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The current disturbance classification of power quality data often has the problem of low
disturbance recognition accuracy due to its large volume and difficult feature extraction.
This paper proposes a hybrid model based on distributed compressive sensing and a bi-
directional long-short memory network to classify power quality disturbances. A cloud-
edge collaborative framework is first established with distributed compressed sensing as
an edge-computing algorithm. With the uploading of dictionary atoms of compressed
sensing, the data transmission and feature extraction of power quality is achieved to
compress power quality measurements. In terms of data transmission and feature
extraction, the dictionary atoms and measurements uploaded at the edge are analyzed
in the cloud by building a cloud-edge collaborative framework with distributed compressed
sensing as the edge algorithm so as to achieve compressed storage of power quality data.
For power disturbance identification, a new network structure is designed to improve the
classification accuracy and reduce the training time, and the training parameters are
optimized using the Deep Deterministic Policy Gradient algorithm in reinforcement learning
to analyze the noise immunity of the model under different scenarios. Finally, the simulation
analysis of 10 common power quality disturbance signals and 13 complex composite
disturbance signals with random noise shows that the proposed method solves the
problem of inadequate feature selection by traditional classification algorithms, improves
the robustness of the model, and reduces the training time to a certain extent.

Keywords: distributed compressed sensing, power quality disturbance classification, bidirectional long-short
memory network, edge algorithm and cloud edge collaboration, parameter optimization, DDPG algorithm

1 INTRODUCTION

The emergence of new communication technologies has led to an increase in the size and complexity
of the power quality data that must be processed by power companies when implementing
information systems and intelligent interconnection technologies (Jin et al., 2019). Therefore,
advanced technologies and algorithms are needed to provide support for the storage,
transmission, and management of power quality data in the era of the energy Internet (Elphick
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et al., 2017a). However, the existing measuring instruments are
difficult to identify the disturbance accurately, so the power
system’s relay protection and automatic devices may have
false-action, which threatens the stable operation of the power
system. Managing and storing massive power quality data,
digging the intrinsic value contained in the power quality data,
and utilizing the collected power quality data to analyze and
identify the disturbances have become urgent problems to be
solved (Yin et al., 2017). Efficient collection and evaluation of
power quality data are significant to load prediction, operation
status evaluation and early warning, power quality monitoring,
and evaluation, effective operation of the power network, and
distribution network planning (Negnevitsky et al., 2000; Chen,
2003).

When the sampling of power quality data still follows the
Nyquist-Shannon sampling theorem (Elphick et al., 2017b), in
conjunction with the acquisition-compression-storage-
transmission-detection-identification process (Song et al.,
2012), it will naturally result in a large amount of sampled
data, and as the amount of data increases, the processing time
for the data also increases, significantly increasing the cost of
storage and transmission (Noland, 2016). The Fourier transform
method for power quality data acquisition and analysis has
advantages in the frequency domain analysis of signals but
lacks the ability of time-domain analysis (Pei et al., 2006). The
compression performance of the Fourier transform method is
therefore not optimal. Power quality signal compression is
proposed in reference (Bravo-Rodríguez et al., 2020) based on
the One-Class Support Vector Machine (OCSVM) and
normalized distance measure, which has excellent compression
performance and has a low compression ratio for different kinds
of signals. In reference (Berutu and Chen, 2020), the method of
multi-wavelet threshold transformation combined with lossless
and lossy compression is adopted for power-quality data
compression. Meanwhile, the Set Partitioning in Hierarchical
Trees (SPIHT) lossy compression algorithm is used for the
high-frequency wavelet coefficient matrix, and the LZ77
lossless compression algorithm is used for the low-frequency
part of the wavelet coefficient matrix. However, wavelet
transforms have a problem selecting a wavelet basis, and the
algorithm is not particularly adaptable. The Compressed Sensing
(CS) method (Li et al., 2020) can sample the signal with much
fewer observations than the Nyquist sampling theorem and
preserve the original characteristics as much as possible.
However, the basic compressed sensing theory can only
handle a single signal; it cannot exploit correlations between
signals to optimize the reconstruction accuracy or speed of the
compression model. To take advantage of the correlation between
data and within data, the distributed compressed sensing (DCS)
theory is proposed based on CS theory. DCS can be regarded as a
theory that combines distributed source coding (DSC) and
compressed sensing (Pei et al., 2006). This theory compresses
different signals separately but performs joint reconstruction.
When the same parts of different signals account for a large
proportion, DCS can significantly reduce the number of
observations, so the complexity of recovering signals on the
decoding side is significantly reduced. This feature is essential

for distributed applications with low complexity requirements at
the decoder. DCS theory has been widely used in the fields of
audio and video processing, image fusion, and multi-transmitter
multi-receiver channel estimation (von Gladiß et al., 2015), laying
a good research foundation for its application in the field of
electrical engineering data processing.

