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Energy transition can effectively promote the green transformation of economic
development. With capital, traditional fossil energy, clean energy generation,
thermal power generation, and the GDP of the provinces, we built a stochastic
production frontier model based on a translog production function, which
measures the bias of directed technical changes and substitution elasticities of 30
provinces in mainland China from 2000 to 2017. The results show that the directed
technical change in China is more biased to thermal power generation and deviated
from clean energy generation. In addition, except for traditional fossil generation and
thermal power generation with a complementary relationship, there is a substitution
relationship between other energy factors. At the regional level, the production
patterns of 9 provinces (Beijing, Fujian, Hainan, Tianjin, Chongqing, Gansu,
Neimenggu, Ningxia, and Xinjiang) are conducive to the external electric transition,
and nine provinces (Beijing, Fujian, Guangxi, Hainan, Hubei, Jilin, Jiangsu, Qinghai,
and Zhejiang) are beneficial to the internal electric transition. We find that there is a
large room for improvement in external and internal electric transitions in most
provinces. We propose that the Chinese government should promote the reform of
the market-oriented energy pricing mechanism according to different production
modes in different regions. Furthermore, the results from the analysis of China
show that it is also possible for other countries to treat their energy transition
differently due to their characteristic production patterns.

Keywords: energy consumption structure, energy transition, interfule substitution, directed technical change,
economic growth

1 INTRODUCTION

Since the reform and opening up, with the rapid development of China’s economic aggregate, energy
depletion and environmental deterioration have emerged. Therefore, a green and sustainable
development has become the focus of high attention from all sectors of the society (Wu et al.,
2020). In 2019, coal, oil, and natural gas consumption accounted for 62.8%, 20.7%, and 8.7%,
respectively, while primary power and other energy consumption accounted for only 7.8% (China
Statistical Yearbook, 2020). According to the China Energy Statistics Yearbook, fossil energy like
coal, oil, and natural gas will play a long-term dominant role in the primary energy consumption
structure. Therefore, China is one of the most urgent countries for energy transition in the world
(Wang and Feng, 2011; Xu et al., 2014; Jiang et al., 2020). At present, energy transition has been a
national strategy. On September 22, 2020, General Secretary Xi Jinping solemnly announced at the
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75th UN General Assembly, “China’s carbon dioxide emissions
strive to peak by 2030 and strive to achieve carbon neutrality by
2060.” In addition, according to the Energy Production and
Consumption Revolution Strategy (2016–2030), non-fossil
energy accounted for about 20% in 2030, and non-fossil
energy accounted for more than half in 2050. Therefore,
according to the relevant goals of carbon neutrality and
carbon peak reaching, the optimization of China’s energy
transition will continue to advance.

The past 5 decades have witnessed significant progress in
the domain of energy transition. Existing studies mainly focus
on the inter-fuel transition (Liu et al., 2018; Naeem et al.,
2021), such as the substitution among the pairs of natural
gas–coal, oil–coal (Hao and Huang, 2018), and
renewable–non-renewable (Lin and Ankrah, 2019a; Lin and
Ankrah, 2019b). In addition, there are studies on the transition
between energy and non-energy, such as the substitution
among capital, labor, and energy (Fan and Zheng, 2019; Lin
and Abudu, 2019; Zhang and Lin, 2019; Alataş, 2020; Lin and
Abudu, 2020; Raza et al., 2020; Alataş et al., 2021). Some
studies (Bello et al., 2018) also analyze the transition between
hydro power and fossil energy. However, few studies analyze
the transition of external and internal electric transition.
Therefore, it is hard to obtain the transition pathway of
external and internal transition.

The purpose of this article is to promote the internal and
external electric transition by classifying the production
modes of 30 provinces in China with the substitution
elasticities and directed technological changes. The results
show that the directed technical change in China is more
biased to thermal power generation and deviated from clean
energy generation. At the provincial level, the production
patterns of 9 provinces (Beijing, Fujian, Hainan, Tianjin,
Chongqing, Gansu, Neimenggu, Ningxia, and Xinjiang) are
conducive to the external electric transition, and nine
provinces (Beijing, Fujian, Guangxi, Hainan, Hubei, Jilin,
Jiangsu, Qinghai, and Zhejiang) are beneficial to the
internal electric transition. Compared to previous studies,
the contribution of this article is mainly the following three
points: first, based on the translog production function, we
introduce clean energy power generation, thermal power
generation, and traditional fossil energy as different input
factors into the production function for the first time and
further analyze the determinants of production technology
efficiency in China. Second, we analyze the directed technical
change in internal and external transition, that is, the
preference for input factors during production in 30
regions. Third, combining the degree of biased
technological change and the substitution elasticity between
inputs, the path of promoting the energy transition is analyzed
from the perspectives of internal and external transition,
respectively.

The rest of the article is organized as follows: Section 2 covers
literature review; Section 3 provides models, methods, and data;
Section 4 presents the results and discussion of the improvement
pathway of energy transition; and Section 5 summarizes
conclusion and policy implications.

2 LITERATURE REVIEW

Optimizing the energy consumption structure will not only need
clear development goals and effective policy support but also
discuss the alternative relationship between energy inputs on the
basis of the development level and resource endowment of
different regions. However, directed technological changes
determine the preference of input factors in the production
process. Research on energy transition has focused mainly on
the relationship between fossil and non-fossil energy. Wesseh and
Lin (2016) analyzed the alternative relationship between different
energy types in Egypt. They found that the average alternative
elasticity between renewable and non-renewable energy sources is
1.41. This alternative relationship suggests that inter-energy
substitution is possible from a technical perspective. Solarin
and Bello (2019) analyzed the possibility of fossil energy and
biomass energy substitution in Brazil. Their GDP model showed
that using more biomass and less fossil energy can be kept
sustainable in the Brazilian economy. Lin and Adubu used
ridge regression to analyze alternative elasticity between
renewable and non-renewable energy in the Middle Eastern
and North African sectors. The results show that the
alternative between renewable and non-renewable energy is
perfect, with an alternative elasticity value of 0.95. Khalid and
Jalil (2019) investigated the inter-fuel substitution by estimating
the substitution elasticity among coal, natural gas, petroleum, and
hydroelectricity. The findings show that all the factors are
subsitutes. Lin and Agyeman (2020) estimated inter-fuel
substitution elasticities and bias technical change in Sub-
Saharan sectors. From the empirical results, the oil is more
likely to be substituted for natural gas than coal. Zhang et al.
(2018) surveyed natural gas in various sectors of China. The
results show that the demand for natural gas is complementary to
coal in industrial and power generation sectors. Wang (2021)
measured the substitution between coal, electric power, and fuel
in the China’s industrial sector. The results show that there is a
substitution among coal, electric power, and fuel. However,
Malicov et al. (2018) found that the technical substitution
between clean and dirty energy inputs may not be strong.

