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In order to further reduce the impact of renewable energy forecast errors on the system
scheduling plan, this paper proposes an intraday rolling scheduling strategy for systems with
following units based on two-stage stochastic programming. Firstly, the nonparametric kernel
density is used to estimate the probability density function of wind and photovoltaic power
prediction errors. The first stage is to pre-decide the operating state of the following unit with
the goal of minimizing the start-stop cost of the fast unit. Then, based on the determined start-
stop information in the second stage, the active power output of each unit is optimizedwith the
goal of the lowest expected cost of the overall system operation. Finally, the objective function
is linearized to transform the model into a mixed integer linear programming problem, which
can be solved with the help of the solver software GUROBI. Through the analysis of practical
examples, it is verified that the built model can reduce the number of starts and stops of the
following units, reducing the operating cost of the power system and increasing the rate of
renewable energy on-grid, which has more practical application significance.

Keywords: renewable energy, intraday scheduling, two-stage stochastic programming, following units,
nonparametric kernel density estimation, start-stop state

1 INTRODUCTION

With a strong vision of “peak carbon” and “carbon neutral” goals (Han et al., 2021; Lu 2021; Shang
2021), the grid connection of a high proportion of renewable energy represented by wind power has
become inevitable (Qian et al., 2021; Sheng et al., 2021). However, because of the characteristics of
wind power (such as volatility, low scheduling, and the existence of prediction errors) (Notton et al.,
2018), the generation schedule mode of traditional power grids and the regulation capacity of
conventional units can no longer adapt to the development strategy of future power grids (Makarov
et al., 2011; Botterud et al., 2013). Therefore, in order to promote the decarbonization of electricity
and increase the utilization rate of renewable energy into the grid, it is crucial to study how to fully
exploit the system regulation potential for the grid to develop the dispatching plan.

The forecast accuracy of renewable energy is negatively correlated with the forecast horizon.
Intraday dispatch has become an important method to deal with the uncertainty of wind power. In
(Zhang et al., 2011; Yang et al., 2014), the intraday power generation plan is regarded as the relation
between the day-ahead power generation plan and the real-time dispatching plan, which can make
coordinated dispatching under various time scales.

Considering the long start-stop time and high start-stop cost of conventional thermal power units,
when the random variables of the system are uncertain, it is impossible to change the unit operation
plan through real-time decision-making. A random rolling plan model considering wind power
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volatility and the inconsistency of the start-up speed of each unit
is established, which can enhance the system’s ability to accept
wind power (Barth et al., 2006; Tuohy et al., 2009; Bao et al.,
2016). In Zhang et al. (2018), they established a closed-loop
control system based on an intraday rolling power generation
plan. Combined with practical applications, the units are
classified into planned units, following units, and units that do
not participate in the regulation, which can effectively cope with
the impact of large-scale renewable energy access to the grid and
improve the execution level of dispatching plans. In Cui et al.
(2021), they established a day-ahead and intraday two-stage
optimization model considering generalized energy storage,
which can reasonably allocate various resources in different
optimization stages. In Jin et al. (2020), they established a
multi-time-scale dispatch plan considering the time
characteristics of pumped storage and electrochemical energy
storage power stations in view of the different response
characteristics of energy storage resources. It is worth to
mention that most of the current research on the unit mix is
considered in the day-to-day plan. In addition, the above research
did not consider the start-stop combination of rapid units when
formulating the intraday scheduling plan of the system with rapid
start-up and shutdown. In Li et al. (2016), they proposed an
intraday scheduling strategy based on the combination of short-
term thermal power units for units with flexible start-stop
characteristics, which can improve the economic benefits of
the system. However, the response characteristics of fast units
and the randomness of wind power are not considered.

Therefore, this paper studies the problem of renewable energy
consumption, and takes the rapid start and stop units (units that
have the conditions of rapid start and stop during the intraday,
such as pumped storage and gas turbines) as the adjustment
means in the intraday dispatch. Taking into account the economy
and safety of system operation, a two-stage stochastic planning
intraday scheduling model considering the combination of rapid
unit start and stop is established. Firstly, the error characteristics
of renewable energy sources are analyzed, and the probability
distribution functions of wind and photovoltaic (PV) prediction
errors are estimated by the nonparametric kernel density method.
Then, based on the two-stage stochastic programming theory, the
first stage mainly takes the start-stop state of the following unit as
the decision variable. In the second stage, the determined start-
stop decision and renewable energy output random variable
information are used to optimize the intraday plan of the
entire system. Finally, the research strategy proposed in this
paper is verified based on a practical example analysis. Find
out the combination of planned unit and following unit with
lower adjustment cost.

2 ANALYSIS OF RENEWABLE ENERGY
FORECAST ERROR CHARACTERISTICS

2.1 Renewable Energy Forecast Output
Deviation Statistics
The prediction error of uncertain resources is the main factor that
affects the accurate execution of the dispatching plan. To ensure

reliable power supply to the system. Analysis of renewable energy
prediction error characteristics is needed to study the impact of
prediction error on the development of dispatching plans. Using
the ratio of the difference between the ultra-short-term forecast
data and short-term forecast data of renewable energy output to
the installed capacity of the unit to express its forecast error, it can
be expressed as

ξr,t � (Proll
r,t − Pda

r,t)/Ps
r (1)

Where r represents the wind farm or PV plant. Proll
r,t and Pda

r,t are
the ultra-short-term predicted and short-term predicted power of
the wind farm or PV plant. Ps

r is the wind farm or PV plant size.
ξr,t is the error size of wind power or PV in both time scales.