The power quality disturbance classification method extracts
feature of power quality signal as the input of a recognizer
through digital signal processing methods and machine
learning algorithms (Gibbon et al., 2009). Currently, the
recognition methods mainly include: neural network (Cai
et al., 2019), support vector machine (Tang et al., 2020),
decision tree (Zhao et al., 2019) etc. (Xin et al., 2020) converts
the input of Power Quality Disturbances (PQDs) data into a two-
dimensional matrix which is similar to image data, and then uses
a two-dimensional Convolutional Neural Network (CNN) to
identify the type of PQDs. However, PQDs data is a one-
dimensional time series, and two-dimensional CNN is made
for image recognition. Therefore, it is not completely
appropriate for PQDs. In (Lu et al., 2020), several common
CNNs and RNNs are examined in the context of PQDs
classification, but the training time, parameter numbers, model
size, and anti-noise ability of these CNNs are not considered.
PQDs classification by deep learning neural network is prone to
long network training time and limited classification accuracy for
a large amount of power quality data (Uçkun et al., 2020). The
combination of neural networks and compressed sensing
significantly minimizes the amount of processed data,
effectively shortens the recognition time, achieves or even
exceeds the original recognition accuracy, and reduces
hardware performance requirements.

The combination of traditional methods utilizing digital
signal processing to extract features and machine learning as
classifiers to achieve disturbance classification becomes
unsuitable for generalization; For another thing, the rise of
deep learning methods provides new ideas for power quality
disturbance identification by directly utilizing raw data to
extract and classify disturbance signal features. Deep
learning methods combine feature extraction and
classification into a single model, which compensates for
traditional methods’ relatively independent feature
extraction and classification. As a result, the application of
deep learning methods to detect disturbances will gradually
become a research focus for academics. Deep learning methods
automatically extract features from the original signal, and
traditional Nyquist sampling used to obtain electrical energy
signal data is too large, putting excessive strain on
transmission and storage, obtaining the signal via CS
theory and combining it with deep learning methods to
achieve disturbance classification is critical for practical
applications.

Meanwhile, the power system put forward new requirements
for the classification of disturbances that affect the power quality
of the distribution network. The classification of PQDs needs
higher timeliness and accuracy. These conditions serve as a
scenario-based basis for applying the PQD classification
method proposed in this article.
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As a consequence of the advent of new scenarios, the
traditional disturbance recognition method employing digital
signal processing to extract features and machine learning to
recognize disturbances has shown its limitations (Zhang et al.,
2021; Li et al., 2022). Emerging artificial intelligence methods
such as deep learning offer a new direction for PQD classification.
Deep learning methods based on compressed sensing theory can
ensure the safe operation of the system and quickly and accurately
classify PQDs. This is an important step in solving power quality
problems. Through the gradual development of communication
technology, the proposed combination of compressed sensing
and deep learning can also serve as technical support for edge
computing in cloud edge collaborations. The research on PQD
classification based on compressed sensing and deep learning,
therefore, has both theoretical and practical significance.

The main contributions of this paper are as follows: 1) a
distributed compression storage method of power quality is
proposed, which can be used for cloud edge collaboration, and
the design of its dictionary matrix. 2) a combined method of
compressed sensing and deep learning for power quality data
disturbance recognition is proposed, which reduces the model’s
training speed and improves the accuracy of PQD recognition. 3)
The Deep Deterministic Policy Gradient (DDPG) is employed to
optimize the neural network parameters so that the constructed
neural network can maintain good convergence ability in
different scenarios. 4) The proposed method is aimed at a
forward-looking new power system with a high proportion of
renewable energy.

2 DISTRIBUTED COMPRESSED SENSING

2.1 Distributed Compressed Sensing
Theory
DCS is developed to deal with the set of related signals. The model
can take into account the internal correlations among power
quality signals as well as the correlations between signals. When
the signal aggregation is highly correlated, joint sparse and joint
reconstruction can be performed.

Assuming that there are j signals, x represents the joint signal
composed of multiple target signals xj ∈ RN, and y represents the
joint signal composed of the observed values yj ∈ RM

corresponding to each target signal, the joint signal can be
expressed as follows:

x � [x1, x2/xj]T (1)
y � [y1, y2/yj]T (2)

Φ �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
Φ1 0 / 0
0 Φ2 / 0
..
. ..

.
1 ..

.

0 0 / Φj

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (3)

Then y can be expressed as:

y � Φx (4)
Due to the fact that compressed sensing is the foundation of

DCS, the premise of both two methods is that the signals must be
sparse. Althoughmany power quality signals do not have sparsity,
the sparsity of these signals can be reflected in a certain sparse
base. Assuming that ψj is a sparse matrix and θj is a sparse
coefficient vector, xj � ψjθj the signal acquisition model of DCS
is as follow:

yj � Φjψjθj (5)

2.2 Construction Steps of Learning
Dictionary for Distributed Compressed
Sensing
DCS of power quality data relies heavily on sparse representation
of the signal, and the key factor is the design of an efficient and
simple sparse matrix. The continuous updating and optimization
of dictionary learning methods is the main reason for the superior
performance of sparse representation in compressive
reconstruction and type recognition. The sparse decomposition
and construction steps of the learning dictionary of distributed
compressed sensing are shown in Figure 1.

