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This analysis is concerned about the thermal performance of [(MgZn6Zr)/C8H18]nf by
incorporating the essential concept of non-linear thermal radiations. The flow is configured
over a 3D stretchable surface which is heated convectively and the surface boundaries
updated with slip effects; uniform suction is applied. The proper mathematical modeling is
performed by exercising the nanofluids’ empirical correlations and similarity equations.
Thereafter, the RK scheme is utilized to execute the problem solution. The influences of
imperative flow constraints are furnished and discussed deeply. The results revealed that
[(MgZn6Zr)/C8H18]nf motion decays against suction (R1) and slip effects (γ1). The
investigation of the results disclosed that the induction of non-linear thermal radiations
in the model boosted the internal energy of the fluid, and hence, the nanofluid thermal
efficiency improved. Moreover, convection provided from the surface (Bi number) was also
of paramount interest regarding the heat transport in [(MgZn6Zr)/C8H18]nf. Furthermore,
significant contribution of the temperature ratio parameter βw is examined in thermal
enhancement. Optimum shear stress trends are investigated due to suction from the
surface. Finally, we hoped that the problem would be beneficial in the field of applied
thermal engineering, more specifically in the heat transport models.
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INTRODUCTION

Nanotechnology is the most progressive and potential research area in the modern technological world.
The nanoparticles of various metallic/non-metallic ferrites, CNTs, oxides, and alloys are the key
ingredients in nanotechnology. In this loop, nanofluids are also imperatively contributed in the
nanotechnological world. These are fluids that contain the components of solid nanosized particles

Edited by:
Hsien-Yi (Sam) Hsu,

City University of Hong Kong, Hong
Kong SAR, China

Reviewed by:
M. M. Bhatti,

Shandong University of Science and
Technology, China

Iskander Tlili,
Monastir, Tunisia

*Correspondence:
Adnan

adnan_abbasi89@yahoo.com

Specialty section:
This article was submitted to

Solar Energy,
a section of the journal

Frontiers in Energy Research

Received: 01 February 2022
Accepted: 10 March 2022
Published: 26 April 2022

Citation:
Adnan, Khan U, Ahmed N, Khan I,

Mohamed A andMehrez S (2022) Heat
Transfer Evaluation in MgZn6Zr/C8H18

[(Magnesium–Zinc–Zirconium)/Engine
Oil] With Non-linear Solar Thermal

Radiations and Modified Slip
Boundaries Over a 3-Dimensional

Convectively Heated Surface.
Front. Energy Res. 10:867734.

doi: 10.3389/fenrg.2022.867734

Frontiers in Energy Research | www.frontiersin.org April 2022 | Volume 10 | Article 8677341

ORIGINAL RESEARCH
published: 26 April 2022

doi: 10.3389/fenrg.2022.867734

http://crossmark.crossref.org/dialog/?doi=10.3389/fenrg.2022.867734&domain=pdf&date_stamp=2022-04-26
https://www.frontiersin.org/articles/10.3389/fenrg.2022.867734/full
https://www.frontiersin.org/articles/10.3389/fenrg.2022.867734/full
https://www.frontiersin.org/articles/10.3389/fenrg.2022.867734/full
https://www.frontiersin.org/articles/10.3389/fenrg.2022.867734/full
https://www.frontiersin.org/articles/10.3389/fenrg.2022.867734/full
https://www.frontiersin.org/articles/10.3389/fenrg.2022.867734/full
https://www.frontiersin.org/articles/10.3389/fenrg.2022.867734/full
https://www.frontiersin.org/articles/10.3389/fenrg.2022.867734/full
https://www.frontiersin.org/articles/10.3389/fenrg.2022.867734/full
http://creativecommons.org/licenses/by/4.0/
mailto:adnan_abbasi89@yahoo.com
https://doi.org/10.3389/fenrg.2022.867734
https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#editorial-board
https://doi.org/10.3389/fenrg.2022.867734


FIGURE 1 | (A) Nanotechnology and the field of biomedical engineering. (B): Applications of nanofluids in different zones. (C): Hybrid nanofluids’ synthetization
process. (D): Schematic representation of the synthetization process of ternary hybrid nanofluids.
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of aforesaid nanomaterials with base solvents such as EO (engine
oil), SO (syltherm oil), water, EG (ethylene glycol), and PG
(propylene glycol). The addition of these solid components in the
base solvents enhances thermal conductivity of the resultant liquids
which makes them more effective for nanotechnological purposes.