The information of the output forecast data of a wind farm and
PV power station from 01.01 to 03.01 days is counted with a
resolution of 15 min. The error values between the intraday ultra-
short-term forecast data and the day-ahead short-term forecast
data for wind and PV output are given in Figure 1. It can be seen
from Figure 1 that the forecast errors of wind and PV fluctuate
within the range of ±30% and ±25%. This error is sufficient to
cause the system to abandon wind and lose load due to the
mismatch of unit response rate (Wang et al., 2021). It occurs
frequently especially in the systems with established operation
plan units and those containing heat-determined units. This also
indicates the need for intraday revisions. To cope with the
uncertain demand variation of the system. This paper will
extend the probabilistic method to generate sufficient
probability scenarios to portray the stochasticity of the forecast
error; and use the following units with high flexibility for
recalibration during actual operation.

FIGURE 1 | Forecast error values for wind and PV.
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2.2 Error Randomness Simulation
In this paper, the nonparametric kernel density estimation
method is used to obtain the probability distribution of the
respective predictions based on the statistical historical data of
the scenarios. Compared with the parametric method, the error
distribution function does not have to be assumed in advance,
which reduces the influence of uncertain factors on the
probability model (Li et al., 2019). If pr � {pr1, pr2,/, prn} is
the sample space of the renewable energy forecast error data, n is
the sample size. Then the probability density function of the
renewable energy forecast error can be expressed as

f(pr) � 1
nh

∑n
i�1
K(pr − pri

h
) � 1

n
∑n
i�1
K(pr − pri) (2)

K(p) � 1



2π

√ exp(−1
2
p2) (3)

Where pri is the forecast error sample i of wind power or PV
output. h is the bandwidth.K(p) is the Gaussian kernel function.

A high or low bandwidth h will directly affect the probability
density distribution of the prediction error. In order to minimize
the prediction error, the optimal bandwidth model is described in
Lang et al. (2020). The Gaussian kernel function is settled and the
normal distribution N(μ, σ) is used as the reference distribution
of the probability density functionf(pr). The optimal bandwidth
can be obtained as

hAMISE � 1.06σn−1/5 (4)
Where σ is the sample standard deviation.

After using the above method to determine the probability
distribution function of wind power output forecast error, and
based on the idea of stratified sampling, latin hypercube sampling
is used to generate the initial scenarios of large-scale error. In
order to effectively simulate the error uncertainty and ensure the
model calculation efficiency. The synchronous back-substitution
reduction method is used to remove a large number of similar
scenarios, retain some representative scenarios, and obtain the
corresponding probability of each scenario through calculation.
As a result, the uncertain problem is transformed into a
deterministic problem. The detailed steps are as follows:

1) Suppose x1, x2,/, xT are T independent random variables,
and their cumulative probability distribution function (wind
or PV) is as follows

Φt � Fh(xt),Φt ∈ [0, 1], t � 1, 2,/, T (5)

2) Assuming that M represents the sampling scale, the ordinate
of the cumulative probability distribution function curveΦt �
Fh(xt) is divided into M equal intervals with a width of 1/M,
then the width of each interval is [(n − 1)/M, n/M], where
(n � 1, 2, ...,M).

3) Select the sampling value of Φt at the midpoint of each
interval, and calculate the sampling value of xt by inverting
the cumulative distribution function Φt � Fh(xt), that is, the
mth sampling value of xt is as follows

xtm � F−1
h (m − 0.5

M
), t � 1, 2,/, T (6)

4) All the sampled values xtm can form a T × M initial sampling
matrix X. For large-scale scenarios X � {X1, X2, ..., XM}, set
the number of scenarios to be deleted as K.

5) Calculate the Kantorovich distance for each pair scenarios:

KD(Xi, Xj) �












∑T
t�1
(xt,i − xt,j)2

√√
(7)

6) For each scenario Xi, the distance between each pair of
scenarios is calculated separately to find the scenario with
the smallest distance from scenario Xi. The deletion is
performed according to the principle of scenario reduction,
and the probability values corresponding to the deleted
scenarios are summed up as the probability of occurrence
of scenario Xi.

7) Repeat step 6 until the number of deleted scenarios reaches K.
Finally, the reduced wind power and PV output scenarios and
the corresponding scenario probabilities can be obtained.

3 INTRADAY ROLLING SCHEDULING
MODEL BASED ON TWO-STAGE
STOCHASTIC PLANNING

3.1 Two-Stage Stochastic Programming
Theory
Consider the existence of random variables and the inconsistent
response speed of decision variables. The slow-response decision
variable (starting and stopping of the unit) needs to be
determined before random variables start to appear. Decision
variables with faster response speed (unit ramping, etc.) are not
limited, and can be determined after more accurate random
variables (such as the regularly updated ultra-short-term
forecast output of renewable energy sources). Therefore, this
paper introduces a two-stage stochastic programming model
(George, 1955), the form is as follows⎧⎪⎨⎪⎩min z.c

