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The guidance of EV via a price-based demand response is of great significance to the
security and economy of the distribution network. However, the current price-based
demand response mechanisms fail to consider the spatial-temporal distribution of large-
scale EVs connected to the distribution network. For tackling this challenge, this paper
proposes a day-ahead economic dispatch strategy for distribution networks considering
total cost price-based demand response. A two-layer model of the day-ahead economic
dispatch for the distribution network is utilized to obtain the interactive calculation
framework for the total cost price. The total cost price iterates between the economic
dispatch model of the distribution network and the total cost price-based demand
response model until no significant changes in total cost price are observed. Among
them, the price-responsive load considers spatial-temporal shift of the EV charging load.
Finally, simulation study case based on a modified IEEE 33-bus system is employed to
demonstrate the effectiveness of this strategy for the economic operation of the
distribution network.

Keywords: total cost price, EV loads, controllable load, economic dispatch of distribution network, spatiotemporal
distribution

1 INTRODUCTION

Facing the increasingly serious energy shortage and environmental pollution problems, EVs have
been vigorously developed as a low-carbon and clean means of transportation (Selvam et al., 2016).
The access of large-scale EVs to the distribution network brings flexible resources to the optimal
operation of the distribution network, but it also brings challenges to the security and economy of the
distribution network. A large-scale EV connected to the power grid has the attributes of
spatiotemporal distribution. The change of spatiotemporal distribution of its charging behavior
will have an obvious impact on the power flow of the distribution network. In order to help the
distribution network better accept EVs, it is necessary to guide the charging and discharging behavior
of EVs in time and space. The electricity price mechanism is an important means of guidance (Liu
et al., 2014). At the same time, in the electricity market environment, the key to guide EVs through
electricity price is to coordinate the economy of distribution network and EV users. The distribution
network guides the charging period of EVs to the low-cost period and the charging place to the low-
cost charging station node by formulating the electricity price with time-space attribute, so as to
improve the economic benefits of the distribution network and reduce the charging cost of users.
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Therefore, it is necessary to propose a distribution network price
pricing mechanism with spatial-temporal attribute, which guides
EVs and controllable loads to respond to the demand of
distribution network and realizes the win-win situation
between distribution network and users.

At present, the pricing research considering the demand
response of EVs and controllable loads is mainly from the
perspective of improving users’ comfort and economic
benefits. Liu Q. designed a pricing scheme that considers
fluctuating costs. A demand response strategy for controllable
loads and EV charging loads is proposed to optimize user
electricity costs and stabilize power system load fluctuations
(Liu et al., 2018). Ali S. proposed a user power mode
scheduling method based on real-time price (RTP) signals,
which aims to reduce power cost, peak-to-average ratio, and
carbon emissions, and improve user comfort (Ali et al., 2021).
Gazafroudi A. S. Amin Shokri. proposed a day-ahead and real-
time two-stage stochastic model, and simulates smart home
demand response schemes based on critical peak pricing
(CPP), RTP, and time-of-use (TOU) price signals. Simulation
results show that smart homes participate in the TOU price
scheme with the greatest economic benefits (Gazafroudi et al.,
2019). De Sá Ferreira Rafael. established a TOU price model
based on secondary programming secondary constraints and
stochastic optimization technology. This TOU price model can
promote economic efficiency and improve system load structure
(de Sá Ferreira et al., 2013). Most of the pricing methods for
guiding load optimization are only considered from the time
dimension. By formulating TOU prices, RTP, dynamic TOU
prices, etc., the translation of the usage period of EVs and
controllable loads are realized. In reality, however, EVs, as a
mobility tool, can choose charging locations under the guidance
of space electricity prices. Therefore, it is necessary to propose a
pricing method for the distribution network that considers the
flexibility of both the time and space dimensions of EVs.

Distribution location marginal price (DLMP) is a pricing
method with spatiotemporal attributes, which can guide the
interaction between the distribution network and various
resources in the distribution network, reasonably allocate the
resources of the distribution network, and improve the economic
benefits of the operation of the distribution network.
Mohsenzadeh. proposed a smart home management system
optimization model, using DLMP to replace the time-based
pricing mechanism, and incentivizing users to change their
energy consumption habits through price (Mohsenzadeh and
Pang, 2018). Canizes. formulated the dynamic charging price of
electric vehicles based on DLMP, simulated the impact of price on
EV behavior, and found that it greatly saved the cost of DSO and
EV users (Canizes et al., 2019). Wei. proposed a DLMP method
based on a three-phase current injection for robust convergence
of optimal power flow. This method takes into account the
participation of distributed generation (DG) and demand
response, which enables DSO to obtain higher operational
benefits (Wei et al., 2019).

