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Genetic algorithms (GA) are used to optimize the Fast Neutron Source (FNS) core fuel
loading to maximize a multiobjective function. The FNS has 150 material locations that can
be loaded with one of three different materials resulting in over 3E+71 combinations. The
individual designs are evaluated with computationally intensive calls to MCNP. To speed
up the optimization, convolutional neural networks (CNN) are trained as surrogate models
and used to produce better performing candidates that will meet the design constraints
before they are sent to the costly MCNP evaluations. A major hurdle in training neural
networks of all kinds is the availability of robust training data. In this application, we use the
data produced by the GA as training data for the surrogate models which combine
geometric features of the system to predict the objectives and constraint objectives.
Utilizing the surrogate models, the accelerated algorithm produced more viable designs
that significantly improved the objective function utilizing the same computational
resources.

Keywords: nuclear reactor, optimization, fast neutron source, convolutional neural networks, surrogate model,
machine learning

1 INTRODUCTION

The optimization of nuclear problems can be a complex task often with multiple competing
objectives and constraints. There is much research into the optimization of various aspects of
nuclear reactors such as the initial design (Gougar, et al., 2010), fuel shuffling (Zhao, et al., 1998;
Chapot, Da Silva and Schirru 1999), and shielding (Kim and Moon 2010; Tunes, De Oliveira and
Schön 2017) optimizations. Due to the non-linear nature of these problems, optimization
algorithms such as evolutionary and simulated annealing algorithms are often used. These
methods do not guarantee that the optimal solution is found but can, with sufficient
computational resources, clever heuristics, and the application of expert knowledge, often find
solutions which are near-optimal.

When an optimization is of a function that is prohibitively expensive (such as solving the neutron
transport equation), a surrogate model (Sobester, Forrester and Keane 2008) is produced and
optimized instead. Surrogate models generally trade the computation expense of the original
function for less accurate, but less expensive functions. The surrogate model is optimized
instead of the original function. These can be as simple as linear functions or as complex as
deep neural networks. In nuclear optimizations, surrogate models have been built to approximate
expensive functions such as finite-element structural analysis (Prabhu, et al., 2020), computational
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fluid dynamics (Hanna, et al., 2020), and neutron transport (Faria
and Pereira, 2003; Hogle 2012; El-Sefy et al., 2021; Sobes, et al.,
2021) related objectives.

In this paper, an optimization of the Fast Neutron Source at
the University of Tennessee was performed using objectives
calculated by solving the neutron transport equation. A
surrogate model for these objectives is presented, and a genetic
algorithm with and without acceleration using that surrogate
model are compared. The following sections include overviews of
both the Fast Neutron Source and of the neural network
architecture used as the surrogate models. Two genetic
algorithm optimizations are presented, the first uses the Non-
dominated Sorting Algorithm-II and Monte Carlo N-Particle
transport code (MCNP) (Goorley, et al., 2012) to solve the
objective and constraint functions. The second optimization
uses surrogate models with the NSGA-II algorithm, after
which the individuals in the Pareto Front are evaluated
with MCNP.

1.1 Fast Neutron Source
The Fast Neutron Source (FNS) (Pevey, et al., 2020) will be a
platform for sub-critical integral cross section experiments at the
University of Tennessee. It will be driven by 2.5 MeV neutrons
produced by a deuterium-deuterium (DD) neutron generator and
feature a flexible construction which will produce sub-critical
benchmark experiments targeting specific nuclear data needs of
next generation reactors.

The reduction of the uncertainty on next-generation reactor
designs is a need for the expected rapid deployment of next
generation reactors. Nuclear data uncertainty is propagated to
all nuclear-related figures of merit of reactors such as k-eff, void,
temperature and power reactivity coefficients and reactivity
worth’s. In a recent assessment of the nuclear data needed
for advanced reactors, it was found that for several next-
generation reactors need better resolved nuclear data
(Bostelmann, et al., 2021). For example, in a sensitivity
analysis of the Advanced Burner Reactor 1000 MWth
Reference Concept, it was shown that the uncertainty in
important nuclear characteristics is driven by uncertainties in
uranium, plutonium, iron and sodium. In this concept, the
uncertainty on k-eff, temperature coefficients of reactivity and
Na void worth were 0.900%, 8.397% and 13.483%, respectively.
These uncertainties require added margin in designs and can
lead to less-than-optimal designs to account for these
uncertainties.