Tz + Es{Q(z, s)}
s.t. Az≤ b
z≥ 0

Q(x, s) �
⎧⎪⎨⎪⎩minysq

T
s ys

s.t.Wsys ≤ hs − Tsz
ys ≥ 0, ∀s ∈ Ω

(8)
Where z and ys are the decision variables of the first and second
stages. The variables in both stages are greater than zero. cT, qTs , b,
hs,A, Ts andWs are known vectors and coefficient matrices. Es is
the expected value under scenario s in the second-stage planning,
which can be used to evaluate the volatility of the random variable
in the objective function cTz + Q(z, s). Ω is the set of all possible
scenarios. Since the equation contains random variables, it cannot
be solved directly. Random variables can be replaced by
calculating expected values. Convert uncertain problems to
deterministic ones.
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3.2 Intraday Optimization Scheduling Model
This paper establishes a source-load-storage rolling schedule
based on a two-stage stochastic programming algorithm. The
first stage is to determine the start-stop combination of the
following units. Based on the determined start-stop decision of
the unit, after the random variable arrives, the output of the
unit is adjusted in the second stage to meet the changing
demand of the renewable energy output. Intraday dispatch
mainly utilizes the feature that the forecast accuracy of
renewable energy is negatively correlated with forecast
horizon. Combined with regularly updated ultra-short-term
forecast data of wind, PV and load, periodic adjustment and
revision of the system’s day-ahead plan aims to achieve the
effect of global optimization of the system’s output plan. The
intraday scheduling of this paper takes 15 min as an interval
and 4 h as a cycle. The system automatically updates and
obtains ultra-short-term forecast information of wind, PV
and load for the next 4 h every 15 min. The rolling timing
is shown in Figure 2.

3.2.1 Objective Function
By considering the wind and solar power characteristics, in the
first stage the goal is to minimize the start and stop costs of the
following units. In the second stage, the goal is to minimize the
expected value of the sum of the system operating cost and the
correction cost of the initial and final storage capacity of the
pumped-storage reservoir, it can be expressed as

min Con off + E(Croll + CM) (9)

1) Start and stop costs in the first phase

Con off � ∑T
t�1

∑Nq

j�1
(1 − Ij,t−1)Ij,tχq,j +∑T

t�1
∑Np

i�1
[χpIpi,t(1 − Ipi,t−1)

+ χgI
g
i,t(1 − Igi,t−1)] (10)

Where T is the number of scheduling periods. Nq is the number
of gas turbine units. χq,j is the start-up cost of gas turbine j. Ij,t is
the operating state variable of the gas turbine unit j in the time
period t.Np is the number of pumped storage units. χp and χg are
the start-up cost coefficients of pumping and power generation
for pumped storage units. Ipi,t and Igi,t are the state variables of
pumping and power generation of pumped storage unit i in time
period t.

2) Expected cost of operating the system in the second stage

Croll � ∑NS

s�1
ω(s)⎧⎨⎩∑T

t�1
∑Nq

j�1
(αq,j(Proll

q,s,j,t)2 + βq,jP
roll
q,s,j,t + γq,j)

+∑T
t�1

∑Nth

i�1
(αth,i(Proll

th,s,i,t)2 + βth,iP
roll
th,s,i,t + γth,i)⎫⎬⎭ (11)

Where ω(s) is the probability of scenario s. Ns is the total number
of scenarios. Nth is the number of thermal power units. αth,i, βth,i
and γth,i are the operating cost coefficients of thermal power unit
i. Proll

th,s,i,t is the intraday active power output of thermal power unit
i in time period t under scenario s. αq,j, βq,j and γq,j are operating
cost coefficients of gas turbine unit j. Proll

q,s,j,t is the output of gas
turbine j in time period t under scenario s.

3) Correction costs for the initial and final capacity of the
reservoir in the second stage

In the objective function of the second stage of the model, the
correction cost of the inconsistency of the reservoir capacity
between the beginning and the end of the pumped storage
power station is added. Compared with only considering the
operating cost of the pumped storage unit, the phenomenon of
only pumping or generating electricity during the optimization
period is effectively avoided. Its form is as follows

CM � ∑NS

s�1
ω(s)μ(Ep,s,T − Ep,0) (12)

Where μ is the cost correction factor of pumped storage. Ep,0 and
Ep,s,T are the initial and terminal capacities of the reservoir.

3.2.2 Constraints in the First Stage
The main decision in the first stage follows the start-stop status of
the unit. Relevant minimum on-off time constraints must be met.

1) Start-Stop constraints for gas turbines(Ij,t−1 − Ij,t)(Toff,j,t−1 − Toff.j)≥ 0 (13)(Ij,t − Ij,t−1)(Ton,j.t−1 − Ton,j)≥ 0 (14)
where Ton,j and Toff.j are the minimum running and shutdown
times of gas turbine j. Ton,j.t−1 and Toff,j,t−1 are the running time
and shutdown time of gas turbine j to period t − 1.

2) Constraints between pumped-storage power plants and units

In order to avoid the pumping state of each unit of the pumped
storage power station at the same time. Constraints on the states
of pumped-storage units and power stations are required. Its
form is as follows

0≤ Ipi,t + Igi,t ≤ 1 (15)

∑Np

i�1
Ipi,tp∑Np

i�1
Igi,t � 0 (16)

3) Start and stop constraints of pumped storage units

FIGURE 2 | Intraday scheduling sequence diagram.
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(Ipi,t−1 − Ipi,t)(Tp
on,i.t−1 − Tp

on,i)≥ 0 (17)(Ipi,t − Ipi,t−1)(Tp
off,i.t−1 − Tp

off,i)≥ 0 (18)
Where Tp

on,j and T
p
off,j are the minimum operation and shutdown

time of the pumped storage unit i. Ton,j.t−1 and Toff,j,t−1 are the
operation and shutdown time of pumped storage unit i to
period t − 1.

4) Constraints on start-stop times of pumped-storage units

The number of state transitions of pumped storage units is
limited from the perspective of technology and economy (Xu
et al., 2013). Its form is as follows

∑T
t�2
Igi,t(1 − Igi,t−1)≤ψg,i (19)

∑T
t�2
Ipi,t(1 − Ipi,t−1)≤ψp,i (20)

Where ψg,i and ψp,i are the maximum start times of power
generation and pumping of pumped storage unit i.

3.2.3 Constraints in the Second Stage
The first stage determines only some of the decision variables.
The decision variable of the second stage is the daily output of the
unit in each scenario, which needs to meet the following general
operation constraints.