Furthermore, some studies have considered the alternative
relationships between energy and non-energy. Yang et al. (2018)
analyzed the alternative elasticity between input factors in the
Chinese industrial sector and found that the relationship of
capital–fossil energy and labor–fossil energy was
complementary. These conclusions suggest that a reduced
capital input or an increased labor input can lead to a
reduction in fossil energy input. Lin and Raza (2021) analyzed
the alternative resilience between energy, capital, and labor in
Pakistan’s agricultural sector and showed that all inputs were
alternatives, arguing that labor and capital could reduce carbon
dioxide emissions through alternative energy sources. Kim and
Heo (2013) studied the substitutions between energy and capital
for manufacturing in the Organization for economic cooperation
and development (OECD) countries and concluded about
substitutability between energy and capital. Zha et al. (2016)
analyzed the alternative elasticity between energy and non-energy
in the industrial sector based on the translog production function,

Frontiers in Energy Research | www.frontiersin.org March 2022 | Volume 10 | Article 8733242

Hou and Song Internal and External Transition

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


which showed that energy and capital have an alternative
relationship and the substitution exists between energy and
labor, except in 2011. Ouyang et al. (2018) explored the
energy substitution effect of the transportation sector in
Shanghai and found that the substitution elasticity between
labor and energy is around 1.0095. Constantini et al. (2019)
computed the substitution elasticity for manufacturing sectors in
21 OECD countries and addressed the capacity of the production
system to be adequate for a low-carbon economy. Wei et al.
(2019) explored the inter-factor substitution and the influence of
technical changes on high-tech industries in China. The results
showed that the substitution elasticity between labor and energy
was the highest, and the technical progress was biased to saving
energy. Lin and Chen (2020) found the exisitence of substitution
relation among labor energy and capital in China’s non-ferrous
metal industries. Raza te al. examined the substitution elasticities
of input factors (capital, labor, and energy consumption). The
results showed that the elasticities of substitution between
capital–energy, capital–labor, and labor–energy consumption
are close to 1. The issue of transition from the perspective of
fossil energy–non-fossil energy or energy–non-energy has been
widely discussed. However, there are relatively few studies on
electric transformation.

“Electric transition” requires effective use of electric energy not
only to replace loose burning coal, fuel, and other energy
consumption methods but also to vigorously develop clean
energy power to replace an inefficient thermal power
generation production mode. In terms of the “electric
transition”, it can be divided into “external electric transition”
and “internal electric transition” (Liu and Wang, 2019). External
electric transition refers to the replacement of traditional fossil
energy with clean energy generation and thermal power
generation, which is the way to realize the orderly transition
from primary energy dependence to secondary energy
dependence. Internal electric transition refers to the
replacement of thermal power generation with clean energy
power generation, which is the way to realize the technical
upgradation of clean energy power generation to thermal
power generation. The consumption of clean energy has a
positive influence on carbon emissions (Abumunshar et al.,
2020; Altarhouni et al., 2021; Yazan et al., 2022). Two kinds of

electric transition can be seen in Figure 1. We refer to it as
internal transition and external transition.

In addition, few studies have focused on the key role of
directed technical change bias in energy use preferences.
Directed technical change bias refers to the change of the
factor substitution rate by technological progress. If
technological progress leads to a greater increase in the
marginal output growth rate of factor j relative to factor k,
technological change is biased toward factor j, called
technological change biased toward j-using, also known as
biased toward k-saving. On the contrary, technological
progress is biased to factor k, called technical change biased to
k-using, also referred to as biased to j-saving (Hicks, 1932). If
technological changes make the marginal output growth rate of
both equal, it means that technological changes are Hicks
neutral, and technical changes will be combined with a
proportional increase of j or k. When considering a pair of
input elements for fossil energy and low-carbon energy,
technological change that tends to use low-carbon energy
and save fossil energy may help in the energy structure
optimization. Existing studies have confirmed that the
technological change bias can be transformed by adjusting
the relative prices between elements. Some studies (Popp,
2002; Acemoglu et al., 2012; Aghion et al., 2016) show that
firms tend to innovate relatively more in clean technologies
when they face higher tax-inclusive energy prices. Therefore,
only through the substitution between factors, there is no
scientific judgment that the energy transition is happening.
After identifying the bias of technological change between
energy inputs, further consideration of the substitution
elasticity between factors is the key to analyzing the
improvement pathway of the energy consumption structure.

Specifically, in the internal transition, encouraging the
development of production technologies biased to clean energy
power generation and improving the substitution relationship
between clean energy power generation and thermal power
generation can effectively help to optimize the energy
consumption structure. In the external transition, actively
developing the production technology biased to secondary
energy and improving the substitution elasticity between
secondary energy and primary energy can help realize the

FIGURE 1 | Boundary definition of external and internal electric transition.
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transition from primary energy dependence to secondary
energy dependence. Wang (Wang and Qi, 2014) measured
the factor bias of technological changes from different
sources and found that research and development (R&D),
import, Foreign Direct Investment (FDI) level spillover, and
backward spillover were energy-saving. Zha et al. (2018) used
the CES function to measure the technical bias between labor,
capital, and energy, finding that technological changes favor
energy use between energy and capital or between energy and
labor. Xiu et al. (2019) used Ridge regression to measure the
energy bias in Chinese technology changes, which show that
technological changes favor energy use relative to capital and
labor. Zhang et al. (2020) found that green biased technical
change varies at both the input side and output side by
employing the biased technical change theory and Malmquist
index decomposition method in the Yangtze River Economical
Belt. As the largest developing country in the world, China’s
optimized energy structure path such as electric transition has
played a referenced role for other developing countries. We try
to provide some suggestions for China to improve energy
transition by analyzing the elasticity substitution and
directed technological change in internal and external
transition.

