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In this work, the attribute of mathematical adjoints acquired from various CMFD (coarse-
mesh finite difference) accelerated nodal methods based on the nodal expansion method
(NEM) is presented. The direct transposition is implemented to the NEM-CMFD system
matrix that includes correction factors to acquire the adjoint flux. Three different
acceleration schemes are considered in this paper, which are, namely, CMFD,
pCMFD, and one-node CMFD methods, and the self-adjoint attribute of migration
operator for each acceleration scheme is studied. With regard to the one-node CMFD
acceleration, a mathematical description for encountering negative adjoint flux values is
given alongside an adjusted one-node CMFD scheme that stifles such an occurrence. The
overall features of the aforementioned acceleration methods are recognized through
analyses of 2D reactor problems including the KWU PWR 2D benchmark problem.
Further systematic assessment is conducted based on the first-order perturbation
theory, where the obtained adjoint fluxes are applied as weighting functions. It is
clearly shown that the adjusted one-node CMFD scheme results in an improved
reactivity estimation by excluding the presence of negative adjoint flux values.
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INTRODUCTION

The adjoint flux is often referred to as an importance function since it signifies the importance
of a neutron source at a certain phase-space contributing to fission reaction. Mathematically, it
could be shown that the first-order errors can be removed when the adjoint flux is utilized as a
weighting function, rendering it to be a preferred choice for perturbation theory–based
analyses and generation of point kinetic parameters (Ott and Neuhold, 1985). The
appraisal of adjoint flux can be performed by solving either the balance equation for itself
or the transpose of a balance equation for the forward flux. The acquired adjoint fluxes from
the former and latter methods are usually referred to as physical and mathematical adjoint
fluxes, respectively.

Notwithstanding the presented advantages of an adjoint flux, its acquisition related to nodal
methods is often regarded to be obscure. It is worthwhile to articulate that the reactor balance
equation of interest is a well-defined problem, which implies the accuracy of nodal solution can be
retained when corresponding current information is preserved. From such a perspective, correction
factors for the finite difference method (FDM) can be envisioned, which forces the net current
acquired from FDM-like representation to concur with that of the standalone nodal solution.
Whereupon, acceleration in the nodal calculation can be met, which is known as the coarse-mesh
finite difference (CMFD) method (Smith, 1983).
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The meaning of the physical adjoint flux, which is obtained
through discretization of balance equation for the adjoint flux
itself, is still subjected to ambiguity issues (Lewins, 1965). The
inclusion of discontinuity factors or super homogenization
factors, i.e., nodal equivalence theory, additionally complicates
the proper interpretation of physical adjoint.

On the contrary, the mathematical adjoint, which can be
harnessed via solving the transposed balance equation for the
forward flux, can be envisaged (Lawrence, 1984). However, the
direct transposition of continuous balance equation is not
practical and rather ambiguous for nodal methods that rely on
the usage of transverse leakage (Hong and Cho, 1995). A different
measure can be taken by transposing the discretized balance
equation under CMFD accelerated nodal methods, where
transverse leakage and its associated complexities are
incorporated via the correction factors in the system matrix.
The former and the latter ones are often referred to as direct-
mathematical adjoint and indirect-mathematical adjoint,
respectively. It is the latter approach that is widely
implemented, which will be cited as numerical adjoint
throughout this work.

A previous work states that negative adjoint flux values could
occur for the conventional CMFD method, which utilized the
analytic nodal method (ANM) solution while deducing the
correction factor (Müller, 2014). To overcome such an
unphysical anomaly, an additional correction was proposed;
however, it deteriorates the consistency of CMFD formulation.
In addition, no systematic evaluation of numerical adjoints from
different CMFD schemes has been conducted.