However, in the above study, the calculation of DLMP is only
the marginal power generating cost and does not take into
account the fixed cost of power distribution. Under the

incomplete electricity price signal, the DSO cannot recover the
investment cost of distribution network construction, so the DSO
cannot maximize its economic benefits. Wang proposed an
electricity price mechanism that considers the allocation of
transmission costs and rationally allocates the costs of the
transmission grid based on the power flow tracking method
(Wang et al., 2017). On this basis, this paper applies the
method to the distribution network layer. The distribution
cost based on the power flow tracking method can reflect the
spatial cost of the node load of the distribution network, and the
power generation cost based on the power flow tracking method
can reflect the relationship between the distribution network load
and the market electricity price in the time dimension. Therefore,
the total cost price formed by the superposition of the distribution
cost and the generation cost based on the power flow tracking
method has spatiotemporal attributes.

In addition, the existing research on the optimal operation of
distribution network with EVs mainly uses the dispatchable load
demand response in the distribution network to improve the
economics of the distribution network. Xiao. proposed a
scheduling optimization model of an active distribution
network considering demand response uncertainty with the
minimum operating cost as the goal (Xiao et al., 2020). Li.
proposed an economic dispatch method for energy storage in
the distribution network to mitigate the impact on the security of
the distribution network due to the proliferation of EVs and DG
(Li et al., 2020). Cheng. proposed a dynamic multi-objective
optimal dispatch problem to integrate with the TOU price-
based demand response for optimal distribution network
dispatch (Cheng et al., 2022). However, the above research
ignores the economic dispatching between the load and the
power supply through the interaction of electricity price.

Based on the above research and analysis, this paper proposes
a day-ahead economic dispatch strategy for distribution
networks considering total cost price-based demand response.
Firstly, the spatial-temporal distribution model of aggregated
EV load is established to determine the EV delay charging
aggregation of EVs in each node; Secondly, a spatial-
temporal price mechanism of distribution network is
designed, and the calculation method of the total cost price
of distribution network considering the spatial-temporal
characteristics of EV charging load is given; Then, based on
the spatial-temporal electricity price mechanism and combined
with the demand response of controllable load, the day ahead
economic dispatching strategy of distribution network with EVs
is established. This strategy can deeply encourage users to
participate in the demand response of distribution network
and improve the economy of distribution network and users.

The main contributions of this paper are as follows.

a) According to the mathematical relationship between EV
charging capacity and time, the charging power boundary
of a single EV is obtained. Based on this, the connected EVs
are aggregated into charging clusters in nodes.

b) The proposed spatiotemporal electricity price mechanism
uses the power flow tracking method to calculate the total
cost price. Compared with the traditional DLMP, it increases
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the variation of electricity price in the spatial dimension, and
fully considers the spatiotemporal flexibility of EVs.

c) EVs and controllable loads respond to the demand according
to the total cost price with spatiotemporal attributes, and then
the distribution network optimizes the power generation
resources according to the spatiotemporal distribution of
demand response load. The load side and grid side
continue to interact and iterate, to realize the optimal
power generation and consumption distribution of
distribution network, and improve the economic benefits of
distribution network operators and reduce users’
electricity costs.

The paper is structured as follows. Section 2 establishes the
spatiotemporal distribution model of aggregated EV load.
Section 3 proposes a DSO’s electricity price mechanism
with spatiotemporal guidance Section 4 gives a detailed
description of the day-ahead economic dispatch strategy of
the distribution network. Section 5 explains the method and
process of model solving. Section 6 illustrates the effectiveness
of the strategy by the simulation analysis of the IEEE 33-bus
system example. Section 7 summarizes the major findings of
this paper.

2 AGGREGATED EV LOAD
SPATIOTEMPORALDISTRIBUTIONMODEL

Urban areas can be divided into residential areas, work areas,
and business areas according to their functional positioning.
The distribution of the EV on-grid and off-grid time is closely
related to the area in which it is located (Fernandez et al.,
2010). According to the travel behavior characteristics of
private car users, the Monte Carlo method is used to
simulate the charging demand of EV users, and the
spatiotemporal distribution of EV charging load is
predicted. For the distribution of the EV charging sampling
parameters, see Appendix Table A2.

Single EV Charging Requirements Dev Meet

Se � Ss +Dev (1)

Dev � E−1
c ηc ∫te

ts

Pev(t)dt (2)

where Se is the state of charge (SOC) value at the end of charging,
Ss is the SOC value at the beginning of charging, ηc is the EV
charging efficiency, Pev(t) is the time function of charging power,
ts is the time when the EV is on the grid, and te is the time when
the EV is off the grid.