Systematic integral data assimilation can be done to
decrease these uncertainties. In this type of analysis, a suite
of known benchmark models is collected, and a sensitivity
analysis is completed for each. The known experimental values
(and associated biases in the computational models) are then
used to further decrease the uncertainty in the relevant
quantities of interest. The FNS will be a source of these
types of benchmarks which targets the reduction of
uncertainties in neutronics calculation due to nuclear data
uncertainty. The goal of a given configuration of the FNS then
is to maximize the relevance of the experiment to some target
advanced reactor concept and to maximize the total flux

produced by the configuration to reduce the required FNS
run-times.

The most basic geometry unit of the FNS are six″ x six″ x 0.5″
plates which can be one of three different materials in this study.
Up to 20 of these plates are combined into aluminum cassettes
(See Figure 1). Twenty-five of these cassettes are then combined
into a 5 × 5 array called a zone (See Figure 2). There are three
zones in the FNS, as seen in Figure 2A. In each zone, due to
rotational symmetry, there are up to six unique cassette patterns
(labeled I-N in Figure 2B). Note that in the work in this paper
only the interior three cassette patterns (I, J, K) in each zone are
optimized. The corner cassettes (N) are filled with stainless steel
in this optimization and the cassettes labelled L and M are either
the target coolants material (Zone A, B) or the thermal
moderator (Zone C). The center cassette pattern, labeled I, is
a variable sized that can be between 0-30 plates (up to an interior
length 15″). The length of this cassette is a function of the
number of plates within the cassette, with the experiment
volume moving along with the cassette’s changing length.
The DD neutron source is in Zone C in a fixed location and
is modelled as an isotropic 2.5 MeV neutron source. Other
features of the FNS in the MCNP model are the stainless-
steel reflector (F), the concrete pedestal (H), and the B4C
plates (G) which ensure subcriticality when inserted.

2 MATERIALS AND METHODS

2.1 Non-Dominated Sorting Algorithm-II
Genetic algorithms are a class of optimization algorithms which
implement natural selection to optimize what may otherwise be
intractable optimization problems. In simplest terms, a genetic
algorithm takes an initial generation of individuals which are
evaluated with respect to one or more objectives, and a subset of
these individuals is selected and then combined to produce a
unique individual and/or mutated randomly. How exactly each of
the steps is accomplished is part of the art of a well-designed
genetic algorithm. Genetic algorithms can also be augmented by
using user-defined heuristics in each step to further increase the
effectiveness of the algorithm to produce a suite of individuals
required by the analyst.

FIGURE 1 | Fast neutron source single cassette MCNP geometry.
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The Non-Dominated Sorting Algorithm-II (Deb et al.,
2002) is a well-known variation on the standard genetic
algorithm which incorporates the heuristics of elitism, non-
dominated sorting and crowding distance to select the parents
of the next generation. Elitism is simply the idea that parents
are compared to the children of the current generation. This
ensures that no progress made during the optimization is lost
from one generation to the next. Non-dominated sorting is a
heuristic for selecting which individuals are selected as parents
of the next generation, which ranks individuals by the number
of other individuals which dominate it (i.e.: have a better
evaluation of an objective function). If no other individual
has at least one objective which is better than a given
individual, then that individual is non-dominated and is
assigned rank 1. Subsequent individuals are assigned a non-
dominated rank based on how many and which individuals
dominate it. Rank 2 individuals are only dominated by rank 1
individuals, etc. Parents of the next generation are selected
based on their non-dominated rank. If there are more
individuals in each rank than there are available slots for
parents, then the crowding distance metric is applied.
Crowding distance is a heuristic which calculates the
volume around each individual in the objective space.
Individuals are selected as parents first based on the
minimum and maximum for each objective function, and
then by which occupy the largest volume in the objective
space until the parent population is full. This heuristic is
meant to both preserve the maximum and minimum
individuals for each objective function and to preferentially
select individuals which are in a less populated section of the
objective space as parents with the goal of increasing the
genetic diversity of the population.