1) System power balancing constraints

∑Nth

i�1
(Proll

th,s,i,t − Pda
th,i,t) +∑Nq

j�1
Proll
q,s,j,t +∑Np

i�1
Proll
g,s,i,t

� ∑Np

i�1
Proll
p,s,i,t + ΔPld,t − ΔPw,s,t − ΔPpv,s,t (21)

Where Pda
th,i,t is the daily planned output of thermal power unit

i in time period t under scenario s. Proll
g,s,i,t and Proll

p,s,i,t are the
power generation and pumping power of pumped storage unit
i in time period t under scenario s. ΔPld,t, ΔPw

s,t and ΔP
pv
s,t are the

ultra-short-term and short-term predicted output deviations
of load, wind and PV. Its form is as follows

ΔPw,s,t � Proll
w,s,t − Pda

w,t, ΔPpv,s,t � Proll
pv,s,t − Pda

pv,t , ΔPld,t

� Proll
ld,t − Pda

ld,t (22)
Where Proll

w,s,t, P
roll
pv,s,t and Proll

ld,t are the ultra-short-term forecasts of
wind, PV and load. Pda

w,t, Pda
pv,t and Pda

ld,t are the short-term
forecasts of wind, PV and load.

2) Gas turbine constraints

Ij,tPq,j,min ≤Proll
q,s,j,t ≤ Ij,tPq,j,max (23)

−Pq,j,down ≤Proll
q,s,j,t − Proll

q,s.j.t−1 ≤Pq,j.up (24)

Where Pq,j,max and Pq,j,min are the maximum and minimum
outputs of the gas turbine j. Pq,j.up and Pq,j,down are the ramp rate
limits for gas turbine j.

3) Pumping and generating power constraints

0≤Proll
g,s,i,t ≤ I

g
i,tP

max
g,i (25)

0≤Proll
p,s,i,t ≤ I

p
i,tP

max
p,i (26)

Where Pmax
g,i and Pmax

p,i are the maximum power generation and
pumping power of the pumped storage unit i.

4) Upper reservoir capacity constraints

Ep,min ≤Ep,s,t ≤Ep,max (27)

Ep,s,t � Ep,s,t−1 +∑NP

i�1
(Ipi,tProll

p,s,i,t − Igi,tP
roll
g,s,i,t/ηdis)Δt (28)

Where Emax and Emin are the limits of the reservoir capacity. Ep,s,t

is the capacity of the reservoir in the scenario s in the time period
t. ηdis is the energy conversion efficiency of the pumped storage
unit.

5) Reservoir starting and ending storage capacity constraints

In order to avoid the phenomenon that the pumped storage
power station releases water to reduce the storage capacity to
absorb the abandoned wind during the optimization period, this
paper relaxes the capacity of the end of the reservoir based on the
initial storage capacity (Hu et al., 2012). It can be expressed as

ΔEmin ≤Ep,0 − Ep,s,T ≤ΔEmax (29)
Where ΔEmax and ΔEmin are the upper and lower limits of the
reservoir capacity deviation during the beginning and end
periods.

6) Line active power flow constraint

Proll
th,s,t,l + Proll

q,s,t,l + Pw
s,t,l + Ppv

s,t,l + Proll
g,s,t,l − Proll

p,s,t,l − Pld,t.l

� ∑
l

(δt,l − δt,k)/Xl−k (30)

Pl−k,min ≤ ∑
l

(δt,l − δt,k)/Xl−k ≤Pl−k,max (31)

Where Proll
th,s,t,l, P

roll
q,s,t,l, P

w
s,t,l, P

pv
s,t,l, P

roll
p,s,t,l, P

roll
g,s,t,l, and Pld,t.l are the

powers of thermal power units, gas turbines, wind farms, PV
power plants, pumped storage, power generation and loads at
node l in scenario s. δt,l and δt,k are the phase angles of nodes l and
k at time period t. Xl−k is the reactance value of branch l − k.
Pl−k,max and Pl−k,min are the upper and lower limits of the active
power allowed to be delivered in the branch l − k.

7) Rolling plan revision constraints

Proll
th,s,i,t − Pda

th,i,t ≥max(Pmin
th,i,t − Proll

th,s,i,t, P
da
th,i,t + Δ�pth,i − Proll

th,s,i,t) (32)
Proll
th,s,i,t − Pda

th,i,t ≤min(Pmax
th,i,t − Proll

th,s,i,t, P
da
th,i,t + Δ�pth,i − Proll

th,s,i,t) (33)
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Where Δ�pth,i is the maximum value of the difference between the
intraday output plan and the day-ahead planned output of
thermal power unit i.

8) Unit output constraints

0≤Proll
w,s,t ≤P

pre
w, , 0≤Proll

pv,s,t ≤P
pre
pv,max, Pmin

th,i ≤P
roll
th,s,i,t ≤P

max
th,i (34)

where Ppre
w and Ppre

pv,max are the predicted output values of wind
power and PV; Pmax

th,i and Pmin
th,i are the upper and lower output

limits of thermal power unit i.

9) Thermal power unit ramping constraint

−Pth,i,down ≤Proll
th,s,i,t − Proll

th,s.i.t−1 ≤Pth,i.up (35)
where Pth,i.up and Pth,i,down are the upper and lower ramping
limits of thermal power unit i.

Eqs 9–35 are the intraday rolling scheduling model based on
two-stage stochastic planning. The fundamental difference
between this model and the traditional intraday optimal
scheduling model of stochastic programming is that in the
first-stage decision-making process, the operating state of the
following unit is first determined. Considering that the start-stop
response of the unit is slow, but the climbing speed of the
following unit is faster. Therefore, in the second stage
planning, the output of each unit is optimized by the decision
of the first stage. During the whole decision-making process, the
start-stop combination of thermal power units remains
unchanged as planned.