Pev(t) can be described by its charging power boundary (Xu
et al., 2015). As shown in Figure 1, the broken line a-b-d
represents the energy consumption line when the EV starts
charging as soon as it is on the grid until it is fully charged or
when the EV leaves. The broken line a-c-d represents the energy
consumption broken line that delays charging as much as possible
after the EV is on the grid and is just fully charged when it leaves.

The energy boundary of aggregated EVs is obtained by
superimposing the energy boundary of a single EV. Therefore,
aggregated EVs charging power meets the following constraints:

Pmin
ev (t)≤Pev(t)≤Pmax

ev (t) (3)
Emin
ev (t)≤Eev(t)≤Emax

ev (t) (4)
Eev(t + τ) � Eev(t) + Pev(t) · Δt (5)

where Pmin
ev (t) and Pmax

ev (t) are the upper and lower limit of the
charging power of aggregated EVs, respectively. Eev(t) is the
energy of aggregated EVs. Emin

ev (t) and Emax
ev (t) are the upper and

lower limits of the energy of aggregated EVs, respectively. This
model which controls the charging load of aggregated EVs as a
whole can be used for the day-ahead forecasting occasion.

3 PRICE MECHANISM CONSIDERING THE
SPATIOTEMPORAL CHARACTERISTICS
OF LOAD

3.1 Day-Ahead Pricing Framework for
the DSO
Figure 2 shows the DSO to participate in the electricity market
operational framework. In this paper, the DSO can not only
participate in the day-ahead market on the upper transmission
side as a power market entity, but also optimize the flexible
resources in the dispatching area and realize its own economic
operation.

Since the DSO does not know the electricity price information
of the next trading day before the market clears, it needs to predict
the electricity price based on historical data and the forecast
information of the next trading day. The predicted price is used as
the electricity purchase price for the DSO to purchase electricity
from the independent system organization (ISO). In order to
minimize its operating costs, the DSO formulates its power
purchase plan, regional DG power output plan, and the initial
total cost price. Under the electricity price signal provided by the
DSO, the demand response system (DRS) issues instructions to
various controllable devices to adjust the user’s power and reports
the optimized preliminary energy demand plan in units of nodes
to DSO. Based on the electricity demand plan reported by the
DRS, the DSO formulates a new round of power purchase plan,

FIGURE 1 | Energy boundary diagram of a single EV.
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DG power output plan, and total cost price. The DRS re-
optimizes the user scheduling according to the new round of
electricity price information given. This is repeated until the
power demand plan submitted by the DRS can maximize the
economic benefits of the DSO.

The electricity demand submitted by the DSO will have an
impact on the market clearing price. Therefore, this paper uses a
linear model of price and demand to predict market clearing
prices (Huang et al., 2014; Verzijlbergh et al., 2012).

The market electricity price model is as follows:

λt � at + bPt (6)
where b represents the sensitivity coefficient of electricity price to
electricity demand, which can be estimated by historical data, at is
the day-ahead forecasted electricity price, and Pt is the total
electricity demand of the distribution system.

3.2 Electricity Price Mechanism
Considering the Spatiotemporal
Distribution of Loads
The spatiotemporal distribution of load is determined by the
power consumption behavior of users. The electricity
consumption behavior of users is affected by the nodal price,
which can be divided into two levels: time and space. In terms of
time, the charging period of EVs and the use period of
transferable load are transferred to the low price period. In the
terms of space, low price charging pile is selected for electric
vehicle charging. The charging needs of EVs are closely related to

the travel needs of users. Therefore, the charging behavior of EVs
is mainly located in residential areas, work areas and
business areas.

The following two steps illustrate the guidance of the DSO’s
electricity price mechanism on the spatiotemporal distribution of
EV loads.

1) To predict the spatiotemporal distribution of aggregated
EV loads

According to the load model in Section 2, the spatiotemporal
distribution of EV charging load is calculated based on the urban
functional area, and the electric vehicle load in each area is
obtained.

2) To formulate an electricity price guidance strategy

According to the nodal price released by DSO, EVs in the same
area are guided to choose charging stations with short
queuing time and low electricity price at the node where they
are located.

3.3 Total Cost Price
Wang proposed a cost allocation method for transmission grids
based on the power flow tracking method (Wang et al., 2017).
This paper applies it to the distribution network level to calculate
the total cost price. The total cost price of the distribution
network is composed of two parts: the cost of power
generating and the cost of power distribution.