In this paper, the characteristics of numerical adjoint fluxes
obtained from nodal expansion method (NEM) solutions
accelerated via various CMFD schemes are investigated.
Especially, a systematic comparison is conducted between each
adjoint flux obtained from different CMFD schemes, e.g.,
conventional CMFD, partial current–based CMFD, and one-
node CMFD, based on the first-order perturbation theory. In
Coarse-Mesh Finite Difference–Based Acceleration Methods, the
basic concept and mathematical formulas regarding various
CMFD acceleration schemes are depicted. In Nodal Expansion
Method, a brief explanation concerning the nodal expansion
method is given. In Attributes of Numerical Adjoint Flux,
mathematical descriptions for attributes of numerical adjoints
are depicted including the occurrence of negative adjoint flux. In
Numerical Results, numerical results are presented alongside first-
order perturbation theory–based comparison. Finally,
conclusions are given in Conclusion.

COARSE-MESH FINITE
DIFFERENCE–BASED ACCELERATION
METHODS
The philosophy of the CMFD acceleration scheme is the
preservation of the reference net current information while
retaining the formulation of the finite difference method
(FDM), which is the simplest numerical measure to be taken.
Three different CMFD-based acceleration methods are

considered in this work, which are, namely, 1) conventional
CMFD, 2) partial current–based CMFD (pCMFD), and 3)
one-node CMFD.

Conventional CMFD Method
Figure 1 illustrates the balance for neutron flux within a node of
interest i, and its associated balance equation is expressed as
follows:

�Ji,i+1 − �Ji−1,i + ΣriΔxi
�ϕi �

1
k
]∑

fi

Δxi
�ϕi (1)

where �Ji,i+1 denotes the net neutron current from node i
toward its adjacent node i+1, k represents the
multiplication factor, and all the other notations are those
of the convention. By approximating the gradient of the
flux to be linear in the diffusion theory, one garners the
following equation which is known as the finite difference
method (FDM):

�Ji,i+1 � − ~Di,i+1(�ϕi+1 − �ϕi) (2)

~Di,i+1 �
2(Di

Δxi
)(Di+1

Δxi+1)
Di
Δxi

+ Di+1
Δxi+1

(3)

The correction factor D̂i,i+1 can be envisioned for Eq. 2 which
alters the net current to be the reference current as follows:

�J
ref
i,i+1 � − ~Di,i+1(�ϕi+1 − �ϕi) − D̂i,i+1(�ϕi+1 + �ϕi), (4)

D̂i,i+1 � − ~Di,i+1(�ϕi+1 − �ϕi) − �J
ref
i,i+1

(�ϕi+1 + �ϕi)
. (5)

The neutron balance equation, i.e., Eq. 1, is known to be a well-
defined problem, in which a single solution (eigenvalue) exists for
a certain current value. Hence, the inclusion of Eqs 4, 5 while
implementing the FDM would provide an equivalent solution to
that of the reference, which is exploited for acquiring �Jrefi,i+1 (Smith,
1983). The simplicity of the FDM with its coarse node size will
manifest as a reduction in the computing burden (acceleration),
hence attaining the name of coarse-mesh finite difference
(CMFD) method.

Partial Current–Based CMFD Method
It is apparent that the preservation of partial currents will
guarantee retaining net current. From such a perspective, two
correction factors for incoming and outgoing partial currents can
be considered as depicted in Figure 2, attaining the name of
partial current–based CMFD (pCMFD) method (Cho et al.,
2003):

�J
+ref
i,i+1 � −

~Di,i+1(�ϕi+1 − �ϕi) + 2D̂
+
i,i+1�ϕi

2
(6)

�J
−ref
i,i+1 �

~Di,i+1(�ϕi+1 − �ϕi) + 2D̂
−
i,i+1�ϕi+1

2
(7)

The net current can be expressed as

�J
ref
i,i+1 � �J

+ref
i,i+1 − �J

−ref
i,i+1 � − ~Di,i+1(�ϕi+1 − �ϕi) − (D̂+

i,i+1�ϕi + D̂
−
i,i+1�ϕi+1) (8)
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where

D̂
+
i,i+1 � −

~Di,i+1(�ϕi+1 − �ϕi) + 2�J+refi,i+1
2�ϕi

(9)