The NSGA-II Algorithm is presented in Figure 3. It is
adapted from the original paper describing the algorithm, A
Fast and Elitist Multiobjective Genetic Algorithm NSGA-II
(Deb et al., 2002):

2.2 Convolutional Neural Networks
A convolutional neural network (CNN) is a type of artificial
neural network which can approximate a function in which not
just the input values are important, but the relative positional
information of the inputs is also important. CNNs are used
primarily in machine vision tasks (Krizhevsky, Sutskever and
Hinton 2012) and language processing tasks (Kalchbrenner,
Grefenstette and Blunsom 2014). In machine vision tasks, the
magnitude, relative position, and combinations of pixels are
important for predicting what the pixels represent. In machine
language tasks the relative positions of words are an important
aspect to producing accurate translations.

CNN architectures include several layer types such as
convolutional layers, pooling layers, non-linearity layers and
fully connected layers (Albawi et al., 2017). In the
convolutional layer, the namesake of the neural network
architecture, is the convolution operation performed on the
input to the layer and one or more learned kernels to produce
a feature map. The convolution operation is a mathematical
function that describes how one function modifies another as
it is shifted over it. In practical terms, with a 2D input and kernel,
the dot product between both functions is calculated and stored in
the feature map. The kernel is then shifted by some number of
columns and the dot product is calculated again. A non-linear
function, such as a Rectified Linear Unit, is applied to the outputs
of the convolutional layers.

The next layer type is the pooling layers. In these layers, a fixed
filter is applied to the input to the layer. Commonly used filters
are averaging and maximum pooling filters which return the
average of a subset of the feature map or the maximum value
within a subset. Unlike the convolutional layer, the stride of this
operation is generally equal to the width of the filter. Commonly
in machine-vision tasks a 2 × 2 filter is used. A 2 × 2 max pooling
layer would reduce the size of the feature map by producing a new
feature map which is composed of the maximum values in each
2 × 2 grid in the input feature map.

FIGURE 2 | Fast Neutron Source MCNP Geometry (A) XZ and (B) YZ View.
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The last layer type commonly used in convolutional neural
networks are fully connected layers. These final layers take as
input the flattened final feature maps from the previous layers
and non-linearly combine them into a prediction. The weights
and biases in these layers, along with the kernels of the
convolutional layers, are trained by backpropagation algorithm
used to train other neural networks.

In nuclear applications, the relative position of materials to
each other is important information when predicting nuclear
quantities of interest such as k-eff. The k-eff of a given
configuration of fissile, moderating, and absorbing materials
is a function of where these materials are in 3-D space relative
to each other, along with their respective nuclear data. CNNs
produce predictions based on combinations of features which
incorporate this 3-D data. There are other deep neural network
architectures, such as recurrent (Liang and Hu, 2015) and
transformer networks (Han et al., 2022), that have similarly
been applied to machine vision tasks and therefore may also be
able to predict nuclear related figures of merit such as k-eff,
representativity, etc.

3 RESULTS AND DISCUSSION

This section discusses the initial optimization of the FNS using
the NSGA-II algorithm and the subsequent optimization using
the CNN-based surrogate models for the objective and constraint
functions.

3.1 Optimization of the FNS by NSGA-II
The target of this FNS optimization is a generic sodium cooled
fast reactor spectra. The objectives of this optimization are the

maximization of the neutron flux per source particle in the
experiment volume, the maximization of the representativity
of the flux spectra in the experiment volume and the
maximization of the change in k-eff when placing the target
material in the experiment volume. These objectives are used as
heuristics in place of the true objective of the FNS, which is to
produce configurations which minimize the uncertainty on a
target reactor concept propagated from nuclear data. Maximizing
the total flux per source particle would mean reducing the total
time required to complete a FNS experiment to sufficient
statistical certainty. Representativity, or the E similarity coefficient
in the SCALE manual (Rearden and Jessee 2018), is the angle
between two n-length vectors in n-dimensional space. A value of
0 means that the two vectors are perpendicular to each other, a value
of 1.0 would correspond to the two vectors pointing in the same
direction and are therefore proportional to each other. The integral
k-eff objective seeks to maximize the delta between the FNS
experiment and an integral experiment where the entire
experiment volume is filled with the material of interest. This
last objective approximates a potential use-case of the FNS
to perform integral experiment where the reactivity worth of
the target moderator in the system is being measured before
and after insertion. Maximizing the Δk-eff of that experiment
would make the practical matter of measuring the reactivity
difference easier.