FIGURE 2 | Day ahead pricing framework for the DSO.
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3.3.1 Generating Cost
The power resources in DSO include the power purchased from
ISO and the self-built DG. Regarding the power purchase nodes
and nodes of DG in the distribution network as power generation
nodes. The generating cost component of the total cost price can
be derived according to the power flow tracking method. The
process is as follows.

The relationship between the electricity demand of any node
in the distribution network and the power generating node k in
the period time t :

PLk,t � PLk,t

Pk,t
∑n
i�1
[A−1

u ]ki,tPGi,t (7)

where PLk,t is the node load of the period time t node k, [A−1
u ]ki,t is

the row k and column i of the period time t downstream tracking
matrix, Pk,t is the total flow power of the period time t node k
(that is, the sum of the generator power and the upstream node
inflow power), and PGi,t is the power generation power of the
period time node i.

The unit generating cost of the load node k during the period
time t is:

CLGk,t � 1
Pk,t

∑n
i�1
[A−1

u ]ki,tPGi,tCGi,t (8)

where CLGk,t represents the unit generating cost of the node k
during the time t and CGi,t represents the unit power generation
cost of the power generation node i (including power purchase
nodes and distributed power nodes).

3.3.2 Power Distribution Cost
Power distribution cost is obtained by using the power flow
tracking method, which can allocate the fixed cost of the
distribution network to each user fairly and reasonably. For
the line ij, the annual fixed cost is evenly amortized to each
day to get the daily fixed costCT,ij. And the total power flow of the
line throughout the day is ∑24

t�1 Fij,t. So the unit power
distribution cost of the line ij is:

CTij,t � CT

∑24
t�1

Fij,t

(9)

For the line ij, the fixed cost includes two parts (Chen et al.,
2017): fixed asset depreciation expenses CT1,ij and operation and
maintenance expenses CT2,ij.

CT,ij � CT1,ij + CT2,ij (10)
CT1,ij � αLij

Tdp365
(11)

CT2,ij � βαLij (12)
where α is the fixed assets of the line per unit length, which is
calculated at 100,000 yuan/km. Lij is the length of the line ij. Td is
the line depreciation period, which is calculated at 20 years. β is
the operating and maintenance ratio coefficient, which is
recorded as 10%.

According to the power flow tracing method, the contribution
of the load at the period time t load node k to power flow for the
line is Fij,t

Pi,t
[A−1

d ]ik,t. Therefore, the unit power distribution cost of
the period time t load node k is:

CTk,t � ∑
ij∈Nl

∣∣∣∣Fij,t

∣∣∣∣
Pi,t

[A−1
d ]ik,tCTij,t (13)

where Fij,t is the power flow of the period time t and line ij, Pi,t is
the total injected power of the downstream node j of the period
time t and line ij, [A−1

d ]ik,t is the row i and column k of the period
time t reverse flow tracking matrix, and Nl is the line set.

In summary, the total cost price of the load node k during the
period time t is:

Ck(t) � CLGk,t + CTk,t (14)

4 DAY-AHEAD ECONOMIC DISPATCH
STRATEGY FOR DISTRIBUTION NETWORK

In order to clarify that the total cost price mechanism of DSO can
guide the temporal and spatial distribution of load, a two-level
model of day-ahead economic dispatching of the distribution
network is established in this section.

The DSO is responsible for the upper-level optimization
model. With the goal of the lowest daily operating cost of the
DSO, the power purchase plan and the distributed power output
plan are determined based on the constraints of the supply and
demand balance of the distribution network and the constraints
of the DC power flow. Then, the time sequence flow of the
distribution network is calculated, according to the power
dispatch of the distribution network. The fixed cost of the
distribution network is allocated to each user reasonably and
fairly, and the total cost price composed of the generation cost
and the distribution cost is formed.

The lower model is in charge of DRS. Based on the total cost
price issued by the DSO, the goal is to minimize the user’s
electricity cost to optimize the controllable load in the
dispatch area.

4.1 Upper-Level Optimization Model
4.1.1 Economic Objective Function
This paper establishes the objective function with the lowest
operating cost of the DSO in the dispatching period. In the power
market environment, the DSO operating costs CP are composed
of generating costs CG and power distribution costs CT. The
specific expression is:

CP � CG + CT (15)

CG � ∑24
t�1

∑n
k�1

CGk,tPGk,t (16)

CT � ∑24
t�1

∑
ij∈Nl

CTij,t

∣∣∣∣Fij,t

∣∣∣∣ (17)
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4.1.2 Constraints
Optimal dispatch of the distribution network needs to meet
various constraints:

1) Energy supply and demand balance constraints:

