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Layered metal sulfides are regarded as potential candidates for supercapacitive electrode
materials due to the unique spatial dimensions for charge transport. Herein, self-supported
SnS2 nanosheet arrays on nickel (Ni) foam were successfully fabricated via a facile
solvothermal approach. Interestingly, the continuous and high-density SnS2 nanosheet
arrays are interconnected to form porous Ni@SnS2 electrode materials, which suppress
the self-aggregation of SnS2 and provide outstanding conductivity with 3D-networked Ni
framework. The Ni@SnS2 electrode demonstrates a high areal specific capacitance of
1965.56mF cm−2 at a current density of 1 mA cm−2 and satisfactory cycling stability
(78.3% capacity retention after 10,000 cycles). This self-supported porous structure
provides a promising way to build advanced electrode material for supercapacitors.
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INTRODUCTION

Supercapacitors, due to their fast recharge rate, high power densities, and outstanding durability,
have attracted considerable attention from scientists to industrialists (Javed et al., 2019; Zhang et al.,
2019; Javed et al., 2020a; Fu et al., 2021). The energy storage mechanisms of supercapacitors can be
divided into pseudocapacitors and electric double-layer capacitors. Among them, pseudocapacitors
have attracted extensive interest because their Faradaic redox reaction can achieve a higher energy
density than electric double-layer capacitors. In the past few years, transition metal oxides/
hydroxides/sulfides including V2O5 (Javed et al., 2020b), MnO2 (Bai et al., 2018), Co.(OH)2
(Wang et al., 2016), and Ni3S2 (Xie et al., 2021), were mainly studied as pseudocapacitor
electrode materials.

SnS2, has been used as a promising electrode material for batteries, photocatalysts and
supercapacitors. For example, Cao et al. designed and synthesized a N,S-doped carbon/SnS2
nanosheets hybrid as an anode material for potassium ion batteries (Cao et al., 2021), Sun et al.
prepared a graphene/SnS2 hybrid material to enhance absorption in the visible region (Sun et al.,
2019), and, Parveen et al. reported flower-like SnS2 with a high specific capacitance ( ~ 431.82 F g−1 at
1 A g−1) (Parveen et al., 2018). However, the agglomeration of 2D SnS2 nanosheets seriously hinders
the active sites and redox reaction as a supercapacitive electrode material over extended cycle.

Herein, we prepared self-supported SnS2 nanosheet arrays on nickel foam (Ni@SnS2) by a simple
solvothermal method. In this architecture, the porous SnS2 nanosheet arrays provided the fast charge
transfer passages, and the 3D-networked Ni foam improved the high conductivity of the material,
endowing the outstanding electrochemical performance overall. The as-prepared Ni@SnS2 electrode
exhibited a high capacity of 1965.56 mF cm−2 at 1 mA cm−2 and a long cycling life (78.3% retention
after 10,000 cycles at 20 mA cm−2).
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EXPERIMENTAL

Synthesis of the Ni@SnS2 Nanosheet Arrays
The nickel (Ni) foam was cleaned with acetone, anhydrous
ethanol, and deionized water. First, 0.701 g of SnCl4.5H2O and
0.225 g of thioacetamide (TAA) were added to 60 ml of glycol
and stirred for 20 min to form a uniform solution. Then, the
prepared solution and a piece of cleaned Ni foam were
transferred to a 100 ml lined Teflon stainless steel autoclave
and maintained at 130°C for 8 h. Afterward, the sample was
taken out, cleaned with anhydrous ethanol and deionized
water, and then placed in the oven at 60°C for 12 h to
obtain Ni@SnS2 samples.

Characterization
The morphology was characterized by cold field emission
scanning electron microscopy (SEM, Hitachi 4,800) and
transmission electron microscopy (TEM, JEM 2100F). The
phase structure of the sample was analyzed by X-ray Powder
Diffractometer (XRD, Rigaku D/Max-2400 diffractometer)
and micro-Raman spectroscopy (Jobin-Yvon LabRAM
HR800 UV, YAG 532 nm). The surface composition and
chemical state of the sample are analyzed by X-ray
photoelectron spectroscopy (XPS, K-ALPHA 0.5 eV). The
specific surface area was calculated by the Brunauer-
Emmett-Teller (BET) method. The pore size distribution
(PSD) was derived from the adsorption branches of
isotherms by the Barrett-Joyner-Halenda (BJH) method.

Electrochemical Measurements
The electrochemical performance was measured using an
electrochemical workstation (CHI660e). Ni@SnS2 was directly
used to test the electrochemical performance of three electrodes.
Saturated calomel was used as the reference electrode, a platinum
electrode was used as the counter electrode, Ni@SnS2 (1 × 1 cm2)
was used as the working electrode, and 2 M KOH was used as the
electrolyte. Ni@SnS2 was tested by cyclic voltammetry (CV,
sweep speed 5–100 mV s−1) and constant current charge-
discharge curves (GCD, current density 1–100 mA cm−2).
Electrochemical impedance spectroscopy (EIS) was performed
at AC frequency of 0.01 Hz–100 kHz and an amplitude of 5 mV.