1) The model of power quality signals’ training sample set
E ∈ RM1×W1 and G ∈ RM2×W2 are established, where E
means the public sample set, G means the feature sample
set, W stands for the number of training samples and M
denotes the number of sampling points for training sample.
The training sample is expressed as follows:

Ei � [ei1, ei2,/, ein] ∈ RM1×W1 (6)
Gi � [gi1, gi2, ..., gin] ∈ RM2×W2 (7)

Where eij ∈ RM×1 represents class i, j training samples in a
common sample set, gij ∈ RM×1 represents class i, j training
samples in feature sample sets, i � 1, 2, ..., k, j � 1, 2, ..., n,M
represents the sample dimension, R represents the set of real
numbers.

2) Initialize the public and the feature dictionaries, respectively.
For example, in feature dictionary, Q training samples of the
feature sample set G is randomly selected to initialize the
dictionary Dt0 ∈ RM×Q, then two—norm normalization is
executed for each column of Dt0: ‖Dj

t0‖2 � 1, among

FIGURE 1 | Sparse decomposition.
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j � 1, 2, ..., Q, the objective function of dictionary
initialization is:

JDt0 ,T0 � argmin(‖G −Dt0T0‖22 + λ‖T0‖0)
Dt0 ,T0

(8)

GjL

0 G
j
0 � 1 (9)

Where T0 is the sparse representation matrix found by
optimizing the objective function on the initial feature
dictionary Dt0 in the sample set G, and λ is the
regularization parameter to balance the reconstruction error
and the sparsity of the sparse matrix; the iterations’ initial
value is set to L � 1. In terms of the basic atomic characteristics
of the initialized dictionary and the experimental simulation,
the total iteration number m and the tolerance of error Js are
selected.

3) Finally, the KSVD algorithm is employed to optimize the
objective function. It firstly holds the feature dictionary Dti

constant after the ith iteration:

JTi � argmin
Ti

(‖G −DtiTi‖22 + λ‖Ti‖0) (10)

Then, hold the sparse representation matrix Ti constant after
the last iteration and optimize the base atom in the feature

dictionary Dti separately. And the objective function can still
be simplified. The update can be made as follows:

JDti � argmin
Dti

⎛⎝����������G −∑k
j�1
Gj

i T
jL

i

����������
2

2

⎞⎠

� ⎛⎝����������⎛⎝G − ∑
j ≠ k

Gj
i T

jL

i
⎞⎠ −Dk

tiT
kL

i

����������
2

2

⎞⎠ � (�����Gk − Gk
i T

kL

i

�����22)
(11)

Where k � 1, 2, ..., N, Gk are real error items, the SVD algorithm
is used to decompose Gk, and the base atom dk that needs to be
updated is the feature vector corresponding to the maximum
eigenvalue, which can be computed by the least-square method.
Then, the optimal feature dictionary Dt is obtained, and the
public dictionary Dg is attained by the same method. The DCS
learning dictionary D is obtained by cascading Dg and Dt

together. Therefore, the DCS learning dictionary can be
expressed as follow:

D �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
Dg Dt 0 / 0
Dg 0 Dt /
/ / / / 0
Dg 0 / 0 Dt

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (12)

FIGURE 2 | Cloud-edge collaboration framework.
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2.3 Data Storage Based on Cloud Edge
Collaboration
Under the cloud-edge collaborative architecture (Ning et al.,
2021), the DCS-OMP edge algorithm is used to compress and
collect the power quality data of s nodes in a distribution system
at the same time, the power quality data of each node in the
distribution system share the same dictionary atoms, set the data
length of each node as n and the number of uploaded dictionary
atoms as τ, the corresponding formula is as follow:

[Ym×s Dτ×n] � DCS−SOMP(Xn×s,Ψm×n,Φn×n, τ, SNRdef? )
(13)

Ym×s is the measured value of each node; Xn×s is the original
signal of each node, Dτ×n is the uploaded dictionary atoms to the
cloud. By reducing the length m of the measurement matrix and
the number τ of the uploaded cloud dictionary atoms, the
memory capacity of the measured values uploaded to the
cloud, and the dictionary atoms can be reduced. In addition,
in order to ensure that cloud data can be called accurately and
quickly, the cloud integrates the dictionary atoms uploaded by
each edge to generate a complete dictionary Dk×n, where k is the
total number of atoms in the complete dictionary. When calling
data in this partition, the sparse representation coefficient
corresponding to the partition data is calculated by the Eq. 13.

θn×s � SOMP(Ym×s,Dk×n,Ψm×n) (14)
Then the original signal X′n×s of the partition is recovered

through Eq. 13 as follow:

X′n×s � real(Φn×nθn×s) (15)
By establishing a complete dictionary in the cloud center, each

edge only needs to upload the measurement values to realize
compression storage of power quality data, which reduces the
storage space of cloud data. The steps for constructing a complete
dictionary are as follows:

1) Calculate the correlation ri,k between the newly uploaded
dictionary atom di of the edge node and the kth atom Dk

in the initial sparse dictionary Dk×n in the cloud. The formula
is as follow:

ri,k � cov(di, Dk)������������
var[di]var[Dk]

√ (16)

Suppose the value of each generated is lower than a certain
threshold. In that case, the overall correlation between the
dictionary atom di uploaded to the cloud and the cloud
dictionary Dk×n is relatively weak. Therefore, the dictionary
atom is added to the sparse cloud dictionary.