∑n
k�1

PGk,t � ∑n
k�1

PLk,t (18)

2) The DG power output constraints:

PGk,t < � PGk,max ,t (19)

3) DC power flow constraints:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
AGPG,t − PD,t � Bθt∣∣∣∣∣θi,t − θj,t

∣∣∣∣∣/xij ≤Pmax
l,ij , i, j ∈ ΩN

θmin ≤ θt ≤ θmax

Pmin
Gi,t ≤PGi,t ≤Pmax

Gi,t

(20)

where AG is the node-unit association matrix, PG,t is the unit
active output vector, θt is the node phase angle vector, xij and
Pmax
l,ij are the reactance and transmission power upper limit of the

transmission line ij respectively, and ΩN is the nodal set.

4) Total cost price constraints:

Ck,t � 1
Pk,t

∑n
i�1
[A−1

u ]ki,tPGi,tCGi,t + ∑
ij∈Nl

∣∣∣∣Fij,t

∣∣∣∣
Pi,t

[A−1
d ]ik,tCTij,t (21)

5) Demand response model constraints see the lower-level
optimization model.

4.2 Lower Level Optimization Model
The DSO publishes the total cost price information to the DRS.
The goal of the DRS to optimize the dispatch of controllable
loads in the jurisdiction is to minimize users’ electricity cost.
Nd is the number of load nodes in the distribution network, T
is the number of scheduling periods, Nu,k and Ne,k are the
number of users, and the number of EVs on the nodes k,
respectively. The DRS optimal scheduling objective function is
as follows.

min∑Nd

k�1
∑T
t�1

Ck,t
⎛⎝∑Nu

u�1
PU
k,u,t + Pev(t)⎞⎠⎤⎥⎥⎦⎡⎢⎢⎣ (22)

where PU
k,u,t is the single user’s electricity power, which concludes

the controllable loads and uncontrollable loads.
The optimal dispatch model of the DRS is subject to the

constraints controllable load (23) to (31) and the aggregated EVs
charging load characteristic (3) to (5). After the DRS obtains the
power consumption plan of each user, it reports to the DSO on a
node basis.

In this section, controllable loads mainly include transferable
load (such as washingmachines, dishwashers, etc.), reducible load
(such as lights, etc.), and temperature-controlled load (such as air
conditioning, etc.).

4.2.1 Transferable Load
Transferable load is the device whose operating period can be
transferred without interruption, and has constant power
during operation. Assuming that the transferable range of the
device is [tsa, tea]. The binary variable αa represents the operating
state of the device, which equals 1 if the device is in the on state
and 0 otherwise. The binary variable βa represents the action of
turning on and turning off of the device, which equals 1 if the
device is turned on, and 0 otherwise. The model is expressed as
follows:

pa(t) � αa(t)prate
a

(23)

∑tea
t�tsa

αa(t) � xa (24)

∑tea
t�tsa

βa(t) � 1 (25)

∑t+xa−1
τ�t

αa(τ)≥ βa(t)xa, t ∈ [tsa, tea] (26)

where pa is the operating power of the device a, prate
a is the rated

power of the device a, and xa is the number of the device
operating periods.

4.2.2 Reducible Load
Reducible load refers to the device whose operating period is
fixed, and its power can be changed within a certain range. Its
range is [pmin

a , pmax
a ]. The model is expressed as follows:

pa(t) � αa(t)pa (27)
αa(t) � 1 , t ∈ [tsa, tea] (28)

4.2.3 Temperature-Controlled Load
Temperature-controlled load is the device that determines the
operating time and operating power according to changes in
temperature. Taking air conditioner as an example considers that
the user has a comfortable range of temperature, which can be
expressed as [Tmin, Tmax]. The first stage model of
thermodynamics is used to express the temperature-controlled
load operating state, and the model is expressed as follows:

Tin(t+1)�Tin(t)e−1/RC+Rpa(t)η(1−e−Δ/RC)+Tout(t)(1−e−1/RC) (29)
0≤pa(t)≤prate

a (30)
Tmin ≤Tin ≤Tmax (31)

where R is the room thermal resistance, C is the room heat
capacity, η is the equipment energy efficiency, Tin is the room
temperature, Tout is the ambient temperature, and pa is the
equipment operating power.

5 SOLUTION METHODOLOGY

Total cost price is closely related to DSO’s scheduling plan and
nodal load. On the premise of meeting the power demand in the
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area under its jurisdiction, DSO determines the DSO power
purchase plan and the DG power output in the distribution
network based on the lowest operating cost of the distribution
network. At the same time, under the guidance of the nodal price
signal, users continue to adjust electricity consumption to change
the spatiotemporal distribution of nodal load, which changes the
distribution of power flow and affects the change of
electricity price.