D̂
−
i,i+1 � −

~Di,i+1(�ϕi+1 − �ϕi) − 2�J−refi,i+1
2�ϕi+1

(10)

One-Node CMFD Method
The correction factors for the preservation of net current and
surface flux could be introduced separately for each node as
shown in Figure 3, where incoming partial current acts as a
boundary condition for invoking kernel calculation (Shin and
Kim, 1999). Such an approach differs from the conventional
CMFD and pCMFD methods which introduce correction
alongside two contiguous nodes:

�Ji,i+1 � −2Di

Δxi
(�ϕs − �ϕi) − 2D̂

R

i

Δxi
(�ϕs + �ϕi) (11)

�Ji,i+1 � −2Di+1
Δxi+1

(�ϕi+1 − �ϕs) − 2D̂
L

i+1
Δxi+1

(�ϕs + �ϕi+1) (12)

Equating Eqs 11, 12 yields the following expression for the
surface flux:

�ϕs �
Δxi+1(Di − D̂

R

i )�ϕi + Δxi(Di+1 + D̂
L

i+1)�ϕi+1

Δxi+1(Di + D̂
R

i ) + Δxi(Di+1 − D̂
L

i+1)
(13)

where

D̂
R

i � −
Δxi

�J
ref
i,i+1 + 2Di(�ϕref

s − �ϕi)
2(�ϕref

s + �ϕi)
(14)

D̂
L

i+1 � −
Δxi+1 �J

ref
i,i+1 + 2Di+1(�ϕi+1 − �ϕ

ref
s )

2(�ϕref
s + �ϕi+1)

(15)

Originally devised for parallel acceleration, the
aforementioned acceleration scheme, which is referred to as
one-node CMFD, can still be applied in a similar manner to
that of the conventional CMFD or pCMFD method. Note that,
for such an implementation, preservation of net current becomes
irrelevant to surface flux values.

NODAL EXPANSION METHOD

As aforementioned, the underlying philosophy of CMFD-based
acceleration is retaining current information from higher-order
solutions, which is often the nodal calculation for whole-core
analyses. In this work, the well-known nodal expansion method
(NEM) was implemented as a kernel calculation, which is an
assessment of current information and its corresponding
correction factors for the neighboring two-node configuration.
The correction factor is then considered during the formulation
of discretized migration operator being analogous to that of the
simple FDM, and the overall procedure is often referred to as
NEM-CMFD calculation (Downar et al., 2009).

The detailed 1D flux and the transverse leakage term for a certain
direction of interest are expanded via fourth-order and second-order
polynomial basis functions (Legendre polynomials), respectively:

FIGURE 1 | Balance within a node of interest.

FIGURE 2 | Visualization of pCMFD correction schemes.
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ϕg(ξ) � ag,0P0(ξ) + ag,1P1(ξ) + ag,2P2(ξ) + ag,3P3(ξ)
+ ag,4P4(ξ) (16)

Lg(ξ) � Lg,0P0(ξ) + Lg,1P1(ξ) + Lg,2P2(ξ) (17)
P0(ξ) � 1, P1(ξ) � ξ, P2(ξ) � ξ2 − 1

12
,

P3(ξ) � ξ3 − 1
4
ξ, P4(ξ) � ξ4 − 3

10
ξ2 + 1

80
(18)

where ξ is the direction of interest, ag,i is the ith-order flux expansion
coefficient for group g, and Lg,i is the ith-order transverse leakage
expansion coefficient for group g. The determination of net current
then corresponds to calculation of flux expansion coefficients, where
transverse leakage information must be pre-determined before
invoking the NEM kernel calculation. Note that it is the presence
of transverse leakage that complicates the assessment of direct-
mathematical adjoint flux.

For a two-node NEM calculation, a total of 8G (G = number of
groups) coefficients must be determined, which requires the same
number of governing equations. Flux continuity (1G), current
continuity (1G), and zeroth, first, and second moment node balance
equations (2G for each) are envisioned for such a case, which results in a
generation of 8Gby 8Gmatrix equation. In contrast, a 4Gby 4Gmatrix
equation is formulated for a node at the boundary, where incoming
partial current information is used in lieu of continuity equations.