3.3 Solve the Model
Considering the operating cost of thermal power units in the
objective function as a nonlinear quadratic function, the
quadratic function in the objective function can be
linearized by its linearization through segment linearization
(Carrion and Arroyo, 2006). The core idea of the linearization

process is to divide the quadratic function into m segmented
functions. Then, the slope of each segmented function is found
and converted into a primary function with respect to the
horizontal coordinate, and thus the linearization of the
quadratic function is realized. The linearization principle
diagram of thermal power unit operating cost segments is
shown in Figure 3. The operating interval of thermal power
unit i is divided into m (m � 3) segments, and the value of m
should be chosen appropriately. the smaller m is, the less
linearization accuracy will be achieved. the larger m is, the
higher linearization accuracy will be achieved, and at the same
time, it will increase the size of the decision variables, which
makes it difficult to solve the calculation later. Z0

th,i denotes the
operating cost of thermal power unit i at the lowest level of
output. Zseg

th,i is the segmentation point of segment seg
(seg � {1, 2, 3}). ΔPseg

th,i is the length of each segment. length
of each segment interval. Kseg

th,i is the slope of segment seg. Zseg
th,i,

ΔPseg
th,i and Kseg

th,i should satisfy the following constraints⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ΔPseg
th,i �

Pmax
th,i − Pmin

th,i

m

Kseg
th,i �

Cth,i,t(Zseg
th,i) − Cth,i,t(Zseg−1

th,i )
Zseg

th,i − Zs−1
th,i

Zseg
th,i � Z0

th,i + seg · ΔPseg
th,i

Z0
th,i � Pmin

th,i

(36)

After linearization, the operating cost of thermal power unit i
is converted to the following model:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Cth,i,t(Pth,i,t) � Ai,0 + ∑seg�1
m

(Kseg
th,i · ΔPseg

th,i)
Pth,i,t � Pmin

th,i + ∑seg�1
m

(ΔPseg
th,i)

0≤ΔPseg
th,i ≤Z

seg
th,i − Zseg−1

th,i

Ai,0 � αth,i(Pth,i,t)2 + βth,iPth,i,t + γth,i

(37)

Referring to the linearization process of thermal power units,
the operating cost of gas turbines can be linearized similarly.

The start-up cost of pumped storage in the objective function
is a bilinear nonlinear programming problem that can be
linearized using McCormick’s inequality (Castro and Pedro,
2015). Taking the pumped start-up cost Ipi,tI

p
i,t−1 as an

example, by introducing a new binary integer variable Iyi,t and
making Iyi,t � Ipi,tI

p
i,t−1, the equation can be equated to the

following linear constraint⎧⎪⎨⎪⎩ 0≤ Iyi,t ≤ I
p
i,t

Iyi,t ≤ I
p
i,t−1

Ipi,t + Ipi,t−1 − 1≤ Iyi,t
, Iyi,t � Ipi,tI

p
i,t−1 (38)

Referring to the processing method of Ipi,tI
p
i,t−1, I

g
i,tI

g
i,t−1 and

Ij,tIj,t−1 can be similarly linearized.
After the linearization process, the model built in this paper

belongs to the mixed integer linear programming problem. By
writing a program in the YALMIP environment of MATLAB and

FIGURE 3 | Segmented linearization of operating costs of thermal
power units.
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calling the solver GUROBI to solve the model, the optimal output
combination of each unit is obtained.

4 CASE STUDY

4.1 Basic Data
In the case study, the power system in this paper includes five
thermal power units, two gas turbines, a pumped-storage power
station, a wind farm and a PV power station. The installed
capacity of wind farm and PV power station in the system is
400 and 250 MW respectively. There are five thermal power units
and two gas turbines, and the specific parameters are shown in

Table 1. A pumped storage power plant with an installed capacity
of 60 MW, the upper reservoir storage limit and the initial
reservoir capacity of this pumped storage power plant are
600 MWh and 300 MWh. Figure 4 shows the rolling updated
ultra-short-term power forecasting curves for wind, PV and load.
Figure 5 gives the day-ahead operation plan curves for thermal
units, where the day-ahead plan identifies three thermal units to
be put into operation.

Figure 6 shows three representative sequences of wind power
errors obtained after generating 200 initial scenarios using the
method described in Section 2, with probabilities of 0.46, 0.305
and 0.235, respectively. The PV error curve can also be obtained
this manner. The following three scenarios are set to verify the
effectiveness of the proposed dispatching model for making
dispatching plans in high-penetration renewable energy power
systems.

Case 1: Day-ahead scheduling without the participation of
quick start and stop groups.
Case 2: Intraday scheduling of following units such as pumped
storage and gas turbines is considered. However, the start-stop
combination of fast units is not considered in the intraday
schedule.
Case 3: Intraday scheduling of following units such as pumped
storage and gas turbines is considered. The two-stage
stochastic planning model established in this paper is used.
In the first stage, the start-stop status of the following units is
determined. In the second stage, the intraday deviations are
coordinated to find the optimal unit output.

4.2 Analysis of the Output of the Units
The intraday output curves of thermal units and gas turbines
for case 2 and 3 are shown in Figures 7, 8. Since case 2 does
not consider the start-stop combination of fast units during
the day, the gas turbines are on during the optimized hours.
The downward adjustment space of the system in the night
abandonment interval is reduced, which leads to the
limitation of wind power feed-in power. The gas turbines
in case 3 need to be called up only during the nighttime peak
of the load (19:30-20:15) according to the regulation demand.