Therefore, this paper proposes an iterative algorithm to construct
a day-ahead economic dispatch model of the distribution network
and determine the DSO power purchase plan based on the electricity
market purchase price, the DG power output parameters, and nodal
load data, with the goal of the lowest distribution network operating
cost. As well as the controllable DG power output plan, the total cost
price is calculated according to the results of the power flow. The
electricity price signal is used to guide the user’s electricity
consumption behavior, which achieves the best operating state of
the DSO.

In summary, the iterative solution process of the day-ahead
economic dispatch strategy of the distribution network that
considers the total cost price-based demand response proposed
in this paper is shown in Figure 3. The specific steps are as
follows.

The first step is to input the day forecast nodal load data and
the forecast value of the electricity market purchase price. And
initialization: Set the initial value of the DSO operating cost
C0
p � 1e10, the initial value of the node cost C0

k,t � 0, and the
number of iterations n � 0.

The second step is to solve the economic dispatch model of the
distribution network with DG and determine the DSO power
purchase plan and the DG power output plan.

The third step is to calculate the total cost price. According to
the power dispatch in the network, the total cost price is
calculated according to Eqs 16–23.

In the fourth step, the DRS optimizes the dispatch of the
controllable load in the area based on the total cost price, and then
reports the power plan to the DSO based on the node.

The fifth step is to update Cn+1
P , Cn+1

k,t , and check them with the
previous iteration. If the convergence criterion is met, the
iteration is terminated and the calculation is finished.
Otherwise, update the nodal load value and the market power
purchase price value, and go to the second step to continue the
calculation.

The iteration termination condition is set as:∣∣∣∣Cn+1
P − Cn

P

∣∣∣∣≤ εcP (32)
max

∣∣∣∣Cn+1
k,t − Cn

k,t

∣∣∣∣≤ εp (33)
where εp and εcP are the convergence parameters. Eqs 32, 33
determine the boundary that when changing the spatiotemporal
distribution of nodal load and adjusting the DG power output, the
total cost price and DSO operating cost are unchanged basically.

6 CASE STUDY

6.1 Case Introduction
In order to demonstrate the effectiveness of proposed the day-
ahead economic dispatch strategy for the distribution network
considering the total cost price-based demand response, the
modified IEEE 33-bus system is employed to carry out the
example analysis of this paper. Based on the original network
structure, distributed photovoltaic (PV) and micro gas turbines
(GT) have been added. The detailed parameters of DG are shown
in Table 1. Distributed PV power output obeys normal
distribution (Yan et al., 2018). The area is divided into
residential areas, work areas, business areas, and other areas.
The distribution network topology and distributed power access
locations are shown in Figure 4. The electricity value predicted by
DSO based on historical market data is shown in Table 2. The
convergence parameters εcp and εc are 1e−2, and the price
sensitivity coefficient is 1e−4 yuan/(kW·h)2. The CPU
computing time is 815.2 s, which is fully compatible for online
use of day-ahead scheduling.

The assumptions in this paper are as follows:

1) Each node in the residential area is given the number of users
Nh � 100 and the number of charging piles Nh

e � 30, and the

FIGURE 3 | Flow chart of solution methodology.

TABLE 1 | Distributed power supply parameters.

Node Type of power Capacity/(kW h) Price/(yuan/(kW h)−1)

3, 22, 26 PV 100 —

18, 33 GT 200 0.6
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residential household appliances include 7 types of
transferable loads, 2 types of reducible load, and 1 type of
temperature-controlled load (air conditioning). The start
period and end period of each device can be scheduled to
obey normal distribution t ~ N(μ, 1.02) between [0,24].

2) Each node in the work area and the business area is given the
number of charging piles Nw

e � 20 and Nr
e � 45, respectively,

and the temperature-controlled load of the work area and the
commercial building in the business area participate in the
DRS optimal dispatch.

3) EVs and household appliances in the system use the same
parameters (Zhao et al., 2013). The power consumption
characteristics and parameters of controllable load
equipment and EVs between different load nodes in the
same area are the same, and the power consumption
characteristics and parameters of the same node are
obtained by Monte Carlo sampling. The nodal load curve
of each area is shown in Figure 5.

6.2 Total Cost Pricing Calculations
In order to illustrate the influence of DG on the distribution
network’s power flow, taking time 20:00 as an example. The DG
power output of node 18 and node 33 areboth 200kW, and the
power flow distribution of the improved IEEE 33-bus system with
DG is shown in Figure 6. This shows that the introduction of DG
can change the power flow distribution of the original
distribution network.