ATTRIBUTES OF NUMERICAL ADJOINT
FLUX

Accompanied by proper usage of nodal kernel(s), either aided
by transverse leakage or not, CMFD-based acceleration

provides an FDM-like matrix where correction factors
retain the net current information, rendering the solution
to be that of the nodal calculation. The numerical adjoint
can be readily calculated through the transpose of such a
matrix representation; however, the correction factors
manifest as a non-self-adjoint issue. Hence, the acquired
numerical adjoint deviates from the reference one that
possesses the self-adjoint property, where the extent of
deviation depends on the type of CMFD acceleration
scheme being utilized.

Self-Adjoint Issue
The multigroup diffusion equation can be written as follows:

Mgϕg �
χg
k
∑
G

g′�1
]Σf,g′ϕg′ + ∑

G

g′�1
(g′≠ g)

Σs,g′→gϕg′ (19)

where G and k represent the number of energy groups and
multiplication factor, Mg denotes the migration operator for
group g (Mgϕg: � −∇ ·Dg∇ϕg + Σr,gϕg), and all the other
notations are those of the convention. Note that, through
proper discretization, the given equation can be represented in
a matrix form. The numerical adjoint flux can then be calculated
by transposing Eq. 19:

M†
gϕ

†
g � 1

k
∑
G

g′�1
χg′]Σf,gϕ

†
g′ + ∑

G

g′�1
(g′≠ g)

Σs,g→g′ϕ
†
g′ (20)

where superscript dagger (†) signifies the adjoint operation.

FIGURE 3 | Visualization of one-node CMFD correction factors.

TABLE 1 | Migration matrix entries for CMFD methods.

Method ai,i ai,i−1 ai,i+1

FDM ~Di−1,i + ~Di,i+1 −~Di−1,i − ~Di,i+1
CMFD ~Di−1,i + D̂i−1,i + ~Di,i+1 − D̂i,i+1 − ~Di−1,i + D̂i−1,i −~Di,i+1 − D̂i,i+1
pCMFD ~Di−1,i + D̂

−
i−1,i + ~Di,i+1 − D̂

+
i,i+1 − ~Di−1,i + D̂

+
i−1,i −~Di,i+1 − D̂

−
i,i+1

One-node CMFD 2(Di−1+D̂R
i−1 )(Di+D̂L

i )
Δxi−1(Di−D̂L

i )+Δxi(Di−1+D̂R
i−1 )

+ 2(Di−D̂R
i )(Di+1−D̂L

i+1 )
Δxi(Di+1−D̂L

i+1 )+Δxi+1(Di+D̂R
i )

− 2(Di−1−D̂R
i−1)(Di−D̂L

i )
Δxi−1(Di−D̂L

i )+Δxi(Di−1+D̂R
i−1 )

− 2(Di+D̂R
i )(Di+1+D̂L

i+1 )
Δxi(Di+1−D̂L

i+1 )+Δxi+1(Di+D̂R
i )
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Mathematically, it could be shown that the continuous
migration operator for a certain group is self-adjoint (Ott and
Neuhold, 1985). Such a feature is retained for the FDM approach,
however, but not for the CMFD accelerated nodal calculation due
to the presence of correction factors. The discretized balance
equation can be generalized as follows:

ai,i−1�ϕi−1 + ai,i�ϕi + ai,i+1�ϕi+1 � si (21)
where ai,j represents the contribution from �ϕj for the neutron
balance concerning �ϕi and si denotes the source term for node i
containing both scattering and fission. Table 1 summarizes the
matrix entries for the FDM and CMFD methods, where only the
FDM approach retains the self-adjoint of the migration matrix,
i.e., ai−1,i � ai,i−1 and ai,i+1 � ai+1,i.