2) Combine the dictionary atoms uploaded in each partition into
an over-complete sparse dictionary, and regularization is
performed to reduce the correlation between the
dictionary atoms.

Dk×n � {d1, d2,/, dk} (17)

d′k � dk − dk, d′1
d′1, d′1

d′1 − dk, d′2
d′2, d′2

d′2 −/ − dk, d′k−1
d′k−1, d′k−1

d′k−1 (18)

3) Normalizes the over-complete dictionaries to update
dictionary atoms.

dk � d′k
d′k

(19)

4) Combined with the over-complete sparse dictionary, recover
the original data from the measured values uploaded by the
DCS algorithm to verify the recoverability of the stored data
and the corresponding sparse coefficient θj, j∈[1,s] of each
node is obtained. Finally, the compressed storage of power
quality data of each node is realized.

Cloud computing is a type of technology that enables the
analysis of large amounts of data (Luo, 2022). It is not required to
maintain computing hardware, data storage, or associated
software on-premises. However, because of the physical
separation between the cloud platform and each terminal,
response times are frequently slow.

Edge computing is introduced as a novel technique for
augmenting cloud computing systems (Ma et al., 2021).
Because the edge is located close to the terminal equipment, it
can reduce not only the network delay associated with data
processing, but also the bandwidth required to transfer the
original data to the storage center. As a result of the cloud
platform and edge platform collaborating, the system’s
performance will be significantly improved.

In this paper, based on the cloud-edge collaboration
framework shown in Figure 2, the edge acquisition algorithm
based on DCS-SOMP algorithm is compiled on the MATLAB
simulation platform to collect the power quality data generated in
PSCAD, and the sparse dictionary atoms and measured values
generated in the reconstruction process are uploaded to the cloud
server by establishing a connection with the remote cloud. There
are three main operations in the cloud: 1) compressed storage of
power quality data of distribution network; 2) Construction of
complete sparse dictionary; 3) Analysis and calculation of power
quality data. The cloud server sends the result of dynamic
partition to the edge in time. The edge algorithm obtains the
new partition information, adjusts the computing resources, and
collects the power quality contained in the new partition, and
uploads it to the cloud server again. So as to realize the mutual
cooperation between “cloud” and “edge”.

3 POWERQUALITYDATACLASSIFICATION

3.1 Classification of Power Quality
Disturbance Signals
The PQD classification model first extracts the characteristics of
the disturbance signals and then designs a classifier to recognize
different disturbances. According to the different characteristics
of amplitude, frequency, and phase of the disturbance signal, the

Frontiers in Energy Research | www.frontiersin.org April 2022 | Volume 10 | Article 8743515

Xia et al. Power Quality Compression and Recognition

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


single disturbance is defined as voltage sag, voltage swell, short
interruption, harmonic, transient oscillation, pulse, and flicker.
The three disturbances of voltage sag, voltage swell, and short
interruption are short-term root mean square fluctuations. And
the harmonic, transient oscillation, pulse, and flicker are long-
term root mean square fluctuation or high-frequency impact
disturbance. In addition to the above single disturbance,
disturbance usually occurs simultaneously in the actual
situation, which is called composite disturbance. The
composite disturbance is compounded by two or more single
disturbances, which is difficult to analyze. Referring to the IEEE
standard and previous literature, six types of single disturbances
and four types of composite disturbances are analyzed in
this paper.

3.2 Basic Principle of Power Disturbance
Classification Based on CS-DL
3.2.1 The Framework of CS-DL Network
A Deep Neural Network (DNN) is the basis of deep learning,
which is a multi-layer expression algorithm for learning the
implicit distribution of data. Specifically, DNN first employs
unsupervised learning to pre-train each layer to learn the
characteristics of layers. Training one layer at a time, using the
results as the input to the next layer, and then using supervised
learning to fine-tune the model from top to bottom. The feature
learning process is illustrated in Figure 3.

The feature of the constructed CNN is the feature extractor
composed of the convolution layer and the sub-sampling layer.
The CS-DL network uses a local connection, which only connects
one neuron with a few peripheral neurons. The convolution layer
of CNN contains multiple differentiated feature planes, each of
which consists of some rectangularly arranged neurons, and the
neurons on the same feature plane share weight with each other.
CNN sub-sampling is a special convolution process and reduces
the number of model parameters. In summary, CNN uses the
convolution layer and sub-sampling layer, as well as the
corresponding local connection and weight sharing rules to

enhance feature extraction’s self-learning and characterization
capacity and finally realizes the classification of direct power
quality signal inputs.