The total cost price in this paper includes generating cost and
power distribution cost. Among them, since the cost of power
distribution is related to the location of the nodal load, the power
distribution costs will increase with the increase of the distance
from the power source. As shown in Figure 7, the shape of the
total cost price curve from node 1 to node 17 is roughly the same,
while the magnitude of the electricity price increases in a step-like
manner. This is because the nodes from 1 to 17 are all powered by
node 1, and the power generation cost is the same. In the case of
the same power generation cost, the distribution cost of the node

FIGURE 4 | The connection of modified IEEE 33-bus system.

TABLE 2 | Forecast day-ahead electricity price.

Time/h Price (yuan (kW·h)−1) Time/h Price (yuan (kW·h)-1) Time/h Price (yuan (kW·h)−1) Time/h Price (yuan (kW·h)-1)

1 0.36 7 0.63 13 0.70 19 0.75
2 0.36 8 0.73 14 0.72 20 0.75
3 0.36 9 0.77 15 0.73 21 0.75
4 0.40 10 0.80 16 0.69 22 0.69
5 0.47 11 0.72 17 0.68 23 0.54
6 0.56 12 0.73 18 0.73 24 0.42

FIGURE 5 | Load curve of different regions.
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farther from the power supply node is higher, so the total cost
price from node 1 to node 17 gradually increases.

6.3 Load Guidance Results
6.3.1 Aggregated EVs Charging Power
The EVs charging load model is used to simulate the charging
power of EVs in various regions. The upper and lower limits of
the aggregated EVs’ energy in each region and the EV load curve
after response are shown in Figure 8. The upper and lower limits
are represented by blue and red solid lines respectively.

Analyzing the simulation results in Figure 8, we can see the
distribution of EV charging demand in various regions. For the

aggregated EVs charging load in residential areas (taking node 13
as an example) and the aggregated EVs charging load in work areas
(taking node 27 as an example), the elastic range of the aggregated EVs
charging load is larger from 8:00 a.m. to 17:00. Themain reason is the
regular commuting behavior of EV users. Among them, the charging
period time of EVs in residential areas has changed significantly,
which is reflected in the transfer of the charging period time from 15:
00 to 23:00 to 2:00 to 6:00. This is because, under the influence of the
total cost price incentives, the electricity price is lower in the early
morning hours, so the DRS transfers a load of EVs to this period time
as much as possible to minimize the charging cost. For the aggregated
EVs charging load in the business area (taking node 19 as an example),
it can be seen that the elastic range of the aggregated EVs charging load
is relatively small. This is because the EVs stay in the business area for a
short time, and the degree of dispatch ability is low.

6.3.2 Controllable Load
The controllable load of the residential area includes transferable
load, reduced load, temperature control load, and EV charging
load. Under the scheduling strategy proposed in this paper, the
power situation of the nodal load in the residential area before
and after the electricity price guidance is shown in Figure 9.

It can be seen that the load after price guidance is reduced as a
whole, because the user’s comfort is sacrificed, so that the power
consumption of reducible load and temperature-controlled load
is reduced. According to the comparison before and after
electricity price guidance, the transferable load is transferred

FIGURE 6 | Power flow distribution of the modified IEEE 33-bus system.

FIGURE 7 | Nodal total cost price surface.

FIGURE 8 | Energy curve of aggregated EVs.
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from 18:00 to 24:00 to 0:00 to 3:00 with lower electricity price,
which plays a role in smoothing the system load curve.

6.4 Comparison of Economic Benefits of
the DSO
According to the data analysis in Table 3, the daily operating cost
of the DSO before and after price guidance is reduced by 10.93%.
After calculation, the power distribution cost of the distribution
network is 17,389.48 yuan, indicating that this strategy can realize
the effective recovery of the investment and construction cost of
the distribution network.

It can be obtained from Table 4 that after the economic
dispatch of the distribution network based on the total cost
price, the user electricity cost in the entire distribution network

has been reduced to varying degrees. For nodes in residential areas,
work areas, and business areas that are connected to flexible loads,
such as node 13, node 27, and node 19, the electricity costs can be
saved by 27.96, 13.45, and 23%, respectively.

It can be obtained from Table 4 that for flexible users, such as
nodes 15, 19, 28, after the total cost price is guided, the electricity
costs are all reduced, and the costs are saved by 26.62, 23.00, and
13.45%, respectively. The reduction effect is significant. For
inflexible users, such as nodes 23, and 4, since they do not
participate in electricity price guidance, the electricity costs
have all risen, both increasing by 2.15%.