3 METHODOLOGY AND PRODUCTION
FUNCTION
3.1 Fixed-Effect Stochastic Frontier
Production Function
In this article, we aim to solve two basic problems: first, we
analyze whether the production activities in various regions are
efficient. If there is inefficiency, then we study the dependent
factors of the inefficiency. Second, we estimate the substitution
elasticity and directed technological change in 30 regions so as
to obtain the improvement pathway of energy transition. The
fixed-effect SFA method meets the research purpose of this
article, and it can effectively solve the above-mentioned
problems and prevent heterogeneity among different
provinces, while DEA cannot calculate the substitution
elasticity and directed technological change. For the
production function, there are many production functions
including C-D and CES production functions that can
calculate the technological progress bias of substitution
elasticity in various regions. However, the translog function
becomes our preferred model with an estimable and inclusive
advantage. Therefore, according to Diamond (1965), the
general form is as follows:

yit � αi + βxit + vit − uit (1)
where i and t represent the province and the time in years,
respectively; y denotes the output; and αi stands for the
individual fixed effect. x means the vector set of input
elements, and β is the vector set of the estimated coefficients
of the input factors. v is a random error term, which represents
the impact of statistical errors and various random factors on

frontier output; u indicates a technical inefficiency term, which
represents the gap between the actual output and the
technological frontier output. The article focuses on
analyzing the optimization path of the internal and external
electric transition. Therefore, we regard clean energy power
generation, thermal power generation, and traditional fossil
energy as three independent production factors to identify the
biased technological change and the elasticity substitution of
the internal and external transition.

In practice, the stochastic frontier production function is
widely approximated by a translog production as follows:

lnYit � α0 + β1t + β2
1
2
t2 + β3 lnKit + β4 lnNit + β5 lnRit + β6 lnFit

+ β7t × lnKit + β8t × lnNit + β9t × lnRit + β10t × lnFit

+ 1
2
β11 lnKit × lnKit + 1

2
β12 lnNit × lnNit + 1

2
β13 lnR × lnRit

+ 1
2
β14 lnFit × lnFit + 1

2
β15 lnKit × lnNit + 1

2
β16 lnKit × lnRit

+ 1
2
β17 lnKit lnFit + 1

2
β18 lnNit lnRit + 1

2
β19 lnNit lnFit

+ 1
2
β20 lnRit lnFit + v − u (2)

where Y represents the output of each province; K is the capital;
N, R, and F denote the traditional fossil energy, clean energy
power generation, and thermal power generation, respectively.
Following Liu and Wang (2019), traditional fossil energy, clean
energy power generation, and thermal power generation are three
independent factors in the translog production function. The
variables used in the translog production function are described
as follows:

(1) Output (Y): We deflate all current price raw data to the
constant 2000 prices and GDP of each province as the output
measurement indicator.

(2) Capital (K): Following some existing studies (Shan, 2008),
capital stock is used to represent capital investment. We
adopt the perpetual inventory method to estimate the capital
stock. The formula is as follows: Kt � (1 − δt)Kt−1 + It,
where k is the amount of capital, δ is the capital
depreciation rate, and It denotes the annual physical
capital investment.

(3) Traditional fossil energy (N): We use terminal fossil energy
consumption to represent traditional fossil energy input. The
consumption of fossil energy is measured by the sum of
consumption of coal, oil, and natural gas.

(4) Clean energy power generation (R): Following Liu andWang
(2019), electricity has the characteristics of “generating and
using” and “real-time balance”. Since it is hard to count the
attribute sources of power products from the user’s side, the
amount of electricity production can be used to replace
electricity consumption approximately. We use the power
generation of four kinds of technologies including hydro
power, nuclear power, wind power, and solar power to
measure clean energy power generation.

(5) Thermal power generation (F): The thermal power data
come from the thermal power generation in the China
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Electric Power Yearbook. In addition, all the units of energy
stock need to be converted into 104 tce.

3.2 Technical Inefficiency Equation
Regarding the influential factors of technical inefficiency, we
selected the following four factors: R&D intensity (rd),
learning by exporting (exp), foreign direct investment
(fdi), regional endowment structure (kl), energy
consumption structure (str) , and labor productivity (lp)

uit � δ1rdit + δ2 expit + δ3fdiit + δ4L.esit + δ5klit + δ6lpit (3)

(1) R&D intensity (rd): Tu and Leeke (2011) examined the
impact of technology on environmental technology
efficiency from three aspects: independent research and
development, technology introduction, and technological
transformation, and confirmed that technology has a
significant effect on the environmental technology
efficiency. Based on the availability of data, we used the
ratio of the internal expenditure of research and
experimental development funds in each region to the
regional GDP to measure the R&D intensity.

(2) Learning by exporting (exp): The “Learning-by-
Exporting” effect refers to exporters who become more
efficient by participating in foreign markets (Clerides et al.,
1998; Li, 2010). We adopt the share of exports of goods in
total output to measure this effect.

(3) Foreign direct investment (fdi): Samour et al. affirm that
FDI plays a significant role in clean energy consumption
(Samour et al., 2022). Wang (1997) believes that the
purpose of foreign capital entering China is to occupy
the domestic market rather than to produce
internationally advanced products. He believes that FDI
will not play a significant role in improving the technical
efficiency of enterprises. However, Yao and Zhang (2001)
believe that the entry of FDI improves technical efficiency
through spillover effects. We use the ratio of FDI inflow
and GDP to measurefdi.

(4) Regional structure: We measure the level of regional
structure from two dimensions: the organic composition
of capital and the proportion of fossil energy, which
respectively reflect the regional endowment structure
(kl) and regional energy structure (es). The factor
endowment structure is one of the main indicators of
the technological level in the existing literature. For
example, Tu (2008) measured structural factors through
regional factor endowments, property rights structure
changes, and firm size and confirmed that regional
structural factors have a significant impact on the
improvement of environmental technology efficiency.
Based on the availability of data, we use the ratio of
capital stock to labor to measure regional factor
endowments. Tu believes that an increase in KL

indicates that the economic structure of the region is
transforming from labor-intensive to capital-intensive.
The energy structure is generally measured by the ratio
of fossil energy consumption to total energy consumption.