It could be observed that all the enumerated CMFD methods
do not retain the self-adjoint property for the group-wise
migration matrix. In addition, for the conventional CMFD
and one-node CMFD, it could be easily shown that the
absolute magnitude of corrections factors will dwindle with a
decrease in the mesh size, i.e., numerators for Eqs 5, 14, and 15
converge to zero:

− ~Di,i+1(�ϕi+1 − �ϕi) → �J
ref
i,i+1 (22)

− Di

Δxi/2(
�ϕ
ref
s − �ϕi) → �J

ref
i,i+1 (23)

However, correction factors for pCMFD do not converge to
zero like the other two CMFD-based acceleration schemes:

D̂
+
i,i+1 � −

~Di,i+1(�ϕi+1 − �ϕi) + 2�J+refi,i+1
2�ϕi

� Jrefi,i+1 − 2�J+refi,i+1
2�ϕi

�
(�J+refi,i+1 − �J

−ref
i,i+1 ) − 2�J+refi,i+1

2�ϕi

� −
�J
+ref
i,i+1 + �J

−ref
i,i+1

2�ϕi

.

(24)
The inclusion of correction factors can be expressed in the

following manner:

(M + δM1 + δM2)ϕCMFD � 1
k
FϕCMFD (25)

where ϕCMFD represents the CMFD-based flux and δM1 and δM2

denote diagonal and off-diagonal correction entries, respectively.
The transpose of Eq. 25 can be written as

(M† + δM†
1 + δM†

2)ϕ†
CMFD � 1

k
F†ϕ†

CMFD (26)

Since the diagonal matrix is self-adjoint, i.e., δM1 � δM†
1,

subtraction of the two equations above garners

(M + δM1)(ϕCMFD − ϕ†
CMFD) + (δM2ϕCMFD − δM†

2ϕ
†
CMFD)

� 1
k
F(ϕCMFD − ϕ†

CMFD).
(27)

If δM2 � δM†
2 is satisfied, ϕCMFD � ϕ†CMFD becomes the

solution for Eq. 27, which corresponds to the preservation of
self-adjoint feature.

Since CMFD-induced and one-node CMFD–induced
correction factors converge to zero with an increase in the
number of nodes, their corresponding numerical adjoints
would also converge to the reference, which is not expected
for the pCMFD-based numerical adjoint flux.

Negative Adjoint Flux Issue
The correction factors in the discretized balance equation could result
in the occurrence of negative numerical adjoint flux values as pointed
out in previous studies which implemented the analytic nodal
method (ANM) while deducing correction factors (Müller, 2014).
Such an anomaly ensues when the off-diagonal and its
corresponding diagonal entry of the migration matrix attain
the same sign, which cannot be prevented for the conventional
CMFD method. To circumvent such an issue, a different
formula for net current preservation can be partially
utilized under certain conditions; however, such an
approach deteriorates the consistency in the CMFD
formulation, i.e., ad hoc up to a certain extent.

Recalling that the usage of one-node CMFD in a two-
node manner, i.e., not parallelized, could preserve the net
current regardless of its surface flux values, one could exclude
the occurrence of negative adjoint flux values through proper
adjustment of the surface flux values. It is noteworthy to articulate
that consistent usage of the same surface flux value while

FIGURE 4 | One-group reactor problem.

TABLE 2 | Cross-section (XS) for the one-group reactor problem.

Assembly Σtr Σa ν∑f

TYPE 1 0.3650 0.0650 0.0700
TYPE 2 0.3650 0.0750 0.0700

TABLE 3 | Calculated multiplication factors for the one-group reactor problem.

Method K-EFF K-EFF (ADJ)

NEM-CMFD (1 × 1) 1.071408 1.071408
NEM-pCMFD (1 × 1) 1.071408 1.071408
NEM-1NCMFD (1 × 1) 1.071408 1.071408
FDM (50 × 50) 1.071408 1.071408

*(1 × 1) and (50 × 50) represent fuel assembly nodalization.
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formulating the correction factors is responsible for the
preservation of the current.