7 CONCLUSION

Based on the establishment of the spatial-temporal distributionmodel
of charging load of aggregated EVs, this paper proposes a two-level
optimizationmodel of distribution network, which combines the total
cost price with spatial-temporal attribute and considers the demand
response of EVs and controllable loads. The model adopts the
interactive iterative solution of upper and lower levels to achieve a
win-win situation between users and distribution network.

Simulation study case based on a modified IEEE 33-bus system
shows that proposed electricity price mechanism can guide EVs and
controllable loads to respond to the market electricity price and
dispatching demand within the temporal-spatial dispatchable range
The proposed two-layer model of day ahead economic dispatching
can optimize the distribution of power generation and consumption
of distribution network and optimize the behavior of users’ power
consumption, so as to reduce the operation cost of DSO and users’
power cost.

This paper ignores the impact of the output uncertainty of
renewable distributed energy on the economic dispatching of
distribution network, resulting in a deviation from the actual
results. For future work, it is to increase the uncertainty analysis
of renewable distributed energy output.

FIGURE 9 | Comparisons of residential load before and after guidance.

TABLE 3 | Daily operating cost comparison.

Type The daily operating
cost of the
DSO/yuan

Before guidance 82,853.82
After guidance 73,797.04

TABLE 4 | Electricity cost of some nodes in the distribution network.

Type Node Before guidance/yuan After guidance/yuan

Flexible users 13 87,436.34 62,991.35
15 87,436.34 64,157.33
19 103,337.87 79,568.49
27 69,926.53 60,521.28
28 69,926.53 60,521.28

Inflexible users 23 43,555.06 44,491.02
4 58,073.41 59,321.36
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APPENDIX

Appendix Table A1 | Related parameters of transmission lines.

Line number Head of the line End of the line x/p.u. Line power constraints /MW Length/km Fixed cost/yuan*e+4 Daily fixed costs/yuan

1 1 2 0.047 4.6 40.00 400.00 12054.79
2 2 3 0.2511 4.1 20.00 200.00 6027.40
3 3 4 0.1864 2.9 8.63 86.30 2600.82
4 4 5 0.1941 2.9 9.69 96.90 2920.27
5 5 6 0.707 2.9 8.06 80.60 2429.04
6 6 7 0.6188 1.5 5.00 50.00 1506.85
7 7 8 0.2351 1.05 5.63 56.30 1696.71
8 8 9 0.74 1.05 12.50 125.00 3767.12
9 9 10 0.74 1.05 33.00 330.00 9945.21
10 10 11 0.065 1.05 25.00 250.00 7534.25
11 11 12 0.1238 1.05 5.00 50.00 1506.85
12 12 13 1.155 0.5 5.00 50.00 1506.85
13 13 14 0.7129 0.45 7.50 75.00 2260.27
14 14 15 0.526 0.3 7.50 75.00 2260.27
15 15 16 0.545 0.25 10.00 100.00 3013.70
16 16 17 1.721 0.25 5.00 50.00 1506.85
17 17 18 0.574 0.1 6.70 67.00 2019.18
18 2 19 0.1565 0.5 30.00 300.00 9041.10
19 19 20 1.3554 0.5 6.00 60.00 1808.22
20 20 21 0.4784 0.21 6.88 68.80 2073.42
21 21 22 0.9373 0.11 8.13 81.30 2450.14
22 3 23 0.3083 1.05 4.50 45.00 1356.16
23 23 24 0.7091 0.5 4.00 40.00 1205.48
24 24 25 0.7011 0.5 6.00 60.00 1808.22
25 6 26 0.1034 1.5 5.00 50.00 1506.85
26 26 27 0.1447 1.5 6.50 65.00 1958.90
27 27 28 0.9337 1.5 5.00 50.00 1506.85
28 28 29 0.7006 1.5 6.00 60.00 1808.22
29 29 30 0.2585 1.5 10.00 100.00 3013.70
30 30 31 0.963 0.5 5.00 50.00 1506.85
31 31 32 0.3619 0.5 4.06 40.60 1223.56
32 32 33 0.5302 0.1 4.50 45.00 1356.16

Appendix Table A2 | EV sampling parameters.

Region type EV network access time distribution EV off-grid time distribution Initial SOC distribution Proportion

Residential area N (18,1.42) N (7.5,1.02) N (0.51,0.12) 100%
Work area N (8,1.52) N (18, 1.02) N (0.51,0.12) 100%
Business area N (10,1.52) N (12,1.02) N (0.51,0.12) 33.3%

N (18,1.52) N (20,1.02) N (0.51,0.12) 66.6%
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