These objectives were calculated by an MCNP source
calculation with a total uncertainty on the experimental
volume flux tally converged to <0.005% standard error. In
addition, a constraint on k-eff was enforced which required
all parents to have a k-eff below 0.95. This constraint was
calculated using MCNP and to a standard uncertainty of at
least 0.00150 dk-eff. An increasingly strict constraint on

FIGURE 3 | The Non-Dominated Sorting Genetic Algorithm-II (Deb et al., 2002).
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representativity based on the idea of simulated annealing was
also enforced. This constraint increased linearly over the first 50
generations of the optimization to E > 0.95. This constraint was
enforced such that if there were not enough individuals in the
parent population which met it, then it would be relaxed until at
least 20 individuals met the constraint. Enforcing the constraint
on representativity later in the optimization allows the
algorithm to explore areas on the design space that would
not be allowed by a strict constraint.

This optimization used three plate types: 9.75% enriched
uranium metal, polyethylene, and sodium metal. The initial
optimization of the FNS was run on the NECLUSTER at the
University of Tennessee. This NSGA-II algorithm was
implemented with the parameters described in Table 1. A
total of 8,100 potential patterns of the FNS were evaluated in
this optimization. Of these, 3,145 individual patterns met the k-eff
criteria and were evaluated for the neutron flux-based objectives.
The stopping criteria used for this optimization was number of
generations, which was selected due to taking approximately
3 days (wall time) to complete. The MCNP calculations of the
objective functions required the most computational time.

Figure 4 shows the average k-eff, representativity, total flux,
and the integral k-eff value (times 10). The integral value is
multiplied by 10 to show more detail in the data. Some features of
this figure are that the linearly increasing constraint on
representativity is obvious from both the linearly increasing
average representativity and the decreasing average total flux
over generations 34 to 53. Thereafter, the average total flux of the
parents increases slightly but plateaus at generation 61.

This optimization produced a Pareto front of FNS designs
which can be seen in Table 2. This set of individuals represent the
trade-off between the objective functions of representativity, total
flux and integral k-eff as found by the optimization algorithm.
The representativity of these individuals ranges from 0.9510 to
0.9789. The total flux in the experiment volume ranges from
0.00146 to 0.0041, and the Δk of the integral experiment ranges
from -0.00592 to +0.00195. Like previous analysis of a simplified
approximation of the FNS, the representativity of the flux in the
experiment volume and the total of that flux are negatively
correlated (-0.858) while the flux and Δk-eff are positively
correlated (0.810). An increase in Δk-eff will increase the total
flux in the experimental volume but at the expense of the ability of

the flux spectra to match the primarily fast target spectra as
measured by representativity.

3.2 Surrogate Model Optimization of
the FNS
The surrogate model optimization of the FNS used the same
objectives and constraint as the optimization described in Section
3.1, but with the CNN-based surrogate models as solvers for the
MCNP k-eff and source calculations required to evaluate the
objectives. The architectures of these networks were found by the
application of the Keras Tuner Python library (O’Malley, et al.,
2019) using the data produced by the NSGA-II optimization. The
hyper parameters found by this optimization can be found in
Table 3. Further discussion of the method of optimizing the
surrogate models will be presented in a forthcoming PhD
dissertation at the University of Tennessee by the lead author.

The surrogate-based optimization algorithm is as follows:

1. Initialize population of 100 individuals and evaluate for
objectives and constraint with MCNP.

2. Train surrogate models if more than 100 individuals have been
evaluated.

3. Run NSGA-II algorithm (Deb et al., 2002) with the parameters
described in Table 1, using the CNN-based surrogate models
as the objective and constraint solvers.

4. Evaluate the final Pareto front (80 individuals) from the
surrogate-based optimization with MCNP

5. If the total number of generations equals the stopping
criteria, exit.

6. Return to Step #2

The data produced by the outer loop of the optimization,
whereMCNP is used to calculate the objectives and the constraint
functions for every individual, was used for the training of the
surrogate models used to evaluate the objectives of the inner loop
of the optimization. A minimum of 100 valid individuals are
required for training to occur, so after the first generation only the
k-eff surrogate model was trained. The objective functions were
trained after generation 2. The surrogate models were trained for
500 epochs using 90% of the available training data with 10% used
for validation. The weights and biases of the epoch which

TABLE 1 | Description of NSGA-II and surrogate NSGA-II hyperparameters.