From Eqs 14, 15, it could be recognized that the one-node
CMFD correction factors have the same unit as the diffusion
coefficient. Since it is unphysical for the correction
factor–included diffusion coefficient to be negative, the
following conditions can be envisioned:

�ϕ
ref
s ≤

Δxi

4Di

∣∣∣∣∣�Jrefi,i+1
∣∣∣∣∣ (28)

�ϕ
ref
s ≤

Δxi+1
4Di+1

∣∣∣∣∣�Jrefi,i+1
∣∣∣∣∣ (29)

Eqs 28, 29 represent the criterion for correction factors D̂
R
i

and D̂
L
i+1 being less than their associated diffusion coefficient in

magnitude, respectively. Through adjustment of surface flux to
suffice Eqs 28, 29, the occurrence of negative numerical adjoint
flux can be stifled.

NUMERICAL RESULTS

One-Group Reactor Problem
To test the deviation in the self-adjoint feature for various
CMFD-based numerical adjoint fluxes, a simple one-group
two-dimensional reactor problem was considered as shown in
Figure 4. Two types of assemblies with a length of 20 cm are
considered as shown in the cartoon, where their cross-section
(XS) values are enumerated in Table 2.

FIGURE 5 | CMFD-based numerical adjoint fluxes.

FIGURE 6 | Percentage error for forward and adjoint fluxes with a node size of 20 cm.

Frontiers in Energy Research | www.frontiersin.org April 2022 | Volume 10 | Article 8737316

Oh and Kim CMFD-Based Numerical Adjoint

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


For the acquisition of numerical adjoints, the nodal
expansion method (NEM) kernel was utilized, whereas the
reference adjoint flux was obtained via the FDM while dividing

each assembly into equally spaced 2,500 nodes (50 × 50 per
assembly). Since the FDM-based numerical adjoint always
retains the self-adjoint feature, the acquired fine node-based
result was regarded as a reference after condensing into an
assembly-wise value according to the following equation
(Downar et al., 2009):

∫
∞

0

dE∫
V

dVϕ†(r, E′)ϕ(r, E′) � 1.0 (30)

The acquired multiplication factors for both forward and
adjoint calculations are given in Table 3, where all the cases
exhibit the same value.

FIGURE 7 | Percentage error for forward and adjoint fluxes with a node size of 10 cm.

FIGURE 8 | KWU 2D core configuration.

TABLE 4 | Calculated multiplication factors for the KWU 2D problem.

Method K-EFF K-EFF (ADJ)

NEM-CMFD (1 × 1) 1.165863 1.165863
NEM-pCMFD (1 × 1) 1.165863 1.165863
NEM-1NCMFD (1 × 1) 1.165863 1.165863
FDM (100 × 100) 1.165694 1.165694

*(1 × 1) and (100 × 100) represent fuel assembly nodalization.
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Figure 5 illustrates the acquired adjoint fluxes from each
acceleration scheme, where normalization according to Eq. 30
was performed for comparison. It could be recognized that
only the pCMFD-based numerical adjoint flux exhibits a
different distribution. Figure 6 summarizes the calculation
result where the absolute value of percentage error for each
case is given for both forward and adjoint fluxes. Note that the
numerical adjoint flux exhibits the most conspicuous error for

the TYPE 2 assembly region due to its enlarged absorption XS
value:

ERR(%) �
∣∣∣∣∣∣∣∣
ϕref − ϕCMFD

ϕref

∣∣∣∣∣∣∣∣ × 100. (31)

As aforementioned, the deviation from the self-adjoint feature
weakens as the size of the node dwindles. A similar analysis was

TABLE 5 | Reactivity change (pcm) estimation for perturbation case 1.

Case 1 ΔΣa,g � +30% ΔΣa,g � −30%
Method Δρ (direct) Δρ (first

order)
Difference Δρ (direct) Δρ (first

order)
Difference

CMFD 516.46 598.99 82.53 −414.69 −481.39 −66.70
pCMFD 516.46 406.11 −110.35 −414.69 −298.90 115.79
1NCMFD 516.46 598.27 81.82 −414.69 −480.97 −66.28
1NCMFD* 516.46 598.27 81.82 −414.69 −480.97 −66.28
Uniform 516.46 296.91 −219.55 −414.69 −212.99 201.70

TABLE 6 | Reactivity change (pcm) estimation for perturbation case 2.