(5) Labor productivity (lp): On one hand, the improvement of
labor productivity reflects the improvement of people’s living
standards, which is positively related to people’s willingness
to manage environmental problems, thus improving the
“green” technical efficiency (Ye and Zhou, 2011; Shao
et al., 2016). On the other hand, the improvement of labor
productivity reflects the enhancement of regional economic
strength so that the society has more resources to achieve
sound and rapid economic development (Tu, 2008). We
measure labor productivity by the ratio of regional GDP
to labor.

3.3 Factor-Biased Degree of Directed
Technical Change
According to Diamond (1965), we can further reveal the biased
technical change for each pair of input factors with the following
equation:

Biasnq � zMPn/zt
MPn

− zMPq/zt
MPq

(4)

where n and q are two different production factors (including
K,N, R, F); MPn and MPq are the marginal productivities of n
and q, respectively. Biasnq represents the relative proportional
change over time in pairwise input production elasticities. A
positive (negative) sign on Biasnq indicates that the directed
technical change is based to use n(q) and save q(n); Biasnq =
0 means the directed technical change in the production process
is Hicks neutral. Thus, from Eq. 2 and Eq. 4, we can calculate the
biased technical change between any two factors.

For the biased technical change between clean energy power
generation and thermal power generation, the following
relationship is defined:

BiasRF � zMPR/zt
MPR

− zMPF/zt
MPF

� β9
ηR

− β10
ηF

(5)

In the same vein, the biased technical change between clean
energy power generation and traditional fossil energy is
calculated by the following specification:

BiasRN � zMPR/zt
MPR

− zMPN/zt
MPN

� β9
ηR

− β8
ηN

(6)

Similarly, the biased technical change between thermal power
generation and traditional fossil energy is specified as follows:

BiasFN � zMPF/zt
MPF

− zMPN/zt
MPN

� β10
ηF

− β8
ηN

(7)

where ηR, ηF, and ηN are the output elasticities of clean energy
power generation, thermal power generation, and traditional
fossil energy, respectively. The marginal productivity of clean
energy power generation (MPR), thermal power generation
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(MPF), and traditional fossil energy (MPN) can be obtained as
follows:

MPR � zY

zR
� Y

R

z lnY
z lnR

� Y

R
ηR

� Y

R
(β5 + β9t + β13 lnRit + 1

2
β16 lnKit + 1

2
β18 lnNit

+ 1
2
β20 lnFit) (8)

MPF � zY

zF
� Y

F

z lnY
z lnF

� Y

F
ηR

� Y

F
(β6 + β10t + β14 lnFit + 1

2
β17 lnKit + 1

2
β19 lnNit

+ 1
2
β20 lnRit) (9)

MPN � zY

zN
� Y

N

z lnY
z lnN

� Y

N
ηN

� Y

N
(β4 + β8t + β12 lnNit + 1

2
β15 lnKit + 1

2
β18 lnRit

+ 1
2
β19 lnFit) (10)

3.4 Substitution Elasticity Between Factors
The elasticity substitution of input factor is the core indicator
to measure the strength of the substitution relationship
between factors. Its initial definition was given by Hicks in
“Wage Theory”. The factor substitution elasticity (when a
given output is constant) is the percentage change in the
factor ratio caused by the change in the marginal
substitution rate. The elasticity of substitution is as follows:

SubsRF � d ln(R/F)
d ln(MPR/MPF) �

d ln(F/R)
d ln(MPF/MPR) � SubsFR (11)

MPR

MPF
� Y

R

z lnY
z lnF

/Y

F

z lnY
z lnR

� F

R

ηR
ηF

(12)

SubsRF > 0 (SubsRF < 0) indicates the relationship between
factors is substitution (complementary). The substitution
relationship between factors indicates that an increase in the
input of one factor will lead to a decrease in the input of another
factor. According to Eq. 11 and Eq. 12, we can obtain the
elasticity substitution of inputs factors in internal and external
transition. The elasticities of substitution between R and F, R and
N, and F and N are as follows, respectively,

SubsRF � [1 + 2(β20 − ηF
ηR
β13 −

ηR
ηF
β14)(ηR + ηF)−1]

−1
(13)

SubsRN � [1 + 2(β18 − ηN
ηR

β13 −
ηR
ηN

β12)(ηR + ηF)−1]
−1

(14)

SubsFN � [1 + 2(β19 − ηN
ηF

β14 −
ηF
ηN

β12)(ηF + ηN)−1]
−1

(15)

3.5 Data Description
Based on the available data, we selected panel data from 30
provinces in Mainland China from 2000 to 2017 as the research
sample. The Tibet area is not included in the statistics due to
incomplete data. In China, the “5-year plan” is an important part
of China’s national economic plan. The data from 2000 to 2017
cover the end of the “9th Five-Year Plan” period, “10th Five-Year
Plan” period, “11th Five-Year Plan” period, “12th Five-Year Plan”
period, and the early stage of the “13th Five-Year Plan “.
Therefore, the data we select are of wide statistical significance.

We obtain the data of traditional fossil energy including coal,
oil, and natural gas from the district energy balance table in the
China Energy Statistical Yearbook. The terminal consumption of
coal, oil, and natural gas is adopted to prevent the impact of
energy processing and conversion. The clean energy generation
capacity is selected from hydro power, nuclear, wind, and solar
technologies in the China Electric Power Yearbook. Restricted by
the unavailability of data, hydro power and nuclear power data
are from 2000 to 2017, and wind energy data are selected from
2006 to 2017. Solar energy data range from 2010 to 2017. The
thermal power data come from the thermal power generation in
the China Electric Power Yearbook. The units of all energy data
are uniformly converted into tce according to the energy discount
standard coal reference coefficient in the China Energy Statistical
Yearbook. In order to eliminate the influence of inflation and
other factors, the capital stock and GDP are deflated to the
constant 2000 prices according to the price index and GDP
index. Data such as capital stock, GDP, GDP index, and price
index are from the China Statistical Yearbook. The descriptive
statistics of the above-mentioned variables are shown in Table 1.
The capital stock is calculated using the equation as follows:

Kt � Kt−1(1 − δ) + It (16)
whereK is the capital stock, δ indicates the depreciation rate, and
It means the investment.

4 RESULTS AND DISCUSSION

4.1 Specification Tests of Production
Function
In order to test whether the model setting is correct, the following
aspects should be tested successively. The results of specification
tests of the production function are shown in Table 2.