RESULTS AND DISCUSSION

Composition and Morphology Analysis
Figure 1Ashows the XRD patterns of the Ni@SnS2 nanosheet
arrays. As is seen, the strong diffraction peaks centered at 44.5°,
51.7°, and 76.3°, correspond to the (111), (200), and (220)
crystalline facets of Ni foam (PDF#04-0850), respectively. Due
to the weak peak intensity, the characteristic reflection at 28.1° can
be assigned to the (100) plane of SnS2 (PDF#23-0677) (Li et al.,
2018). In compared to the SnS2 samples left from the Ni foam
(Supplementary Figure S1), the pure SnS2 samples
(Supplementary Figure S2) exhibit the same diffraction peaks
in the XRD patterns, confirming the existence of SnS2 used as real
active materials. Raman spectrum (Figure 1B) proves the

FIGURE 1 | (A) XRD pattern of the Ni@SnS2 nanosheet arrays; (B) Raman spectrum; XPS survey spectra of (C) S 2p and (D) Sn 3d.
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existence of SnS2 on the surface of Ni foam with a high band at ~
305 cm−1, which is assigned to the A1g mode of SnS2 (Jiang et al.,
2013; Qu et al., 2014). Furthermore, Supplementary Figure S3
shows the XPS full survey spectrum, confirming the existence of
Sn, Ni, and S elements. In the high-resolution narrow spectrum of
S 2p (Figure 1C), the two peaks located at 161.9 and 163.1 eV
respectively correspond to S 2p3/2 and S 2p1/2, accompanying the
satellite peak. The Sn 3d spectrum (Figure 1D) contains two-
orbit peaks at 487.1 and 495.4 eV, corresponding to Sn 3d3/2 and
Sn 2d5/2. The BET surface area and pore size distribution of Ni@
SnS2 were conducted by nitrogen isothermal adsorption/
desorption measurement. The typical type IV isotherm curves
(Supplementary Figure S4A) exhibit the evident hysteresis loop
and the according surface area is about 1.14 m2·g−1. The pore
diameter (Supplementary Figure S4B) is located at 2.17 and
10.97 nm, indicating the existence of mesoporous structure.

Figures 2A–D display the morphological features of the Ni@
SnS2 nanosheet arrays by SEM. In the low-magnification SEM
image (Figure 2A), a homogeneous and complete SnS2
nanosheet arrays coated the skeleton of the Ni foam.
Figures 2B–D show the high-magnification SEM images,
revealing that the vertically aligned SnS2 nanosheets are
highly packed on the Ni foam and are interconnected to
form numerous porous structures. A single Ni@SnS2
nanosheet array was further observed by TEM. Figures 2E,I
show images of the intersected SnS2 nanosheet structures,
which are consistent with the SEM analysis. From the high-
resolution TEM (HRTEM) image, Figures 2F,G shows a lattice
fringe of 0.21 nm, corresponding to the (102) plane of SnS2.

The selected area electron diffraction (SAED) pattern is shown
in Figure 2H, implying that the polycrystalline rings can be
indexed to the (101), (100) and (102) planes of SnS2 (Liu et al.,
2021). Furthermore, elemental mappings (Figures 2I–M) were
measured to demonstrate the porous structure and
homogeneous distribution of Sn, and S supported on Ni foam.

Electrochemical Properties
Figure 3A shows a typical Ni@SnS2 electrode with a pair of
redox peaks at a scan rate of 5 mV s−1. With increasing scan
rates, the shapes of these CV curves nearly retain their initial
state when the scan rate is as high as 100 mV s−1. As shown in
Figure 3B, the GCD curves of the samples display almost
symmetric shapes at all current densities from 1 to
100 mA cm−2, suggesting ideal pseudocapacitance properties
(Li et al., 2021).

When current density was increased from 1 to
100 mA cm−2 (Figure 3C), the specific capacitance
decreased from 1965.56 to 733.78 mF cm−2. Furthermore,
75% of the initial specific capacitance was maintained even
at a high current density of 20 mA cm−2. Here, the specific
capacitances of bare Ni foam measured in Supplementary
Figure S5 show much less than to the values of Ni@SnS2
electrode, suggesting the ignorable influence. The following
relationship (Bian et al., 2022) is established between the peak
current i) and scan rate (v): i � avb, where a and b are
constants. As shown in Supplementary Figure S6, the
b-values of the anodic and cathodic peaks are 0.548 and
0.531, respectively, reflecting the diffusion-controlled

FIGURE 2 | (A–D) SEM images at different magnifications of the Ni@SnS2 nanosheet arrays; (E–G) TEM images at different magnifications; (H) SAED pattern; (I–M)
Elemental mappings.
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behavior in the charge storage process. The cycle stability of
the Ni@SnS2 electrode shown in Figure 3D was measured by
the GCD method at a high current density of 20 mA cm−2.
After 10,000 cycles, the capacitance retains 78.3% of its initial
value, displaying its excellent application potential. Compared
with the SEM images of the Ni@SnS2 electrode after the long
cycle (Supplementary Figure S7), the nanosheet arrays were
partly retained while the morphologies of Ni foam were
dilapidated, decreasing the active site of the electrode
material and causing the capacity decay after 10,000 cycling
tests. According to the EIS Nyquist plots of the Ni@SnS2
electrode (Supplementary Figure S8), the real axis
intercepts in the high-frequency region show a solution
resistance (Rs) of about 1.0 Ω. The quasi-semicircle arc in
the high-to-medium-frequency region corresponds to the
charge transfer resistance (Rct). Notably, the samples
possessed a higher Rct (3.968 Ω) compared with the initial
Rct (0.85 Ω) after a long cycle, indicating the increased
electrochemical system resistance of the electrode material.

CONCLUSION

Porous Ni@SnS2 nanosheet arrays were successfully prepared
by a facile solvothermal method using Ni foam as the 3D
framework. Due to the unique structure and crystal
composition, the Ni@SnS2 electrode exhibited remarkable
supercapacitive performance with high specific capacity and
good cycling stability.
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