3.2.2 Structures of CNN-BiLSTM and CS-BiLSTM
Networks
PQD signal is a typical time-series signal, but CNN does not
consider the timing characteristics of the signals in the process of
feature extraction. Meanwhile, the bidirectional long short-term
memory (BiLSTM) model is a kind of Recurrent Neural Network
(RNN) suitable for time-series signal analysis. Therefore, a mixed
CNN-BiLSTM model based on the classification of PQD signals
by the CNN model is proposed. Firstly, features of disturbing
signals are extracted automatically by CNN. Then, the features
are further processed by BiLSTM. The proposed CNN-BiLSTM
model enhances the feature extraction ability of the model, speeds
up the convergence rate of training, further improves the
accuracy of disturbance classification, and has high noise
immunity. In order to deal with the time-consuming defect
and classification problem of composite disturbance, an
improved CS-BiLSTM is proposed, which utilizes the CS
method to transmit signal characteristics quickly, accurately,
and effectively so as to improve the efficiency and timeliness
of the PQD classification process.

The Structures of CS-BiLSTM Networks are illustrated in
Figure 4.

3.3 Parameter Optimization Based on DDPG
3.3.1 Concept of Reinforcement Learning
Reinforcement learning achieves global optimization of the
objective function through the feedback of the reward
function. The main parts of the DDPG reinforcement learning
algorithm are as follows:

Agent: The agent that needs to be controlled, corresponding to
the parameter optimizer in this paper.

State s: The agent’s current state, corresponding to the current
value of the key parameters such as learning rate, minibatch
number, etc.

FIGURE 3 | Structure of CS-DL network.
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Action a: The actions that the agent can take, corresponding to
the variation of the parameters.

Reward r: The feedback value of the environment, and the
evaluation value of the previous action, corresponding to the
accuracy in this paper.

π The agent’s action to move from the current state to the
next state.

Value: The reward value of the agent’s long-term actions, as
distinguished from the short-term reward represented by
Reward r.

Environment: The environment in which the agent is placed.

3.3.2 Concept of Deterministic Policy Gradient
Deterministic Policy Gradient (DPG) is an improved
algorithm based on AC (Action and Critic) structure. It
utilizes the PG (Policy Gradient)’s advantage in
continuous space and changes the randomized strategy to a
deterministic strategy. The corresponding formula is shown
in (20):

at ~ πθ(st∣∣∣θπ) (20)
The DPG method can reduce the sampling size of data. For

randomized strategy, policy gradient needs to integrate state and
action simultaneously, and determine strategy only needs to
integrate the state, which greatly improves the algorithm’s
efficiency. The formulas of deterministic strategy and the
gradient expression are as follows:

Jβ(μ) � ES~ρβ[Qμ(s, μ(s))] (21)
∇θJ(μθ) � ES~ρβ[∇θμθ(s)Qμ(s, a)∣∣∣∣a�μθ] (22)

Where: μ represents the determined strategy adopted by DDPG,
ρβ represents the distribution of a balanced exploration and
utilization process. In the DPG algorithm, the Critic network

is a linear function approximator, and the Actor updates the
parameters in the direction of the Critic’s action-value function.

The DDPG algorithm is improved by the following details: the
updating methods of the target network’s parameters, the
regularization method of the samples, and the exploration
noise of action. Compared with DQN (Deep Q network),
which updates the parameters of the target network at regular
time intervals, DDPG adopts a soft update method, which
transfers the parameters both before and after updating to the
target network. In order to prevent gradient disappearance or
exploding gradient, the input and output of ANN are normalized
in batches. Moreover, the DDPG algorithm adds a Gaussian noise
to the determined action to improve the diversity of samples.

3.4 CS-BILSTM Model Based on DDPG
Optimization
The complexity of PQD classification is prone to result in no
convergence and poor training effects for the classificationmodel.
Therefore, the DDPG method is introduced to optimize the
parameters during the training process. The DDPG algorithm
based on artificial intelligence has the characteristics of self-
organization, self-adaptation, and self-learning, has high
robustness, and is easy to parallel. The detailed parameter of
the DDPG network is set as follows. The inputs of the Actor
network are normally N × 2 sequences with two hidden layers
which has 256 and 32 neurons respectively. The activation
function of the Actor network is tanh, the loss function is
MSE, and the optimization method RMSprop is introduced
here. The input of Critic network consists of two parts: the
first part is the state observed by the agent; The second part is
the corresponding actions taken by the agent. The hidden layer
includes two layers, the number of neurons is 256 and 32
respectively, and the number of neurons in the output layer is
1, which indicates the Q value obtained by the critical network

FIGURE 4 | Structure of CS-BiLSTM.
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taking some action in this state. Except for the output layer, other
activation functions use tanh, and the activation function of the
output layer is Relu. After obtaining the Q value, the probability
of generating random action is ε Strategy, i.e., probability 1- ε
chooses πp(s) � argmaxQ(s, a). Meanwhile, the value of
random action follows the normal distribution ,
σ � (Q(s, a) − argmax(Q(s, a)))2. The related Param-eter
setting and description of DDPG algorithm is shown in
APPENDIX part.

It is widely used in the optimization of multimodal functions.
The traditional stacked denoising autoencoder adopts SGD in the
fine-tuning stage. The SGD updates each sample with a fast
update rate, which can automatically pick out the inferior local
optimtbal points. However, on account of the many update times,
the cost function may experience acute fluctuation with inferior
convergence performance, which affects the classification effect of
the encoder. Therefore, this paper improves the traditional DAE.
Adam is used to updating the network weights and bias during
the fine-tuning stage instead of SGD. The flow chart of PQD
classification by the improved CS-BiLSTM algorithm based on
DDPG parameter optimization is illustrated in Figure 5.