TABLE 1 | Basic data of conventional thermal power units and gas turbines.

unit Max (MW) Min (MW) a (yuan/MW2h) b (yuan/MWh) c (yuan)

G1 400 135 0.00031 16.19 300
G2 300 120 0.00031 17.26 300
G3 300 120 0.00031 16.6 300
G4 200 100 0.00025 16.5 300
G5 150 80 0.00071 19.7 300
GS1 80 15 0.00132 22.14 500
GS2 55 10 0.00153 25.92 600

FIGURE 4 | Ultra-short-term forecast curves for wind, PV and load.

FIGURE 5 | Day-ahead planned output curves of thermal power units.

FIGURE 6 | Wind power error representation scenarios.
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This reduces the operating cost of the gas turbine and
provides more adjustable space for the system in case 3
during the optimization period. The output curve of the

thermal unit shows that the thermal unit in case 3 has a
smoother climb.

Figures 9, 10 show the change curves of pumped storage unit
output and reservoir capacity under case 2 and case 3. Themodel built
in this paper relaxes the capacity of the end of the reservoir and
considers the correction cost of inconsistency between the beginning
and end of the reservoir. It can effectively avoid the phenomenon that

FIGURE 7 | Unit output curves of Case 2.

FIGURE 8 | Unit output curves of Case 3.

FIGURE 9 | Reservoir capacity and unit output curve of Case 2.

FIGURE 10 | Reservoir capacity and unit output curve of Case 3.

FIGURE 11 | Abandoned wind power.

TABLE 2 | Scheduling costs of the system in each case.

Cost case1 case2 case3

Thermal power (yuan) 1,070,118.275 1,121,210.25 1,137,765.5333
Abandoned power (yuan) 113,095.6 5,191.628 914.6723
Gas turbine (yuan) 0 139,796.0919 11,418.276
Pumped storage (yuan) 0 20,000 16,000
Capacity correction (yuan) 0 −50000 −50000
Total cost (yuan) 1,183,213.88 1,236,197.97 1,116,098.482
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the pumped-storage unit has been pumping water and generating
electricity when the program is running, and the effect of the unit call is
not obvious. As can be seen from the figure below, pumped storage is
mainly used to store energy during the nighttime wind power
generation, and is used as the power generation side to provide
increased capacity for the system during the peak load period. The
analysis shows that the number of power generation starts of the
pumped storage unit in the two cases remains the same. However, the
number of pumping starts in case 3 is reduced by two on the basis of
case 2, which increases theflexibility, safety and economy of the system.

Figure 11 represents thewind power abandoned by the system for
each case. Among them, case 1 has a larger amount of wind
abandonment. cases 2 and 3 consider fast start-up and shutdown
of units during the day, and their abandoned wind power intervals are
shortened from the period of 0:15-5:30 at night to 2:15-4:00 and 2:30-
3:15, respectively. the total amount of abandoned wind power is
reduced from 565.478MW-h to 25.9581MWh and 9.1021MW.
Although the abandoned power in case 2 is significantly reduced,
the wind power in case 3 is almost fully online. It is able to further
increase the dispatchability of renewable energy and the acceptance
rate into the grid.

4.3 Economic Analysis
Table 2 shows the total intraday operating costs of the system under
each case. Among them, the set system power abandonment penalty
fee is 50 yuan/MW. The operating cost of pumped storage includes
the start-up and shutdown of pumped storage and the cost of storage
capacity correction. Compared with case 1, although case 2 increases
the flexibility of unit participation in regulation, the cost of wind
curtailment is reduced by 107,903.972 yuan. However, without
taking into account the start-stop combination of rapid units
under the daily scale, the thermal power operating cost has
increased by 51,091.975 yuan on the basis of the previous plan.
After considering the running cost of the fast unit, the total cost of
the system has increased by 52,984.09 yuan on the basis of the day-
ahead plan. In case 3, a two-stage stochastic programming model is
adopted and the decision of starting and stopping of rapid units is
considered, and the cost of wind curtailment of the system is further
reduced by 4,277.0007 yuan. At the same time, the gas turbine and
pumped storage unit are called on demand, and the final total system
operating cost is reduced by 67,115.3984 yuan on the basis of the
previous plan. This shows that the economics of the method in this
paper and the absorption effect of wind power are better.

4.4 Compared With the Optimization
Results of Related Literatures
Table 3 compares the cost optimization rate of the intraday
scheduling method proposed in this paper with other intraday

scheduling methods. Compared with the researches (Cui,
et al., 2021.; Jin, et al., 2020) that configures fast units to
participate in regulation but does not consider the start-stop
combination of fast units, the intraday cost optimization rate
is increased by 4.9775 and 2.1219%, respectively. Compared
with the research (Ran et al., 2016) based on the rolling
scheduling strategy of short-term unit combination, this
paper combines the two-stage stochastic programming
theory and considers the fast unit participation in the
intraday cost optimization rate, which can improve the cost
optimization rate by 4.9838%.

5 CONCLUSION

1) The rapid start-up and shutdown unit (gas turbine,
pumped storage) is used as the following unit
dispatched during the day. It can increase the system
regulation ability and improve the system’s ability to
accept fluctuations in intermittent energy, but at the
same time, it will also lead to an increase of 4.3181% in
the total operating cost.

2) Based on the two-stage stochastic programming theory,
compared with the traditional intraday scheduling that
does not take into account the rapid start and stop of
units. The model proposed in this paper can reduce the
number of start and stop of fast units and avoid
unnecessary unit operations. On the basis of the
previous plan, the on-grid rate of wind power has
increased to 99.806%, and the system economy has
increased by 5.6723%.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusion of this article will be
made available by the authors, without undue reservation.