(1) Whether the stochastic frontier model is applicable: H0: γ �
0. If the null hypothesis is rejected, it indicates that there are
inefficiencies in the model, and the stochastic frontier
production model can be used for parameter estimation;
otherwise, the stochastic frontier analysis is not needed.

(2) Whether the C–D production function or the translog
production function is more appropriate: H0: βtK � βtN �
βtR � βtF � βKK � βNN � βRR � βFF � βKN � βKN � βKR �
βKF � βNR � βNF � βRF � βtt � 0. If the null hypothesis is
accepted, the production function is in the C–D form;
otherwise, the production function is in the translog form.
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(3) Whether there is a technological progress in stochastic
frontier production models: H0: βt � βtt � βtK � βtN �
βtR � βtF. If the original hypothesis is accepted, it indicates
that there is no technical progress in the model and there is
no need to test (4). Conversely, if the counter hypothesis is
rejected, the fourth step test is continued.

(4) Whether the technical change is Hicks-neutral: H0: βtK �
βtN � βtR � βtF. If the null hypothesis is accepted, the model

technology progress is Hicks-neutral. On the contrary, it
indicates that the technological progress is non-neutral. The
generalized likelihood statistic LR is used to test this
hypothesis. The original hypothesis of LR is H0, and the
alternative hypothesis is H1. The formula LR �
−2 × [ln L(H0) − ln L(H1)] can be used to calculate the
statistic LR, which follows the Chi-square distribution
LR ~ χ21−α(k), where α is the significance level and the
degree of freedom k is the number of constrained
variables. If the calculated LR statistic is larger than the
critical value, the null hypothesis is rejected; otherwise, the
null hypothesis is accepted.

The results in Table 2 show that the LR statistic of the above
test (2) is greater than the critical value of the mixed Chi-square

TABLE 1 | Descriptive statistics of variables in the production function.

Variable (unit) Observation Mean Standard error Minimum Maximum

GDP (109RMB) 540 10,509 10,710 263.7 61,431
K (109RMB) 540 24,246 24,500 848.2 139,859
N (104tce) 540 3,836 2,355 216.9 14,001
F (104tce) 540 1,204 1,138 32.08 6,321
R (104tce) 540 330.9 522.3 0 3,951
RD (%) 540 1.263 1.031 0.091 6.014
EXP (%) 540 15.51 18.22 1.091 92.72
FDI (%) 540 2.551 2.248 0.0386 14.65
LP (104RMB/person) 540 4.329 3.128 0.542 16.69
KL (104RMB/person) 540 10.65 8.506 1.321 52.14
L.STR (%) 510 73.8 8.11 49.2 90.9

TABLE 2 | Results of specification tests of the production function.

Null hypothesis LR statistic χ20.05

βtt � βtK/ � βRF � 0 87.08 15.51
βt � βtt � βtK � βtN � βtR � βtF � 0 43.03 15.51
βtK � βtN � βtR � βtF � 0 140.16 15.51

TABLE 3 | Estimation results of the translog production function and the technical inefficiency equation.

Variables Coefficient t-Value Variables Coefficient t-Value

Translog production function
Constant −2.5934a (0.9697) −2.6745 0.5(lnN2) 1.0877a (0.1864) 5.8364
lnK 4.5195a (0.3470) 13.0254 0.5(lnR2) 0.0009 (0.0012) 0.6919

lnN −3.7228a (0.4563) −8.1592 0.5(ln F2) −0.1083 (0.0674) −1.6058
lnR −0.0261 (0.0635) −0.4110 0.5 lnK lnN −0.4515b (0.2195) −2.0570
ln F 0.4115c (0.2429) 1.6940 0.5 lnK lnR −0.0175 (0.0274) −0.6367
t −0.3045a (0.0459) −6.6393 0.5 lnK ln F 0.7641a (0.1127) 6.7802
t lnK 0.0514a (0.0106) 4.8554 0.5 lnN lnR −0.0019 (0.0284) −0.0677
t lnN 0.0054 (0.0122) 0.4455 0.5 lnN ln F −0.7951a (0.1976) −4.0249
t lnR −0.0017 (0.0013) −1.3124 0.5 ln F lnR 0.0434 (0.0303) 1.4318
t ln F −0.0307a (0.0076) −4.0419 0.5tt −0.0038b (0.0015) −2.4553
0.5(lnK2) −0.5019a (0.0964) −5.2080

Technical inefficiency equation
δ0 0.3301a (0.0428) 7.7072 L.es 0.0468a (0.0168) 2.7835
rd −0.0099 (0.0151) −0.6574 kl 0.0253a (0.0022) 11.2723
exp −0.0083a (0.0020) −4.0627 lp −0.0468a (0.0039) −12.1208
fdi −0.0170a (0.0046) −3.7135

Related test
σ2 0.0366a (0.0027) 13.6772 γ 0.4118a (0.0590) 6.9798

Log likelihood function 164.63
LR test 199.37

Note: Standard errors for coefficients are in parentheses.
aStatistical significance at the 1% level.
bStatistical significance at the 5% level.
cStatistical significance at the 10% level.
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distribution, indicating that the null hypothesis should be
rejected. Therefore, it is more reasonable to use the translog
production function. The results of test (3) and test (4) indicate
that there are technical changes in the model, and this change is
non-neutral. As shown in Table 3, the regression results show
that γ significantly passes the t test, which shows that the null
hypothesis of the above test (1) is also rejected and the inefficiency
term exists. After the above tests, it can be concluded that the
stochastic frontier model is applicable, and the production
function adopted by the model is the translog production
function.

4.2 Estimation Results of the Production
Function and Technical Inefficiency
Equation
Considering that local governments can determine the share of
fossil energy, es may have obvious endogenous problems in the
inefficiency equation. In this case, the estimation results of the
stochastic frontier model may be inaccurate. Therefore, according
to Yang et al. (Alataş, 2020), when estimating Eq. 3, we use the
first-order lag es (L.es) to control the endogenous problem. The
estimation results are shown in Table 3. Most of the coefficients
in the translog production function (3) are statistically significant.
The maximum likelihood function value of the model and the LR
test result show that the stochastic frontier model has a strong
explanatory power. Therefore, the model we establish can
reasonably reflect the changes in the technical efficiency of the
30 provinces.