Nanofluids are extensively utilized for nanotechnological purposes,
aerodynamics, paint industries, manufacturing of electronic parts,
mechanical engineering, chemical engineering, applied thermal
engineering, manufacturing of home appliances, and biomedical
engineering. In recent times, biomedical nanotechnologists have
directed their attention to induct nanofluids in the field of
biomedical engineering. The nanoparticles and nanofluids are
utilized to target many diseases in the human body. A milestone
that biomedical technologists have achieved is the induction of
nanoparticles for targeting cancer cells and tumors in different
parts of the human body. More specifically, oxide and silver
nanoparticles are used to target the tumor cells. The modern
chemotherapy treatment is also based on injecting nanoparticles in
human parts to signify the tumor cells (Zhao et al., 2011; Ganau et al.,
2018; Khan et al., 2020a; Ray and Bandyopadhyay, 2021).
Furthermore, the interaction of nanoparticles with blood as the
base solvent is an important research zone in the field of
biomedical sciences. Figure 1A presents the role of nanoparticles
in nanotechnology used in biomedical engineering.

World-renowned researchers did not stop their effects, and they
worked on themodifications of nanoparticles and synthesized various
nanofluids by combining metallic nanoparticles under various base
solvents. They introduced two new classes called hybrid and ternary
hybrid nanofluids. Therefore, modern effective heat transport fluids
can be characterized in the following three classes:

• Regular liquids such as EG, EO, SO, water, and KS have very
restricted applications in nanotechnology because of a very
low thermal performance.

• Nanofluids (Zhao et al., 2015; Ahmed et al., 2018; Khan
et al., 2018; Ali et al., 2019; Ahmed et al., 2020; Prasad et al.,
2020) (1st generation thermal transport fluids) such as
Al2O3/EG, AA7072/EO, SWCNTs/SO, CNTs/water, and
MgZn6Zr/KS have better heat performance and are more
suitable for broad uses than regular liquids.

• Hybrid nanofluids (Ilyas et al., 2021; Ijaz, 2021; Mohyud-Din
et al., 2020; Imran et al., 2020; Khashi’ie et al., 2022; Said et al.,
2021; Khan et al., 2020b) (2nd generation thermal transport
fluids) such as MWCNTs-Al2O3/EG, AA7075-AA7072/H2O,
magneto-nanofluid (Abbasi et al., 2017 andKhan et al., 2017),
MWCNTs-SWCNTs/SO, Ag-CoFe3O4/water, and MgZn6Zr-
MnZnFe3O4/KS have improved heat transport and are
effectively used for different nanotechnology purposes than
the preceding two classes of the fluids.

• Tri-hybrid nanofluids (Ramadhan et al., 2019; Muzaidi et al.,
2021; Palanisamy et al., 2021; Ramadhan et al., 2021; Hou et al.,
2022) (3rd generation of thermal transport fluids; addition of a
third nanoparticle (Adnan et al., 2022) in the hybrid
nanoparticles) are a very recently developed class and exhibit
an ultra-high thermal performance which makes it superior to
the preceding three classes of the fluids. In these fluids, two
metallic/non-metallic or other nanoparticles are induced in the

host solvent to synthesize the resultant tri-hybrid nanofluids
[SWCNTs-MWCNTs-Al2O3/EG, MgZn6Zr-AA7075-
AA7072/EO, MWCNTs-SWCNTs-Ag/SO, MnZnFe3O4-Ag-
CoFe3O4/water, and NiZnFe3O4-MgZn6Zr-MnZnFe3O4/KS].
Induced tri-nanoparticles enhance thermal conductivity at a
high level, which improves its heat transport capability.