Description NSGA-II hyperparameters Surrogate NSGA-II hyperparameters

Stopping Criteria 100 Generations after initial generation 10 Generations after initial generation
Parent Population 20 80
Child Population 80 1,920
Crossover Rate 50% 50%
Crossover Type Single point crossover Single point crossover
Mutation Rate 10%, per plate 10%, per plate
Mutation Type Single plate material change Single Plate Material Change
Initial Population 100 randomly created 80 Pareto front individuals selected from all individuals evaluated with

MCNP plus 1,920 randomly created
Objective/Constraint Solver MCNP CNN surrogate
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minimized the validation error were used as the surrogate model
for that generation. The models were initialized with random
weights at the beginning of the optimization.

The ability of the surrogate models to predict their respective
values can be quantified by calculating the mean squared error
(MSE) of the predictions to the true values as defined by,

Mean Squared Error � 1
n
∑
n

n�1
(xi − x̂i)2.

Where, xi and x̂i are the true and predicted values.
TheMSE of each of the surrogate models initially are relatively

large and decrease as the number of training examples increases.
The surrogate model predicting k-eff is the first to stabilize at a
value of approximately 1.0E-01 at generation 10. During the
optimization the training data for this model increases by 80
in each step. If an individual does not have a k-eff below 0.95, then
the three objective functions are not calculated for it. Figure 5
shows the MSE of the prediction of the objective and constraints
versus the true, MCNP-calculated, values for all individuals
produced in each generation. The MSE of the surrogate
models of the objective functions plateau at approximately

FIGURE 4 | Average parent objective function and constraint evaluation during NSGA-II optimization.

TABLE 2 | Final 20 individuals NSGA-II optimization.

Individual # k-eff Representativity Total flux per
source particle

Delta k-eff

1 0.94695 0.97893 0.002218 0.00002
2 0.93427 0.97825 0.002068 0.00144
3 0.91207 0.97750 0.001461 0.00191
4 0.91730 0.97548 0.001545 0.00405
5 0.94904 0.97460 0.002740 0.00178
6 0.91365 0.97293 0.001757 0.00468
7 0.93771 0.97225 0.002202 −0.00195
8 0.93805 0.96988 0.002228 0.00393
9 0.93879 0.96869 0.002518 0.00296
10 0.94841 0.96764 0.002966 0.00374
11 0.94323 0.96562 0.002991 0.00086
12 0.92581 0.96504 0.002105 0.00592
13 0.94596 0.96129 0.003270 −0.00027
14 0.92903 0.96045 0.002396 0.00471
15 0.94987 0.95876 0.003172 0.00266
16 0.94908 0.95574 0.003736 0.00122
17 0.94713 0.95333 0.003174 0.00268
18 0.94721 0.95227 0.003905 0.00150
19 0.94859 0.95187 0.004131 −0.00151
20 0.94371 0.95095 0.003571 0.00450

TABLE 3 | FNS CNN surrogate model hyperparameters.

Hyper parameter k-eff Total flux Representativity Integral K-Eff

1st Conv. Width 32 40 56 16
2nd Conv. Width 64 64 16 32
3rd Conv. Width 64 40 48 40
4th Conv. Width 40 24 16 24
5th Conv. Width N/A N/A N/A 40
6th Conv. Width N/A N/A N/A 16
Kernel Size 4 4 3 3
Dense Layer Width 32 256 32 96
Max Pool Size 9 4 10 7
# of Hidden Conv. Layers 3 3 3 5
Dropout Percentage 0.5 0.2 0.5 0.4
Learning Rate 0.0208839 0.0160466 0.0317394 0.0018139
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generation 36 for the experimental k-eff value surrogate,
generation 65 for the representativity surrogate and generation
80 for the total flux surrogate.

During this optimization, a total of 8,100 individuals were
evaluated with MCNP and 2,120,000 individuals were evaluated
with the surrogate models. Of the 8,100 patterns evaluated with
MCNP a total of 5,868 individuals met the k-eff constraint and
therefore evaluated with a MCNP source calculation. The average
objective function and k-eff of all the individuals in the parent
population is plotted in Figure 6. Like the NSGA-II algorithm
before, the constraint on representativity that is maximally
applied at generation 50 has a visible effect on the parent
population.