For the determinants of the inefficient equation, although
the coefficient of rd is positive, it is not significant, indicating
that the R&D intensity has little effect on promoting the
technical efficiency. From the energy production mode of
China, it can be found that the current innovation activities
of enterprises aim at product upgrading rather than improving
energy saving. This result is consistent with some of the
existing studies. For example, Xuan and Zhou (Yazan et al.,
2022) have no evidence of a significant positive relationship
between original innovation activity and energy efficiency. In
addition, Yang et al. (2018) believes that the original enterprise
innovation is uncertain and cyclical, and an increased cost of
innovation may make it difficult to get reports in the
short term.

The exp coefficient is negative, meaning that exports can
help improve the technical efficiency. This shows that the
expected “Learning by Exporting” effect appears in China.
It means that enterprises can acquire new knowledge from
competitors when exporting so that export behavior improves
the technological efficiency.

The fdi coefficient is significantly negative, indicating that
fdi can effectively improve the technical efficiency. There are
two theories of “pollution paradise” and “pollution halo” on
the impact of fdi on technical efficiency. Our empirical results
support the latter. It indicates that fdi drives the promotion of
more efficient technologies in multinational corporations.

The coefficient of L.es is significantly positive, indicating that
increased fossil energy consumption is detrimental to improving

the technical efficiency. At present, China’s energy structure
seriously depends on fossil energy, which also shows that
China’s current energy structure limits the improvement of
technical efficiency.

The coefficient of kl is significantly positive, indicating that the
rising organic composition of capital will lead to a decrease in
technical efficiency. This result is consistent with the views of Tu
and Leeke (2011) and shao et al. (2016). It also confirms that
“capital-intensive” industries tend to be heavy polluting
industries, while labor-intensive industries tend to be light
polluting industries.

The coefficient of lp is significantly negative, indicating that lp
can promote the technical efficiency. On one hand, the
improvement of labor productivity is conducive to enterprises
to achieve better production with more and other resources. On
the other hand, improving living standards can help enhance
people’s willingness to improve the environment and the “green”
technical efficiency.

4.3 Factor-Biased Degree of Directed
Technical Change
To discuss the biased technical changes in internal and external
transition, we show the mean value of 2000–2017 in Table 4.
Bias-NR and Bias-NF refer to the biased technical change in the
external transition, while Bias-FR means the biased technical
change in the internal transition.

In the external transition, for the pair of R and N, only eight
provinces prefer to use clean energy, and the remaining 22
regions prefer to use traditional fossil energy. For the pair of F
and N, 22 regions prefer thermal power generation, and the other
eight provinces prefer traditional power generation. In the
internal transition, technological changes are biased toward R
in nine of the 30 provinces, while the remaining 21 provinces are
biased F. This suggests that the government should continue to
encourage producers to value clean production.

In addition, Table 5 shows the directed technical change bias
order of the three input factors. In 20 of the 30 regions, the
technical changes are more biased to thermal power generation,
which is the first factor of the biased order for the 20 regions.
However, only five regions are biased to clean energy generation.
The production mode of the above eight provinces is relatively
green and sustainable. It can be explained that the larger the
production scale of renewable energy, the more advanced the
corresponding level of renewable energy production technology
is. For example, Hubei ranks the third largest in the renewable
energy scale in China, so the renewable energy production
technology in Hubei is relatively advanced. Five regions have
more preference to traditional fossil energy, which is the first
factor of biased order for 14 regions. Therefore, technological
changes in these provinces tend to use traditional fossil energy
rather than clean power generation or thermal power generation.
Therefore, as a whole, the directed technical change in China is
more biased to thermal power generation and deviated from clean
energy generation.

However, technological changes in 18 regions deviate from
clean energy generation, which is the last factor of the biased
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order for the 18 provinces in Table 5. In addition, technological
changes in seven regions are more likely to deviate from thermal
power generation, and technological changes in five regions are
more likely to deviate from traditional fossil energy, which is the
last factor of the bias order for the five regions. The above results
show that overall, China’s provincial scope prefers to use thermal
power over clean energy and traditional fossil energy. They are
less inclined to use clean energy rather than thermal power or

traditional fossil energy. On one hand, these results confirm the
fact that the thermal power generation is popular in China. On
the other hand, the results also show that the government
departments should encourage the emphasis on clean
production.

Based on some studies (Hicks, 1932; Acemoglu et al., 2015;
Fredriksson and Sauquet, 2017; Naqvi and Engelbert, 2017; Fried,
2018; Kha, 2019), the degree of factor bias of directed technology

TABLE 4 | Biased technical changes in internal and external electric transition.

Province Bias-NR Bias-NF Bias-FR Province Bias-NR Bias-NF Bias-FR

Anhui 0.116 −0.208 0.324 Jiangxi 0.206 0.051 0.155
Beijing −0.037 0.178 −0.215 Liaoning 0.124 −0.795 0.920
Fujian −0.106 0.873 −0.980 Neimenggu 0.134 −0.033 0.168
Gansu 0.059 −0.613 0.672 Ningxia 0.070 −0.212 0.282
Guangdong 0.076 −0.569 0.645 Qinghai 0.075 0.642 −0.567
Guangxi 0.471 1.462 −0.990 Shandong 0.073 −0.069 0.143
Guizhou 0.092 −0.090 0.182 Shanxi 0.074 −0.068 0.142
Hainan −0.166 0.866 −1.032 Shanxi2 0.092 −5.588 5.681
Hebei 0.077 −0.166 0.242 Shanghai −0.369 −0.747 0.378
Henan 0.067 −0.176 0.242 Sichuan 0.904 −0.085 0.989
Heilongjiang 0.207 −0.434 0.641 Tianjin −0.279 −0.305 0.026
Hubei −0.263 −0.109 −0.154 Xinjiang 0.158 −2.167 2.326
Hunan 0.141 −0.352 0.494 Yunnan 0.081 −0.403 0.483
Jilin −1.233 −0.268 −0.965 Zhejiang 0.202 0.523 −0.322
Jiangsu 0.097 8.106 −8.008 Chongqing −0.866 −1.174 0.308

Bold value of Bias-ij indicates the technical change is biased to j factor.

TABLE 5 | Factor-biased order of the technical change in 30 provinces.