Figures 1B–D elaborate the applications or the synthetization
procedure of nano, hybrid, and ternary hybrid nanofluids which
have extensive uses in the modern world.

Recently, Ali et al. (2021) disclosed the influences of 1st order
activation energy phenomena on thermal transportation in the
nanoliquid known as Oldroyd-B nanofluid. The problem is taken
over a UHSPR and handled numerically. The disclosed results
revealed that the fluid motion rises due to stronger thickness
effects and the thermal performance of the fluid improved by the
index parameter. The imperative studies regarding heat transfer in
bio-convection Carreau fluid and magnetized Williamson fluids are
examined in the studies by Shahid et al. (2022) and Bhatti et al.
(2022), respectively. The authors observed fascinating results
regarding the dynamics of the fluids under various physical
circumstances that would be beneficial for industrial applications.

The significance of thermal transport is one of the paramount
ingredients in new innovations in the world of nanotechnology.
Therefore, investigation of the heat transport mechanism attracts the
world-renowned scientists and engineers. Thus, they knocked the
door of the modern world and initiated the analysis of nanofluids
under various constraints because the significance of the heat
transport study strengthens its roots not only in the industrial
and engineering zone but also in biomedical engineering,
aerodynamics, chemical and mechanical engineering, etc.
(Alqahtani et al., 2020; AdnanKhan et al., 2021). Detection of
cancer cells by allowing interaction of oxide nanoparticles with
blood as the base solvent is one of the latest milestones achieved
by biotechnologists. The most fascinating applications of the
nanofluids’ heat transfer lies in the solar thermal plates which
increases the capability of the plants to store solar energy.
Similarly, there exists a lot of potential applications of nanofluids
which are of huge interest of the current world. The conducted
research convinced us to disclose the answer to the following
questions in front of the modern world’s scientists and engineers.

• How to enhance the efficiency of the nanofluids?
• What are the impacts of non-linear thermal radiations on
the thermal performance of the nanofluids?

• What is the role of suction and stretching parameters on the
velocity and temperature behavior of the nanofluids over a
3D surface?

• What is the significance of convective heat condition in
thermal enhancement of the nanofluids?

All the aforementioned issues will be addressed in the
extended study and hopefully would be beneficial for
applied thermal engineering, biomedical
engineering, aerodynamics, more specifically in mechanical
engineering and many other purposes that use
nanotechnology.
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MODEL DEVELOPMENT

Model Statement and Geometry
The flow of the [(MgZn6Zr)/C8H18]nf steady incompressible
nanofluid is configured over a 3D stretchable surface. The
velocities are organized as [�u, �v, �w]t � [x, y, z]t directions,
respectively. The boundaries of the surface are revised via
first-order velocity slip effects, and the surface is convectively
heated. Meanwhile, a uniform suction is also imposed from the
surface, and the phenomena of non-linear thermal radiations
are induced. The setup of the configured flow over the surface
is displayed in Figure 2.

In light of the boundary layer approximation theory
(BLAT), the flow is constituted by the following
mathematical form:
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With associated BCs, it is expressed as follows:
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�u → 0 �v → 0 T → T∞ as z → ∞

. (5)

The associated similarity equations are designed as follows:

[�u, �v, �w, η]t � ⎡⎢⎢⎣F′ax, G′ay, − ����
a]f

√ [F + G],
��
a

]f

√
z⎤⎥⎥⎦t. (6)

Thermophysical Attributes of Nanofluids
For a particular nanofluid, the following correlations are adopted:

ρnf � ρfR1 + ϕρs; μnf � μf p R
−25
10

1 ,(ρCp)nf � R1(ρCp)f + ϕ(ρCp)s,
knfk

−1
f � [ks + 2kf − 2 p ϕR2]/[ks + 2kf + 2 p ϕR2].

