.7,0.8, 0.9) fλ6 � [0.1λ + 0.7,−0.1λ + 0.9]
Extremely high f7 � (0.8, 0.9, 1, 1) fλ7 � [0.1λ + 0.8,1]

FIGURE 3 | DFT for the DPCSNR.
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In order to eliminate the subjective influence from expert
judgments as much as possible, the collected fuzzy numbers were
treated using the following equations (Deng et al., 2018; Yuan
et al., 2021):

I � fλ
1 ⊕ fλ

2 ⊕/⊕ fλ
e−1 ⊕ fλ

e

e
, (6)

μL(I) �
1
2
⎡⎣∑1
λ�0.1

mλΔλ +∑0.9
λ�0

mλΔλ⎤⎦, (7)

μR(I) �
1
2
⎡⎣ ∑1
λ�0.1

nλΔλ +∑0.9
λ�0

nλΔλ⎤⎦, (8)

PM � (1 − α)μL(I) + αμR(I), (9)
where I denotes the average fuzzy number; e denotes the number
of experts; fλ

e denotes the corresponding fuzzy number for the
e-th expert assessment language; μL(I) and μR(I) denote the
integral value of the inverse function of the left and right
membership functions, respectively; mλ and nλ denote the
upper and lower bounds of the λ-cut set for the fuzzy number,
respectively; λ = 0, 0.1, 0.2,. . ., 1 and Δλ = 0.1; PM denotes the
modified conditional probability; and α denotes the optimistic
coefficient. In this study, α = 0.

The assessment languages given by the invited experts were
collected and transformed into the form of the corresponding
fuzzy numbers in Table 3, then Eqs. 6–9 were applied to obtain
the modified conditional probabilities. The CPT was further
modified, as given in Table 4.

Through the four aforementioned steps, the DBN model for
the dynamic reliability assessment of the DPCSNR was
established as shown in Figure 4.

TABLE 4 | Modified CPT in the DBN model.

Node name Modified CPT

ACU A failure 0.0017
MCU A failure 0.0012
ACU B failure 0.0017
MCU B failure 0.0012
Loss power supply 0.0008
DPCSNR failure 0.0003

FIGURE 4 | DBN model for the dynamic reliability assessment of the DPCSNR.
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Monte Carlo Simulation of the Digital Power
Control System for Nuclear Reactor
Reliability
Previous studies show that the MCmethod is feasible in verifying
the effectiveness of the DBN model (Lee and Choi, 2020). In this
section, the MC method was used to simulate the DPCSNR
reliability with MATLAB simulation software, and the steps
were as follows (Abdo and Flaus, 2016):

1) Based on the failure probability distributions of root nodes
(hardware) in the DBN model in Figure 4, their failure times
were randomly generated. Then, the causal relationships
between the nodes in the DBN model were used to judge
whether the DPCSNR failed or not and to achieve its
failure time.

2) The previous process was repeated until the preset number of
iterations was reached.

3) The simulation results were statistically analyzed, and the
reliability curve of the DPCSNR was obtained.

RESULTS AND DISCUSSION

Reliability Calculation
Subsystem A, subsystem B, computer systems A and B, and the
power supply system were set as module 1 (MOD1), module 2
(MOD2), module 3 (MOD3), and module 4 (MOD4),
respectively. GeNIe software was used to conduct the
forward reasoning, and the reliability curves for the
DPCSNR and its four MODs were obtained, as shown in
Figure 5.

Figure 5 shows that the hardware failure or damage to the
DPCSNR would partially reduce the reliability of the DPCSNR.
Therefore, periodic test and predictive maintenance should be
carried out for the DPCSNR. To be conservative, it was assumed
that the cycle for the periodic test and predictive maintenance was

60 days, which indicates that the hardware maintenance rate μ
was 6.94 × 10−4. Under these conditions, Eq. 5 can be modified to
the following equation:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
P(X(t + 1) � W|X(t) � W) � e−τΔt � 0.993064,
P(X(t + 1) � F|X(t) � W) � 1 − e−τΔt � 0.006936,
P(X(t + 1) � F|X(t) � F) � e−μΔt � 0.98347145,
P(X(t + 1) � W|X(t) � F) � 1 − e−μΔt � 0.01652855.

(10)

The reliability curve for the DPCSNR was further determined,
as shown in Figure 6.

In response to the requirements of the operation technical
specification for the DPCSNR, it is necessary to carry out the
periodic test within the specified time to check whether the
system and its components are available or not. Meanwhile,
the predictive maintenance for the components, which have
been determined to be invalid or have potential failure
through the test, is conducted. Figure 6 indicates that through
the periodic test and predictive maintenance, the hardware failure
or damage can be effectively avoided, and the reliability of the
DPCSNR was significantly improved.