Case 2 ΔΣa,g � +30% ΔΣa,g � −30%
Method Δρ (direct) Δρ (first

order)
Difference Δρ (direct) Δρ (first

order)
Difference

CMFD 11.74 12.88 1.14 −10.02 −10.95 −0.93
pCMFD 11.74 40.09 28.35 −10.02 −34.40 −24.38
1NCMFD 11.74 12.41 0.66 −10.02 −10.55 −0.53
1NCMFD* 11.74 12.41 0.67 −10.02 −10.55 −0.53
Uniform 11.74 40.77 29.03 −10.02 −35.17 −25.15

TABLE 7 | Reactivity change (pcm) estimation for perturbation case 3.

Case 3 ΔΣa,g � +30% ΔΣa,g � −30%
Method Δρ (direct) Δρ (first

order)
Difference Δρ (direct) Δρ (first

order)
Difference

CMFD 10.12 11.31 1.19 −8.04 −8.95 −0.91
pCMFD 10.12 48.55 38.43 −8.04 −38.58 −30.54
1NCMFD 10.12 11.01 0.89 −8.04 −8.71 −0.67
1NCMFD* 10.12 11.01 0.88 −8.04 −8.71 −0.67
Uniform 10.12 52.95 42.82 −8.04 −42.32 −34.28

TABLE 8 | Reactivity change (pcm) estimation for perturbation case 4.

Case 4 ΔΣa,g � +80% ΔΣa,g � −80%
Method Δρ (direct) Δρ (first

order)
Difference Δρ (direct) Δρ (first

order)
Difference

CMFD 6.93 −0.26 −7.19 −1.04 −0.03 1.01
pCMFD 6.93 293.16 286.23 −1.04 −33.88 −32.84
1NCMFD 6.93 −0.31 −7.24 −1.04 −0.01 1.03
1NCMFD* 6.93 1.18 −5.75 −1.04 −0.21 0.83
Uniform 6.93 980.98 974.05 −1.04 −109.64 −108.60
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FIGURE 9 | Fast group numerical adjoint flux for the KWU 2D problem.

FIGURE 10 | Thermal group numerical adjoint flux for the KWU 2D problem.
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performed by imposing a node size of 10 cm, where reduction in
the adjoint flux error is observed for both CMFD and one-node
CMFD (1NCMFD) cases as depicted in Figure 7.

KWU 2D Benchmark Problem
The KWU PWR 2D benchmark problem has been considered
while excluding the presence of soluble boron under fully rodded
conditions (Benchmark Source Situation, 1985). The
configuration of the reactor problem is given in Figure 8
alongside four different positions for imposing localized
perturbation in the absorption XS.

The attainment of reference adjoint flux was done in a
similar fashion to that of one-group reactor problem while
dividing each assembly into equally spaced 10,000 nodes (100
× 100 per assembly). Table 4 juxtaposes the calculated
multiplication factors, where the same values are obtained
regardless of the CMFD acceleration schemes as expected.
Note that each assembly was taken as a single node during the
CMFD accelerated nodal calculation.

The acquired numerical adjoint fluxes for both fast and thermal
groups are shown in Figures 9, 10, where pCMFD-based results do
not conform with the other results. In addition, negative adjoint flux
values (red color) are observed for the thermal group adjoint flux in
the peripheral regions as depicted in Figure 10, where the surface flux
attained from the NEM kernel calculation was directly utilized for
one-node CMFD acceleration, i.e., no correction was made for
acquisition of correction factors.