4 SIMULATION RESULTS AND ANALYSIS

The proposed power quality signal compression technique and
PQD classification are evaluated in this section via the
comparative experiments with four simulation tests. The
simulation software are respectively Matlab2019b and

Python3.6.5 with its advanced tool pytorch1.2.0. As for the
computer configuration, the Intel Core CPU i3-8100 and
internal storage 16G with the 1T hard disk storage device.

This paper uses theWAMS (Wide AreaMeasurement System)
data collected from the actual power grid in a province of China
in 2020 to form a data set. The data set is the power quality data
that has been manually verified, including 2000 pieces of data. In
order to form the enough training set, some power quality data is
generated with the MATLAB simulation.

A series of power quality signals are generated by
mathematical modeling simulation, and the sampling
frequency is set to 3200 Hz based on the actual sampling
frequency of power equipment in the power system. Also,
the power quality signal sampling length is 18 cycles.

Then, the Gaussian white noise is added in the generation of
the PQD signal to simulate the random noise in the power
system. The signal-to-noise ratio (SNR) ranges from 20 dB to
40 dB.

The generated power quality signals include six categories of
single disturbance and four types of composite disturbance such
as voltage sag, harmonic, voltage flicker, harmonic with voltage
sag, harmonic with voltage interruption, voltage sag with voltage
flicker, etc. They are all labeled with the number from 1 to 10,
respectively.

MATLAB is used to generate 20,000 sets of PQD signals,
where 18,000 sets are chosen as the training set, and the last 2000
sets are selected as the testing set. The 10-fold cross-validation is
adopted to select the suitable training set and validation set in this
step. Figure 7 demonstrates the experiment result.

FIGURE 5 | Schematic diagram of the CS-BILSTM model optimized by DDPG algorithm.
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4.1 Comparison Results of Reconstruction
Algorithms
As shown in Figure 6, Orthogonal Matching Pursuit, Generalized
Orthogonal Matching Pursuit (Generalized OMP, GOMP),
Regularized Matching Pursuit (Regularized OMP, ROMP), and
Stage Orthogonal Matching Pursuit (StagewiseOMP, StOMP),
Compressive Sampling Matching Pursuit
(CompressiveSamplingMP, CoSaMP), and DCS-SOMP
algorithms are adopted to perform compressive sampling of
PQD signals in the power grid, while the sparsity of the PQD
signal of each node is assumed as 10. The comparison of the signal-
to-noise ratios (SNR) of reconstructed power quality signals under
different compression ratios is carried out between the above
algorithms. Figure 5 demonstrates that except for the DCS-
SOMP algorithm, the signal-to-noise ratio of other algorithms’
reconstructed power quality signals decreases with the increase of
compression ratio. In the subfigure (a) of Figure 5, the reconstructed
power quality signals of the ROMP and CoSaMP algorithms show
distortion when the compression ratio rises to 40. Additionally, in
the process of power quality data compression and storage, the
sparsity of PQD signals under the sparse dictionary has an important
impact on the power quality data’s upload speed to the cloud. The
sparser the data, the fewer sparse dictionary atoms, thus, the smaller
data sizes. By contrast, the DCS-SOMP reconstruction algorithm
overperform other algorithms, like OMP, ROMP, etc. It is clearly
more accurate for the compressed acquisition of power quality data.

4.2 Reconstruction and Demonstration of
Different Power Quality Disturbances
After determining the transform domain, themeasurementmatrix,
and the reconstruction algorithm, the compression-reconstruction
simulation of 6 types of PQD signals is carried out, and the
compression rate represents the ratio of the observation points’
number to the signal length, which is set as 25%. In order to reduce
the reconstruction error, the sparsity value of different disturbance
signals in Table 1 is determined through a large number of
experiments. Moreover, Table 1 shows the error values between
the original signal and the reconstructed PQD signal obtained by

compressed sensing and reconstructing of randomly generated
PQD signals. Figure 7 shows the simulation diagrams of the
original signals, the reconstruction signals, and the error
waveform of the two kinds of PQD signals. Finally, we use
mean square error to evaluate the reconstruction signals.

4.3 Comparison of Application of CS-DL in
Power Quality Disturbance Classification
4.3.1 Results of Power Quality Disturbance
Classification
It can be seen from Figure 8 that the classification accuracy of
PQD signals is still relatively low in the initial stage of training.
Then, the loss value is quickly reduced to less than 0.1 after about
850 epochs of training. Also, the classification accuracy is
improved to about 94% and remains stable, which indicates
that the network converges after about 850 training epochs.
Moreover, the training accuracy and test accuracy are almost
equal after about 950 epochs of training, and the total
classification accuracy of PQD signals in the test set is 99.7%.
In order to obtain better network performance, the setting of the
network parameters is necessary, in which the setting of the
learning rate is critical. In this paper, the dynamic setting method
of learning rate is adopted. The initial learning rate is set to 0.001;
after 200 iterations, it drops to 0.0001. This setting can further
improve the classification accuracy of PQD signals.