AUTHOR CONTRIBUTIONS

All of the authors have contributed to this research.
Conceptualization, YZ and QJ; method-ology, YZ; software,
YZ and QJ; validation, QJ; formal analysis, QJ; investigation,
TZ; re-sources, YZ; data curation, YX; writing—original draft
preparation, QJ; writing—review and editing, YZ and QJ;
visualization, QJ; supervision, YX; project administration, YZ;
funding acquisition, YZ.

TABLE 3 | Comparison with the results of the operating cost of similar literature strategies.

Cost Literature [17] Literature [15] Literature [16] Model of This Paper

Day-ahead scheduling (yuan) 467,670 2,463,890 1,732,200 1,183,213.88
Intraday scheduling (yuan) 464,450 2,446,770 1,670,700 1,116,098.482
cost optimization rate (%) 0.6885 0.6948 3.5504 5.6723

Frontiers in Energy Research | www.frontiersin.org May 2022 | Volume 10 | Article 8733779

Zhou et al. Two-Stage Intraday Optimal Scheduling

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


FUNDING

This research was supported by the China Key R&D Program
Funding Project 2019YFB1505400.

ACKNOWLEDGMENTS

Thanks for my dear Senior, Shengkai Guo, Pengxiang Huang, and
Pinchao Zhao, for giving my valuable suggestions.

REFERENCES

Bao, Y., Wang, B., Yang, L., and Yang, S. (2016). A Rolling Dispatch Model
Considering Large-Scale Wind Power Connection and Multi-Time Scale
Demand Response Resource Coordination Optimization [J]. Chin. J. Electr.
Eng. 36 (17), 4589–4600. doi:10.13334/j.0258-8013.pcsee.151343

Barth, R., Brand, H., Meibom, P., and Weber, C. (2006). A Stochastic Unit-
Commitment Model for the Evaluation of the Impacts of Integration of Large
Amounts of Intermittent Wind Power. Int. Conf. Probabilistic Methods Power
Syst. (6), 11–15. doi:10.1109/PMAPS.2006.360195

Botterud, A., Zhou, Z., Wang, J., Sumaili, J., Keko, H., Mendes, J., et al. (2013).
Demand Dispatch and Probabilistic Wind Power Forecasting in Unit
Commitment and Economic Dispatch: A Case Study of Illinois. IEEE Trans.
Sustain. Energ. 4 (1), 250–261. doi:10.1109/tste.2012.2215631

Carrion, M., and Arroyo, J. M. (2006). A Computationally Efficient Mixed-Integer
Linear Formulation for the thermal Unit Commitment Problem[J]. IEEE Trans.
Power Syst. 21 (3), 1371–1378. doi:10.1109/TPWRS.2006.876672

Castro, P. M., and Pedro, M. (2015). Tightening Piecewise McCormick Relaxations
for Bilinear Problems. Comput. Chem. Eng. 72, 300–311. doi:10.1016/j.
compchemeng.2014.03.025

Cui, Y., Zhou, H., Zhong, W., Hui, X., and Zhao, Y. (2021). Day-ahead-day Two-
Stage Rolling Optimization Scheduling Considering Generalized Energy
Storage and thermal Power Combined Peak Shaving [J]. Power Grid Techn.
45 (01), 10–20. doi:10.13335/j.1000-3673.pst.2020.0206

George, B. D. (1955). Linear Programming under Uncertainty[M]. Santa Monica,
CA: The Rand Corporation.

Han, X., Li, T., Zhang, D., and Zhou, X. (2021). New Issues and Key Technologies
for New Power System Planning under the Dual Carbon Goal [J]. High Voltage
Techn. 47 (09), 3036–3046. doi:10.13336/j.1003-6520.hve.20210809

Hu, Z., Ding, H., and Kong, T. (2012). Optimal Scheduling Model for Combined
Daily Operation of Wind Power and Pumped Storage [J]. Automation Electric
Power Syst. 36 (02), 36–41+57.

Jin, L., Fang, X., Cai, Z., Chen, D., and Li, Y. (2020). Multi-time-scale Source-
Storage-Load Coordination Scheduling Strategy for Power Grid Connected to
Energy Storage Power Stations Considering Characteristic Distribution [J].
Power Grid Techn. 44 (10), 3641–3650. doi:10.13335/j.1000-3673.pst.2020.0330

Lang, W., Ma, X., Zhou, B., Yang, D., Luo, Y., and Liu, L. (2020). Probability
Interval Prediction of Wind Power Based on LSTM and Nonparametric Kernel
Density Estimation [J]. Smart Power 48 (02), 31–37+103.

Li, S., Dai, J., Dong, H., Shen, W., and Ma, X. (2019). Optimal Operation of Wind-
Solar Pumping-Storage Hybrid Power Generation System Considering
Correlation [J]. J. Electric Power Syst. Automation 31 (11), 92–102. doi:10.
19635/j.cnki.csu-epsa.000179

Lu, Y. (2021). Accurately Grasp the new era Orientation of My Country’s Electric
Power Development [J]. China Electric Power Industry 974 (09), 16–17.