Sensitivity Analysis
GeNIe software was used to conduct the backward reasoning, and
the sensitivity analysis results for the DPCSNR were obtained, as
shown in Figure 7.

It can be seen from Figure 7 that the critical events leading to
the DPCSNR failure were sorted as follows in terms of their
impact degrees: computer system (A3 and B3) > ACU hardware
(A1 and B1) > ACU software (A2 and B2) >MCU hardware (A4
and B4) > MCU software (A5 and B5) > other hardware
programs (P1, S, P2, etc.). Thus, NPP should pay attention to
the critical events, in turn, so as to ensure the safety and reliability
of the DPCSNR.

FIGURE 5 | Reliability curves for the DPCSNR and its four MODs.

FIGURE 6 | Reliability curve for the DPCSNR with the cycle for periodic
test and predictive maintenance of 60 days.
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Analysis of Dynamic Characteristics
The first dynamic characteristic of the DPCSNR is the
dynamic interaction. As shown in Figure 3, the dynamic
and static logic gates were introduced to characterize this
dynamic interaction. The computer system in the DPCSNR is
a special component. It contains a bus selector, processor,
watchdog, RAM, and digital and analog signal processing
software, and they interact with each other to realize the
function of the computer system. The ACU hardware and its
software interact, and MCU hardware interacts with the
human operation. The ACF failure in subsystems is linked
with ACU failure and computer system failure through the
PAND gates. The subsystem failure is connected with the
ACF failure and MCU failure through the SEQ gates. The
sensor failure prior to main power failure or main power and
cold spare power failures will result in the loss of power
supply.

The second dynamic characteristic of the DPCSNR is the
time dependence. A node in the DBN model at time slice t is
affected not only by its parent node but also by its parent node
or itself at time slice t-1, which is presented in the joint
probability distribution function in Eq. 3 (Adumene et al.,
2021). In the established DBN model, the nodes of hardware
failures were defined as the dynamic nodes, as shown in
Figure 4. The rates of hardware failures were used to
calculate their state transition probabilities, as shown in Eq.
5, and the cycle of the periodic test and predictive maintenance
was used to determine the maintenance rate so as to correct the
state transition probabilities, as shown in Eq. 10. The lines
with arrows represent the time dependencies between
neighboring time slices.

The third dynamic characteristic of the DPCSNR is the
causal relationship uncertainty. The analysis of the OR gate in
Figure 3 shows that when an input event occurs, the

corresponding output event still has a certain probability of
not occurring. For example, when the MCU hardware failure
or human error occurs, MCU failure still has a certain
probability of not occurring. In order to reduce the causal
relationship uncertainty for the DBN model, the FM method
was used to modify the CPT, as given in Table 4.

Verification of the Effectiveness of Dynamic
Bayesian Network Model
The two reliability curves of the DPCSNR were obtained by using
the DBN model and MC simulation (1 × 105 times), respectively.
Their relative error curve was drawn in the rectangular
coordinate system, and the aforementioned results are shown
in Figure 8. The figure indicated that the maximum relative error
was only 1.08%, and the effectiveness of the DBN model was
verified.

CONCLUSION

This study proposed an approach for the dynamic reliability
assessment of the DPCSNR with respect to its dynamic
interaction, time dependence, and causal relationship
uncertainty based on DFTA, DBN, FM, and MC methods.

GeNIe software was used to conduct the failure probability
calculation and sensitivity analysis of the DPCSNR. The results
show that without periodic tests and predictive maintenance,
the reliability value of the DPCSNR is 93.531% when it runs for
700 days, and with the periodic test and predictive
maintenance, the reliability value is 99.959%. In addition,
the critical events for the DPCSNR were identified.

The main contributions of this study were as follows: 1) the
dynamic reliability assessment approach of the DPCSNR was

FIGURE 7 | Sensitivity analysis results for the DPCSNR.
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for proposed the first time with respect to its dynamic
characteristics including dynamic interaction, time
dependence, and causal relationship uncertainty; 2) the
periodic test and predictive maintenance were proved to be
the effective measures to improve reliability for the DPCSNR;
and 3) the effectiveness of the DBN model was verified by MC
simulation.

In this study, the computer system was simplified as
hardware. But in practice, it is a complex system, which
makes its failure rate uncertain and results in the causal
relationship uncertainty between the events in the DFT. In
addition, the DPCSNR has a redundant configuration, and its
common causes of failures are also worthy of study. Therefore,
in future work, the operation and maintenance and reliability
data for the DPCSNR will be collected and analyzed, and the
Dempster–Shafer evidence theory will be applied to calculate
the accurate failure rate of the computer system so as to
eliminate its influence on the causal relationship
uncertainty. Investigation of possible common causes of
failures and failure in one component that makes failure in
another more likely will be carried out.
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