It can be seen from Figure 9, Figure 10, and Table 2 that the
CS-BiLSTM method we proposed has a superior performance

FIGURE 6 | Comparison of reconstruction effects. (A) Compression ratio of 10 dB, (B) Compression ratio of 20 dB, and (C) Compression ratio of 30 dB.

TABLE 1 | Reconstruction error of power quality disturbance signal.

Power quality disturbance Sparsity (K) Reconstruction error (%)

Voltage sag 10 1.12
Voltage swell 10 1.47
Harmonic 10 3.29
Voltage flicker 10 3.99
Pulse 10 1.02
Transient oscillation 10 6.15
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compared with the CNN-BiLSTM method in the classification of
PQD. Although the CS-BiLSTM model has lower classification
accuracy for voltage flicker and transient oscillation than the
CNN-BiLSTM model, the CS-BiLSTM has higher classification
accuracy in the other eight types of PQD and average
classification accuracy. Meanwhile, the CS-BiLSTM model’s
training time is only 59.12% of the CNN-BiLSTM model’s
training time. Since the voltage sags, voltage swells, and

harmonics account for more than 70% of the PQD types, in
reality, the ten types of PQD samples are also created in
proportion.

In the case of identifying 1,000 groups of voltage sag
disturbance data, 730 groups are classified as voltage sags, 80
groups are identified as oscillation with voltage sags, 20 groups
are identified as voltage flicker with voltage sags, and 180 groups
are identified as harmonic with voltage sags. Furthermore, we
analyze the 180 groups of signals that are identified as composite

FIGURE 7 | Simulation waveform of the original signal and reconstructed signal.

FIGURE 8 | Training loss and classification accuracy of CS-
BiLSTM model.

FIGURE 9 | Comparison of training time.
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disturbances of harmonic with voltage sags. The analysis shows
that there exist harmonic components in these signals, which
meet the requirements of IEEE standard for harmonic definition.
In addition, it indicates that the label of some original data is
inaccurate. Meanwhile, the result demonstrates that the proposed
method has high classification accuracy for composite
disturbances, which is normally neglected in the previous
study. The total classification time of the CS-BiLSTM model
for the 1,000 groups of voltage sags data is 15 s, with an average
classification time of 0.15 s per sample.

4.3.2 Results of Parameter Optimization Based on
DDPG Method
Three Gaussian white noises were added to the initial signal to
verify the noise immunity of the algorithm before training, and the
SNR is 20 dB, 30 dB, and 40 dB, respectively, after adding the

Gaussian noise. As shown in Figure 11, the accuracy rate of PQD
classification increases rapidly in the initial stage of training. After
about 400 rounds of training and learning, the loss value decreases
rapidly to less than 0.2. The classification accuracy rate increases to
about 95% and then remains stable, indicating that the network has
converged. Compared with the traditional method, the proposed
method has a superior performance of PQD classification both
under simple situations and in the case of complex PQD.

It can be seen from Figure 12 and Table 3 that with the increase
of noise, the average classification accuracy of the two methods for
PQD is gradually reduced. When the noise intensity is 40 and
30 dB, the average classification accuracy of the CS-BiLSTMmodel

FIGURE 10 | Classification results of non-noise power quality
disturbance signals.

TABLE 2 | Classification accuracy of the reconstructed signal.

Power quality disturbance Classification accuracy (%)

CNN-BiLSTM CS-BiLSTM

Voltage sag 96.0 96.8
Voltage swell 96.0 98.4
Harmonic 94.4 98.4
Voltage flicker 98.4 96.8
Pulse 98.4 100
Transient oscillation 98.4 96.8
Harmonic + voltage sag 96.0 97.6
Harmonic + voltage swell 94.2 96.8
Voltage flicker + transient oscillation 96.8 98.4
Voltage flicker + voltage sag 96.0 98.4
Average value 96.43 97.6

FIGURE 11 | Training loss and classification accuracy of the optimized
CS-BiLSTM model.

FIGURE 12 | Classification results of power quality disturbance signals
with 20 dB compression ratio.
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is 97.49 and 96.76%, respectively. When the noise intensity is
further strengthened to 20 dB, the classification accuracy is
significantly reduced to 96.07% but remains high. Compared
with the CNN-BiLSTM model, the CS-BiLSTM hybrid model
performs a higher classification accuracy obviously for all types
of PQDs. The experimental results fully prove that the proposed
hybrid model possesses a good classification ability of PQD signals
and has promising anti-noise capability.

5 CONCLUSION

This paper presents a power quality disturbance classification and
classification method based on DCS and deep learning. Through
this method, the efficient compression and accurate
reconstruction of power quality data of each node in the
power grid can be realized. Moreover, the identification and
classification of PQDs in the power grid can be realized,
which provides a new reference for the governance of power
grid harmonics and the storage of power quality data. The main
conclusions of this paper are as follows:

1) Based on the SOMP algorithm and K-SVD dictionary learning
algorithm, a DCS algorithm called DCS-OMP is proposed,
which realizes efficient compression and accurate
reconstruction of power quality data in distribution network
under low measurement value and high compression ratio.