Makarov, Y. V., Etingov, P. V., Ma, J., Huang, Z., and Subbarao, K. (2011).
Incorporating Uncertainty of Wind Power Generation Forecast into Power
System Operation, Dispatch, and Unit Commitment Procedures. IEEE Trans.
Sustain. Energ. 2 (4), 433–442. doi:10.1109/tste.2011.2159254

Notton, G., Nivet, M.-L., Voyant, C., Paoli, C., Darras, C., Motte, F., et al. (2018).
Intermittent and Stochastic Character of Renewable Energy Sources:
Consequences, Cost of Intermittence and Benefit of Forecasting. Renew.
Sustain. Energ. Rev. 87 (MAY), 96–105. doi:10.1016/j.rser.2018.02.007

Qian, Y., Liu, J., and Jiang, W. (2021). Peak Shaving Strategy of Power System
Considering Deep Interaction between Source, Grid, Load and Storage under
Different Photovoltaic Penetration Rates [J]. Electric Power Construction 42
(09), 74–84. doi:10.12204/j.issn.1000-7229.2021.09.008

Ran, L., Li, Y., and Dang, L. (2016). Research on Rolling Optimization Scheduling
of Wind Farms Based on Short-Term Unit Combinations [J]. J. North China
Electric Power Univ. (Natural Sci. Edition) 43 (05), 49–54.

Shang, Z. (2021). SDIC Power: Actively Deploy green Carbon Reduction
Investment [J]. Energy 153 (10), 22–24.

Sheng, G., Qian, Y., Luo, L., Song, H., Liu, Y., and Jiang, X. (2021). Key
Technologies for Power Equipment Operation and Maintenance for New
Power Systems and Their Application Prospects [J]. High Voltage Techn. 47
(09), 3072–3084.

Tuohy, A., Peter, M., Denny, E., and O’Malley, M. (2009). Unit Commitment for
Systems with Significant Wind Penetration[J]. IEEE Trans. Power Syst. 24 (2).
doi:10.1109/tpwrs.2009.2016470

Wang, Y., Zhan, H., Hu, X., and Wang, B. (2021). Joint Dispatch of Electric
Heating System Considering Source and Load Uncertainty [J]. Smart
Electric Power 49 (04), 7–13+29. doi:10.3969/j.issn.1673-7598.2021.
04.003

Xu, F., Lei, C., Jin, H., and Liu, Z. (2013). Joint Optimization Operation Modeling
and Application Analysis of Pumped Storage Power Station and Wind Power
[J]. Automation Electric Power Syst. 37 (01), 149–154. doi:10.7500/
AEPS201209256

Yang, H., Hu, W., Min, Y., Luo, W., Wang, Z., and Ge, W. (2014). Considering the
Recently Planned Multi-Objective Coordinated Scheduling of Wind-Storage
Combined System [J]. Chin. J. Electr. Eng. 34 (28), 4743–4751. doi:10.13334/j.
0258-8013.pcsee.2014.28.001

Zhang, B., Wu, W., Zheng, T., and Sun, H. (2011). Design of Active Power
Dispatching System with Multi-Time Scale Coordination to
Accommodate Large-Scale Wind Power [J]. Automation Electric Power
Syst. 35 (01), 1–6.

Zhang, Y., Zhang, F., Zhu, B., Xiang, Z., Tang, L., Ma, X., et al. (2018). Closed-loop
Control System of Daily Rolling Power Generation Plan Suitable for New
Energy Power Generation Access [J]. Electric Power Automation Equipment 38
(03), 162–168. doi:10.16081/j.issn.1006-6047.2018.03.022

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Zhou, Jia, Xin and Zhang. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC
BY). The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice.
No use, distribution or reproduction is permitted which does not comply with
these terms.

Frontiers in Energy Research | www.frontiersin.org May 2022 | Volume 10 | Article 87337710

Zhou et al. Two-Stage Intraday Optimal Scheduling

https://doi.org/10.13334/j.0258-8013.pcsee.151343
https://doi.org/10.1109/PMAPS.2006.360195
https://doi.org/10.1109/tste.2012.2215631
https://doi.org/10.1109/TPWRS.2006.876672
https://doi.org/10.1016/j.compchemeng.2014.03.025
https://doi.org/10.1016/j.compchemeng.2014.03.025
https://doi.org/10.13335/j.1000-3673.pst.2020.0206
https://doi.org/10.13336/j.1003-6520.hve.20210809
https://doi.org/10.13335/j.1000-3673.pst.2020.0330
https://doi.org/10.19635/j.cnki.csu-epsa.000179
https://doi.org/10.19635/j.cnki.csu-epsa.000179
https://doi.org/10.1109/tste.2011.2159254
https://doi.org/10.1016/j.rser.2018.02.007
https://doi.org/10.12204/j.issn.1000-7229.2021.09.008
https://doi.org/10.1109/tpwrs.2009.2016470
https://doi.org/10.3969/j.issn.1673-7598.2021.04.003
https://doi.org/10.3969/j.issn.1673-7598.2021.04.003
https://doi.org/10.7500/AEPS201209256
https://doi.org/10.7500/AEPS201209256
https://doi.org/10.13334/j.0258-8013.pcsee.2014.28.001
https://doi.org/10.13334/j.0258-8013.pcsee.2014.28.001
https://doi.org/10.16081/j.issn.1006-6047.2018.03.022
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles

	Intraday Scheduling of a System With Following Units Based on Two-Stage Stochastic Programming
	1 Introduction
	2 Analysis of Renewable Energy Forecast Error Characteristics
	2.1 Renewable Energy Forecast Output Deviation Statistics
	2.2 Error Randomness Simulation

	3 Intraday Rolling Scheduling Model Based on Two-Stage Stochastic Planning
	3.1 Two-Stage Stochastic Programming Theory
	3.2 Intraday Optimization Scheduling Model
	3.2.1 Objective Function
	3.2.2 Constraints in the First Stage
	3.2.3 Constraints in the Second Stage

	3.3 Solve the Model

	4 Case Study
	4.1 Basic Data
	4.2 Analysis of the Output of the Units
	4.3 Economic Analysis
	4.4 Compared With the Optimization Results of Related Literatures

	5 Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	References