Order Province

F > N > R Anhui, Gansu, Guangdong, Guizhou, Hebei, Henan, Heilongjiang, Hunan, Liaoning, Neimenggu, Ningxia, Shandong,
Shanxi, Shanxi2, Sichuan, Xinjiang, Yunnan

F > R > N Shanghai, Tianjin, Chongqing
N > R > F Guangxi, Jiangsu, Qinghai, Zhejiang
N > F > R Jiangxi
R > F > N Hubei, Jilin
R > N > F Beijing, Fujian, Hainan

TABLE 6 | Substitution elasticity in the internal and external electric transition.

Province Subs-RN Subs-FN Subs-RF Province Subs-RN Subs-FN Subs-RF

Anhui −1.098 −0.066 1.855 Jiangxi −3.366 −0.001 0.307
Beijing 0.59 −0.279 0.546 Liaoning 0.526 −0.123 1.455
Fujian 1.419 0.135 0.532 Neimenggu 0.353 0.175 1.467
Gansu 1.233 0.049 2.208 Ningxia 1.005 0.354 2.012
Guangdong 1.35 −0.109 0.307 Qinghai −5.693 0.032 0.917
Guangxi 1.599 −0.251 0.558 Shandong 0.351 −0.356 1.317
Guizhou 1.5 −0.311 1.54 Shanxi 0.587 −0.050 0.014
Hainan 0.576 0.219 0.679 Shanxi 1.137 −0.118 4.42
Hebei 1.469 −0.306 1.798 Shanghai −1.707 −0.064 1.142
Henan −0.776 −0.204 0.922 Sichuan 0.962 −0.137 −42.20
Heilongjiang 0.402 −0.046 −0.725 Tianjin 0.489 0.034 2.289
Hubei −3.13 −0.204 1.588 Xinjiang 0.596 0.016 6.269
Hunan 1.039 −0.323 9.76 Yunnan 1.304 −0.640 0.821
Jilin −6.371 −0.033 0.967 Zhejiang −0.291 −0.069 0.459
Jiangsu −0.36 0.229 0.169 Chongqing 1.494 −11.81 0.308

Bold value of Subs-ij means there is a complementary relationship between factor i and j.
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changes is determined by the price and scale effects. Adjusting the
relative price will timely adjust the relative demand and actual
input between factors in the production process and gradually
reduce the difference in the marginal output growth rate of the
two energy factors so as to change the degree of factor bias of
directed technical changes between factors. Therefore, in the
internal transition, the governments can adjust the technical
change bias of the provinces by raising the price of thermal
power generation or increasing the subsidies for clean energy
power generation. In the external transition, the governments can
adjust the energy policies of the province by increasing the carbon
tax prices or increasing subsidies for clean energy power
generation and low-coal thermal power generation. These
changes will continue to alter the relative price between factors.

4.4 Substitution Elasticity Between Factors
In Table 6, we list the substitution elasticities between factors in
the 30 provinces. From the perspective of external transition, for
the pair of F and N, there are only nine provinces with
substitution relations, and the other 21 other regions have
complementary relationships. The complementary relationship
between F andN in most provinces can be explained by their need
for more energy to meet production demand. In addition, there
are complementary relationships between R and N in only nine
regions, while the 21 remaining regions have substitution
relationships. From the perspective of the internal electric
transition, there is a complementary relationship between F
and R in only two regions, and the other 28 regions all have

substitution relations. It indicates that increased clean energy
power generation can currently be used to reduce thermal power
generation in these provinces. Although at the provincial level,
different regions show an obvious difference in substitution
elasticity, there is a substitution relationship between other
energy factors except for traditional fossil generation and
thermal power generation with a complementary relationship
on a whole.

4.5 Improvement Pathway of Energy
Transition
In the production process, the internal and external transition can
be conducive to the green development and transformation.
Therefore, we analyze three transition ways and study the
improvement path of energy transition in different regions
based on the degree of biased directed technical changes and
the substitution elasticity between factors. The classification
results of eight external transition pathways and three internal
transition pathways are shown in Tables 7–9.

First, the classification results between factor N and R are
shown in Table 7. There are four production patterns according
to the factor N and R. Among them, the ideal production mode
shows Bias-NR<0 and Subs-NR>0. In this kind of production
mode, these regions (Beijing, Fujian, Hainan, Tianjin, and
Chongqing) are more inclined to use the clean energy power
generation rather than use the traditional fossil energy. Increasing
the use of clean energy power generation will reduce the use of

TABLE 7 | Classification results of directed technical change and substitution elasticity between factors (traditional fossil energy vs. clean energy generation).

Estimation result Province

Bias-NR>0, Subs-NR>0 Gansu, Guangdong, Guangxi, Guizhou, Hebei, Heilongjiang, Hunan, Liaoning, Neimenggu, Ningxia, Shandong, Shanxi,
Shanxi, Sichuan, Xinjiang, Yunnan

Bias-NR<0, Subs-NR>0 Beijing, Fujian, Hainan, Tianjin, Chongqing
Bias-NR>0, Subs-NR<0 Anhui, Henan, Jiangsu, Jiangxi, Qinghai, Zhejiang
Bias-NR<0, Subs-NR<0 Hubei, Jilin, Shanghai

TABLE 8 | Classification results of directed technical change and substitution elasticity between factors (traditional fossil energy vs. thermal power generation).

Estimation result Province

Bias-NF>0, Subs-NF>0 Fujian, Hainan, Jiangsu, Qinghai
Bias-NF<0, Subs-NF>0 Gansu, Neimenggu, Ningxia, Tianjin, Xinjiang
Bias-NF>0, Subs-NF<0 Beijing, Guangxi, Jiangxi, Zhejiang
Bias-NF<0, Subs-NF<0 Anhui, Guangdong, Guizhou, Hebei, Henan, Heilongjiang, Hubei, Hunan, Jilin, Liaoning, Shandong, Shanxi, Shanxi,

Shanghai, Sichuan, Yunnan, Chongqing

TABLE 9 | Classification results of directed technical change and substitution elasticity between factors (thermal power generation vs. clean power generation).