The objective and constraint evaluations of the Pareto front
individuals are provided in Table 4. The representativity of these
individuals ranged between 0.95075 and 0.99502, the total flux
per source neutron between 0.00077 and 0.00512 and the
maximum and minimum integral Δk-eff values were +0.00717
and -0.00490, respectively. Like in the NSGA-II calculation,
representativity and total flux per source neutron had a strong
negative correlation (-0.95096).

3.3 Comparison of the Optimizations
The surrogate-based NSGA-II optimization of the FNS produced a
Pareto front of potential FNS designs which outperformed those
produced by the standard NSGA-II algorithm. Table 5 presents the
average, maximum and minimum of the objectives and constraint
functions of the final Pareto front of each calculation. The surrogate-
based optimization produced individuals with higher
representativity, total flux per source particle and both a larger
positive and negative integral Δk-eff. The final Pareto front of both
calculations plotted by representativity vs. total flux per source
particle and integral experimental k-eff vs. representativity is
presented in Figure 7 and Figure 8. These figures show that the
surrogate-model based optimization produced a suite of individuals
which better optimize the objectives.

A total of 8,100 potential FNS patterns were evaluated in during
the both the NSGA-II and NSGA-II surrogate optimizations. In the
standard NSGA-II calculation a total of 3,145 potential patterns met
the k-eff constraint of 0.95. During the NSGA-II with surrogate
model, a total of 5,845 potential patterns met the k-eff constraint.
This is an increase of over 85% more viable FNS configurations
evaluated in the surrogate accelerated calculation.

FIGURE 6 | Average objective and constraint evaluation during surrogate NSGA-II optimization for all parents in each generation.

FIGURE 5 | MSE of surrogate models during optimization.
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The trade-off of this increase in both calculational efficiency
and in the more optimized Pareto Front is computational time
for both the increased number of MCNP calculations and for the
training and utilizing of the surrogate models. The increased
number of MCNP calculations is a by-product of more
effectively producing potential FNS designs and could be
resolved by decreasing the number of the parent population.
In the first time step the training of the surrogate models

required an average of 2.3 min. By the final time step this
increased to a maximum of 33 min. This increase in time
requirement could be offset by capping the total number of
examples used for surrogate model training or by reducing the
size and complexity of the surrogate models themselves. Once
trained, the surrogate models required on average a total of
approximately 7.5 s to evaluate the 1,920 unique children in
each interior GA step.

TABLE 5 | Average, Minimum and Maximum Constraint and Objective Functions of Final Pareto Front of NSGA-II and NSGA-II Surrogate Calculations. Mean values are
italicized with the minimum and maximum values given in brackets below.

NSGA-II Surrogate NSGA-II % Difference

k-eff 0.93829, 0.91207, 0.94987 0.94102, 0.84565, 0.94984 0.003% [−7.3%, 0.3%]
Representativity 0.96557, 0.95095, 0.97893 0.99502, 0.95075, 0.97402 1.6% [−0.02%, 0.9%]
Total Flux Per Source Particle 0.00271, 0.00146, 0.00413 0.00304, 0.00077, 0.00512 24% [−47%, 12%]
Integral k-eff 0.00592, -0.00195, 0.00224 0.00209, -0.00490, 0.00717 −6.7% [151%, 21%]

TABLE 4 | Final 100 individuals CNN-surrogate NSGA-II optimization.