2) Based on the CNN-BiLSTM model, a CS-BiLSTM hybrid
model is built, and a comparison is carried out between the
two models. The average recognition rate of CS-BiLSTM
hybrid model is 97.85% without noise, and 97.49, 96.76,
and 96.07% with 40, 30, and 20 dB noise, respectively.
Compared with the CNN-BiLSTM model, the recognition
rate of the CS-BiLSTM hybrid model is increased by 10.15,
10.30, 10.00, and 9.23% in the case of no noise, 40 dB noise,
30 dB noise, and 20 dB noise, respectively. The recognition
rate in high-intensity noise interference is improved
significantly. According to the results, the proposed CS-

BiLSTM hybrid model has a higher recognition rate and
better noise immunity.

3) DDPG algorithm is employed to optimize the parameters in
the training process of the CS-BiLSTM hybrid model, which
ensures the convergence of training and the effectiveness of
results.

The proposed method CS-BiLSTM is more efficient to solve the
problems of high sampling rate, high cost of hardware
implementation when performing the disturbance recognition of
power quality data. It helps improve the related theory and
algorithm of power quality analysis and detection. However, the
application of parameters optimization via reinforcement learning
will inevitably encounter spending much time training the
network. In the future, we would like to further adjust the
parameters to make the experiment converge, speed up the
convergence speed of the network, reduce the time spent on
training and improving the computing efficiency of the algorithm.
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TABLE 3 | Classification results of multiple disturbances.

Power quality disturbance SNR

20 dB 30 dB 40 dB Non-noise

Voltage interruption and harmonic 96 (88) 97 (86) 97 (87) 98 (88)
Voltage swell and harmonic 94 (81) 94 (80) 93 (83) 95 (81)
Voltage sag and transient oscillation 100 (88) 100 (89) 99 (90) 100 (88)
Pulse and harmonic 95 (89) 99 (86) 97 (87) 97 (89)
Transient oscillation and harmonic 95 (89) 96 (88) 93 (82) 95 (89)
Voltage flicker and harmonic 91 (82) 93 (81) 95 (82) 93 (82)
Transient oscillation and pulse 100 (88) 98 (89) 100 (90) 100 (88)
Voltage flicker and pulse 92 (87) 98 (88) 100 (90) 100 (87)
Voltage flicker and transient oscillation 98 (82) 96 (89) 100 (88) 100 (82)
Harmonic and transient oscillation and pulse 98 (87) 96 (90) 99 (90) 99 (87)
Harmonic and pulse and voltage flicker 93 (83) 94 (83) 94 (84) 95 (83)
Transient oscillation and pulse and voltage flicker 97 (86) 99 (89) 100 (89) 100 (86)
Voltage sag and transient oscillation and pulse and voltage Flicker 100 (92) 98 (89) 100 (90) 100 (93)
Average value 96.07 (86.15) 96.76 (86.77) 97.49 (87.15) 97.85 (87.69)

(The recognition rate of traditional methods in parentheses).
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APPENDIX

TABLE A1 | Parameter setting and description of DDPG algorithm.

Parameter Definition Value

Tau1 Smoothing coefficient of target network in the actor and critic networks 0.001
Tau2 The smoothing coefficient of exploring network 0.002
α1 Learning rate of actor and critic network 0.001
α2 Learning rate of ε control network 0.002
Batch_size Number of samples drawn from the experience pool per training 64
Capacity Size of experience pool 10,000
Σ Control the initial value of the variance of the exploration range 1
Γ Discount factor 95

Frontiers in Energy Research | www.frontiersin.org April 2022 | Volume 10 | Article 87435114

Xia et al. Power Quality Compression and Recognition

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles

	Power Quality Data Compression and Disturbances Recognition Based on Deep CS-BiLSTM Algorithm With Cloud-Edge Collaboration
	1 Introduction
	2 Distributed Compressed Sensing
	2.1 Distributed Compressed Sensing Theory
	2.2 Construction Steps of Learning Dictionary for Distributed Compressed Sensing
	2.3 Data Storage Based on Cloud Edge Collaboration

	3 Power Quality Data Classification
	3.1 Classification of Power Quality Disturbance Signals
	3.2 Basic Principle of Power Disturbance Classification Based on CS-DL
	3.2.1 The Framework of CS-DL Network
	3.2.2 Structures of CNN-BiLSTM and CS-BiLSTM Networks

	3.3 Parameter Optimization Based on DDPG
	3.3.1 Concept of Reinforcement Learning
	3.3.2 Concept of Deterministic Policy Gradient

	3.4 CS-BILSTM Model Based on DDPG Optimization

	4 Simulation Results and Analysis
	4.1 Comparison Results of Reconstruction Algorithms
	4.2 Reconstruction and Demonstration of Different Power Quality Disturbances
	4.3 Comparison of Application of CS-DL in Power Quality Disturbance Classification
	4.3.1 Results of Power Quality Disturbance Classification
	4.3.2 Results of Parameter Optimization Based on DDPG Method


	5 Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	References
	Appendix