Estimation result Province

Bias-FR>0, Subs-FR>0 Anhui, Gansu, Guangdong, Guizhou, Hebei, Henan, Hunan, Jiangxi, Liaoning, Neimenggu, Ningxia, Shandong, Shanxi,
Shanxi, Shanghai, Tianjin, Xinjiang, Yunnan, Chongqing

Bias-FR<0, Subs-FR>0 Beijing, Fujian, Guangxi, Hainan, Hubei, Jilin, Jiangsu, Qinghai, Zhejiang
Bias-FR>0, Subs-FR<0 Heilongjiang, Sichuan
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fossil energy, which will help to promote the transformation of
clean energy to traditional fossil energy.

The mode-like Bias-NR>0 and Subs-NR>0 suggests that the
region prefers to use traditional fossil energy over clean energy. In
addition, an increase in traditional fossil energy use would lead to
a decline in the use of clean energy generation. For these areas, the
directed technological change needs to be adjusted; Bias-NR<0
and Subs-NR<0 suggest that the region prefers the use of clean
energy generation, and increasing the use of clean energy
generation leads to the increased use of traditional fossil
energy. These regions need to adjust the alternative
relationship between the two energy sources; for areas with
Bias-NR>0 and Subs-NR<0, the government needs to
encourage technological changes inclined to use clean energy
power generation and change the complementary relationship
between clean energy power generation and traditional fossil
energy.

Second, the classification results with four production
patterns between F and N are shown in Table 8. The ideal
production mode is Bias-NF<0 and Subs-NF>0. Areas that are
in line with this production mode (Gansu, Neimenggu,
Ningxia, Tianjin, and Xinjiang) are more inclined to use
thermal power generation. When expanding the scale of
production, they will increase the thermal power generation
and reduce traditional fossil energy so as to promote the
external transformation of thermal power generation to
traditional fossil energy.

Finally, the classification results between F and R are shown in
Table 9. The mode with Bias-FR>0 and Subs-FR>0 indicates that
the province prefers thermal power to clean energy power
generation, and there is an alternative relationship in the
production process between clean energy power and thermal
power. Therefore, the areas with the above mode prefer to use
thermal power generation rather than clean energy generation,
and the increase of thermal power generation use will lead to the
decline of clean energy power generation. For these areas, the
technical change needs to be adjusted between the two factors.
Areas with Bias-FR>0 and Subs-FR<0 prefer thermal power
generation rather than clean energy power generation. For
these areas, technological change that is biased to clean energy
power generation and use need to be encouraged, and the
alternative relationship between thermal and clean energy
power generation needs to be adjusted. The ideal production
model shows Bias-FR<0 and Subs-FR>0, where the provinces
(Beijing, Fujian, Guangxi, Hainan, Hubei, Jilin, Jiangsu, Qinghai,
and Zhejiang) prefer the use of clean energy power generation
rather than the use of thermal power generation. In addition,
increasing the scale of the use of clean energy power generation
can reduce the use of thermal power generation in these
provinces.

Hence, in order to improve the external and internal electric
transition, the Chinese governments should promote the
reform of the market-oriented energy pricing mechanism
according to characteristic transition modes in different
regions. For the provinces with production patterns which
can automatically benefit the energy transition, we suggest a
moderate policy, while for the other provinces, we suggest a

policy of energy price and tax. Moreover, for the enterprises,
their production patterns are not easy to change. They usually
benefit by minimizing costs under the conditions of
homogeneous products and unchanged price. Therefore, the
change of the inter-fule price will have an effect on the
production costs and the structure of production factors,
which improves the energy transition. Finally, the results
from the analysis of China show that it is also possible for
other countries to treat their energy transition differently due
to their characteristic production patterns.

5 CONCLUSION AND POLICY
IMPLICATIONS

Promoting the internal and external electric transition is of
great significance for China to achieve a green transformation.
In this article, with capital, traditional fossil energy, clean
energy, thermal power generation, and the GDP of the
provinces, we built a stochastic production frontier model
based on the translog production function, which measures
the bias of directed technical changes and substitution
elasticities of 30 provinces in mainland China from 2000 to
2017. Furthermore, we discuss the transition paths with three
pairs of energy inputs in 30 provinces.

For all Chinese provinces, export learning, foreign direct
investment, and labor productivity can significantly improve
the technological efficiency, while increasing fossil energy
consumption and capital deepening will have a negative
impact on technological efficiency. In addition, there is no
evidence that the original R&D activities can significantly
improve the technical efficiency.

On the whole, the directed technical change in China is
more biased to thermal power generation and deviated from
clean energy generation. In addition, except for traditional
fossil generation and thermal power generation with a
complementary relationship, there is a substitution
relationship between other energy factors.

At the provincial level, different regions show an obvious
difference in substitution elasticity. It can be found that the
technical change is biased to thermal power generation for 21
regions and there is a substitution relationship for 28 regions
in internal electric transition. In addition, the technical change
is biased to traditional fossil energy instead of clean energy
generation for 22 provinces, and 21 regions have
complementary relations between them. Moreover, the
technical change is biased to thermal power generation
instead of traditional fossil energy, and 21 regions have
substitution relations between them.

Considering the differentiated production characteristics of
different regions, the government should avoid promoting energy
transition in accordance with unified policies. According to the
directed technical change and substitution elasticity, the
government needs to formulate and adopt differentiated
improvement measures for energy transition. In the external
electric transition, we recommend a relatively moderate
adjustment policy for five regions conforming to the (Bias-NR
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< 0 mode, Subs-NR > 0) mode and five regions conforming to the
(Bias-NF < 0, Subs-NF > 0) mode. In the internal transition,
among the 30 provinces, nine regions present the production
mode (Bias-FR < 0, Subs-FR > 0). For these provinces, we also
recommend a laissez-faire or moderate adjustment policy as their
internal transition can be automatically improved. However, for
other regions, the biased order of technical change between
energies can be changed through the price policy. To sum up,
by adjusting the relative price between energies through
reasonable fiscal and tax policies, it is expected to achieve the
internal and external electric transition. The results of this study
can be used for reference by almost all countries in the world. We
suggest that the differentiated energy transition should be
implemented according to the various production patterns in
different regions. Although this research has made contributions,
we do not provide specific technical support for China to adjust
the technical change bias among different energy sources. This

article may contribute to energy transition in various sectors or
industries. We also modeled the translog production function
under the external and internal electric transition which is
significant in carbon emission reduction action.
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