Ind.
#

k-eff Rep Total
flux

Int
Δk-eff

Ind.
#

k-eff Rep Total
flux

Int
Δk-eff

1 0.86656 0.99502 0.00085 −0.00058 41 0.94480 0.97322 0.00303 0.00381
2 0.84565 0.99483 0.00077 −0.00128 42 0.94430 0.97188 0.00280 0.00645
3 0.90486 0.99476 0.00110 0.00037 43 0.94883 0.97118 0.00352 0.00157
4 0.90453 0.99462 0.00106 0.00148 44 0.94627 0.97090 0.00307 0.00400
5 0.88307 0.99409 0.00092 0.00303 45 0.94724 0.97068 0.00339 0.00256
6 0.94573 0.99409 0.00176 0.00003 46 0.94332 0.97064 0.00317 0.00430
7 0.94834 0.99308 0.00192 0.00116 47 0.94785 0.96974 0.00344 0.00199
8 0.94824 0.99297 0.00185 −0.00179 48 0.94906 0.96917 0.00357 0.00157
9 0.94705 0.99280 0.00187 −0.00385 49 0.94334 0.96841 0.00322 0.00327
10 0.94807 0.99187 0.00201 0.00203 50 0.94213 0.96836 0.00324 0.00393
11 0.94601 0.99114 0.00197 0.00304 51 0.94366 0.96778 0.00309 0.00459
12 0.94664 0.99079 0.00208 0.00229 52 0.94655 0.96706 0.00338 0.00465
13 0.94800 0.98978 0.00200 −0.00348 53 0.93790 0.96665 0.00303 0.00529
14 0.94374 0.98886 0.00172 −0.00448 54 0.94861 0.96638 0.00346 0.00184
15 0.94591 0.98876 0.00230 0.00208 55 0.94789 0.96625 0.00344 0.00261
16 0.88478 0.98852 0.00110 0.00502 56 0.94633 0.96557 0.00350 0.00167
17 0.94551 0.98746 0.00239 0.00278 57 0.94892 0.96512 0.00356 0.00307
18 0.93909 0.98695 0.00181 0.00415 58 0.94965 0.96450 0.00413 0.00157
19 0.94767 0.98596 0.00225 −0.00348 59 0.94463 0.96399 0.00357 0.00343
20 0.94870 0.98494 0.00251 0.00296 60 0.94700 0.96272 0.00419 0.00030
21 0.94806 0.98472 0.00252 −0.00003 61 0.94698 0.96081 0.00430 −0.00065
22 0.93854 0.98468 0.00188 −0.00374 62 0.94770 0.96068 0.00435 0.00118
23 0.94867 0.98407 0.00253 0.00192 63 0.94942 0.96004 0.00430 0.00121
24 0.94735 0.98385 0.00240 0.00301 64 0.94336 0.95989 0.00432 0.00135
25 0.92275 0.98374 0.00172 0.00576 65 0.94886 0.95958 0.00456 0.00107
26 0.94248 0.98346 0.00207 −0.00490 66 0.94951 0.95917 0.00458 0.00181
27 0.94835 0.98342 0.00237 0.00348 67 0.94756 0.95866 0.00452 0.00330
28 0.94765 0.98300 0.00266 0.00090 68 0.94824 0.95809 0.00479 0.00130
29 0.94594 0.98173 0.00233 0.00524 69 0.91854 0.95791 0.00279 0.00717
30 0.94690 0.98116 0.00266 0.00408 70 0.94885 0.95771 0.00459 0.00290
31 0.94897 0.97944 0.00282 0.00201 71 0.94605 0.95724 0.00434 0.00338
32 0.94878 0.97897 0.00267 0.00249 72 0.94886 0.95590 0.00433 0.00344
33 0.94429 0.97866 0.00280 0.00213 73 0.94709 0.95555 0.00473 0.00371
34 0.94766 0.97851 0.00283 0.00327 74 0.94565 0.95527 0.00476 0.00243
35 0.94557 0.97816 0.00282 0.00388 75 0.94688 0.95517 0.00448 0.00508
36 0.94740 0.97655 0.00288 −0.00150 76 0.94799 0.95497 0.00486 0.00351
37 0.94984 0.97601 0.00315 −0.00178 77 0.94526 0.95436 0.00458 0.00443
38 0.94662 0.97463 0.00286 0.00258 78 0.94195 0.95367 0.00453 0.00575
39 0.94811 0.97421 0.00304 0.00197 79 0.94922 0.95197 0.00512 0.00101
40 0.94567 0.97381 0.00266 0.00411 80 0.94733 0.95075 0.00472 0.00513
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4 CONCLUSION

The work in this paper presents the benefit of accelerating a
genetic algorithm used for a multi-objective optimization of a
nuclear experiment using convolutional neural network surrogate
models comparing to a standard benchmark genetic algorithm.
These surrogate models are trained in-line during the genetic
algorithm and allow the evaluation of an increased number of
potential designs, which leads to an increase in all objective
functions. The architectures for the k-eff, representativity,
neutron flux and integral k-eff experiment surrogate
models are presented along with the methodology for
producing them. Future work includes further expanding the
use of the surrogate models for other useful objectives relevant for
selecting FNS designs and producing more surrogates for other
FNS designs targeting uncertainties in next-generation reactor
designs.
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