In order to stifle the occurrence of negative adjoint flux as
shown in Figure 10, the surface flux was adjusted as follows to
alter the correction factor to be zero when one of Eqs 28, 29 is met
during a one-node CMFD calculation. The resulting numerical
adjoint is illustrated in Figures 11, 12, where no negative values
are observed:

�ϕ
ref
s � −1

2
· Δxi

�J
ref
i,i+1

Di
+ �ϕi for D̂

R

i (32)

�ϕ
ref
s � 1

2
· Δxi+1 �J

ref
i,i+1

Di+1
+ �ϕi+1 for D̂

L

i+1 (33)

For a systematic comparison between the numerical
adjoint fluxes, the first-order perturbation theory was
utilized, where assessment in the change of reactivity was
made and compared with the reference value. Note that the
reference reactivity change was evaluated via a direct solution
of the perturbed system. The reactivity change can be
estimated as follows:

Δρ � ∫∞

0
∫
V
dEdVϕ†

0(r, E)(λ0ΔF − ΔM)ϕ0(r, E)
∫∞

0
∫
V
dEdVϕ†

0(r, E)F0ϕ0(r, E)
(34)

where λ denotes the reciprocal of multiplication factor, F and M
represent augmented fission and migration operators,
respectively, and all the other notations are those of the
convention.

Four different perturbation scenarios are envisaged as shown
in Figure 8, where a change in the absorption XS was locally
imposed (yellow colored assemblies). The extent of variation in
the XS compared to its original value was set to be 30% for cases 1
to 3 and 80% for case 4. Two different adjoint fluxes are
considered for the one-node CMFD method, namely, the
original and the adjusted one. Note that the former result is
subjected to a negative value issue. The calculated results are
enumerated from Tables 5–8.

Where the asterisk denotes the adjusted one-node CMFD
numerical adjoint and UNIFORM indicates the usage of unit
vector while estimating reactivity change according to the first-

FIGURE 11 | One-node CMFD–based fast group numerical adjoint flux for the KWU 2D problem. The adjusted result is denoted with an asterisk (*).
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order perturbation theory. It could be observed that the
exploitation of one-node CMFD–based adjoint flux renders
the estimation to be more accurate compared to other
approaches. Especially, for the perturbation in the reflector
region, i.e., case 4, only the negative adjoint flux
issue–resolved one-node CMFD exhibits a reliable result.

CONCLUSION

In this work, attributes of numerical adjoint fluxes that are
obtained from various CMFD-based acceleration methods, e.g.,
conventional CMFD, pCMFD, and one-node CMFD, are
investigated alongside a thorough mathematical description. It
is noteworthy to mention that one-node CMFD formulation was
employed under the two-node configuration, i.e., not in a
parallelized manner. With the exploitation of the NEM kernel,
the CMFD correction factors that are introduced in the migration
operator matrix render such a matrix to be non-self-adjoint for all
the presented CMFD acceleration schemes. Especially, it was
found that the pCMFD-based numerical adjoint flux cannot retain
the self-adjoint feature of a migration operator regardless of its
mesh size, insinuating its inherent limitation for acquiring a
reliable estimation for adjoint information. In addition, the
occurrence of negative adjoint flux values was encountered for
both conventional CMFD and one-node CMFD methods, which
result in an erroneous reactivity estimation when employed as a
weighting function for the first-order perturbation theory.

Mathematically, the preservation of net current information is
independent of the choice of surface flux value if it is consistently
applied for the generation of correction factors regarding the one-
node CMFD method under the two-node configuration.
Nevertheless, the magnitude of such correction factors, which has

a unit of length, must not exceed the given diffusion coefficient to
prevent encountering negative adjoint flux values. Hence, an
adjustment scheme in the surface flux to circumvent such an
issue while deducing the correction factors was proposed
regarding the one-node CMFD method. A systematic analysis
based on the first-order perturbation theory vividly attests to the
effectiveness of employing the adjusted one-node CMFD–based
numerical adjoint flux concerning a localized perturbation where
a negative adjoint flux originally appeared. The stability analysis for
the proposed surface flux–adjusted one-node CMFD acceleration
scheme will be deliberated in the near future.
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FIGURE 12 | One-node CMFD–based thermal group numerical adjoint flux for the KWU 2D problem. The adjusted result is denoted with an asterisk (*).
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