Here; R1 � (1 − ϕ) and R2 � (kf − ks).
Furthermore, the particular values are

described in Table 1 for base solvent engine oil and the
nanomaterial:

Final [(MgZn6Zr)/C8H18]nf Model
After endorsing the empirical correlations and other related
characteristics, the following system is achieved:

F′′′ −R
− 25
10

1 (R1 + ϕρs/ρf)[(F′)2 − (G + F)F′′] � 0, (7)

G′′′ −R
− 25
10

1 (R1 + ϕρs/ρf)[(G′)2 − (G + F)G′′] � 0, (8)

FIGURE 2 | Flow region of (MgZn6Zr)/C8H18.

TABLE 1 | Thermophysical values for the base solvent and nanoparticles.

Nanoparticle/BS K(W/mk) Cp (J/kgK) ρ (kg/m3)

MgZn6Zr 120 960 2.00
C8H18 0.145 1868 890
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FIGURE 3 | Velocity via R1 for (A) γ1 � 0.5 and (B) γ1 � 2.0.

FIGURE 4 | Velocity via γ1 (the slip parameter) for (A) R1 � 0.2 and (B) R1 � 2.0.

FIGURE 5 | Velocity via St (the stretching parameter) for (A) γ1 � 0.3 and (B) γ1 � 2.0.
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FIGURE 6 | Velocity G’ via R1 (A) γ1 � 0.5 and (B) γ1 � 2.0.

FIGURE 7 | Velocity G’ via St (A) γ1 � 0.3 and (B) γ1 � 2.0.

FIGURE 8 | Velocity G’ via γ1 (A) R1 � 0.2 and (B) R1 � 1.0.
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FIGURE 9 | Temperature via Bi (A) γ1 � 0.2 and (B) γ1 � 2.0.

FIGURE 10 | Temperature via Rd (A) γ1 � 0.2 and (B) γ1 � 2.0.

FIGURE 11 | Temperature via R1 (A) γ1 � 0.2 and (B) γ1 � 2.0.
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1(R1 + ϕ(ρCp)s/(ρCp)f)Pr[
[ks + 2kf − 2pϕR2][ks + 2kf + 2pϕR2] + Rd]β′′

+ Rd

Pr
[(βw − 1)3(3β2β′2 + β3β′′) + 3(βw − 1)2(2ββ′2 + β2β′′)

+3(βw − 1)(β2 + ββ′′)] + β′(G + F) � 0. (9)

The related BCs are reduced in the following version:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
F′(0) � 1 + γ1F

′′(0) G′(0) � St + γ1G
′′(0) [F(0) + G(0)] � R1

β′
(0) � − kf

knf
[Bi[1 − β(0)]]

F′(∞ ) → 0 G′(∞ ) → 0 β(∞ ) → 0.

(10)
The physical constraints appearing in the model are St � b/a (the
stretching parameter) and Rd � 16σpT3

∞/3k
pkf , which is the

radiation parameter; Bi � h/kf[]fa−1]0.5 represents the Biot

parameter, and γ1 � (2−σv)
σv

λp
������
a]−1f λ0

√
represents the slip parameter.

Furthermore, trends of shear drags are estimated through
the following expressions:

R0.5
ex Cfx � R−25/10

1 F′′(0), R0.5
ex Cfy � R−25/10

1 G′′(0) .

MATHEMATICAL ANALYSIS OF
[(MGZN6ZR)/C8H18]NF
The resultant nanofluid model [(MgZn6Zr)/C8H18]nf is
tedious in nature and almost impossible to solve it explicitly
for a closed form solution. Therefore, the numerical algorithm
is applied which works as described subsequently:

• First, the model is written in its appropriate form.
• Substitutions are made, according to the order of the model.

FIGURE 12 | Temperature via St (A) γ1 � 0.2 and (B) γ1 � 2.0.

FIGURE 13 | Temperature via βw (A) γ1 � 0.2 and (B) γ1 � 2.0.
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• Using those substitutions, the higher
order model should be transformed into first
order IVP.

• The BCs are adjusted accordingly, and the
conditions are set equal to unknowns which will be
determined later.

• Finally, the code is allowed to run,
and the results are plotted for various physical
constraints.

F′′′ � R
−25
10

1 (R1 + ϕρs/ρf)[(F′)2 − (G + F)F′′], (11)

G′′′ � R
−25
10

1 (R1 + ϕρs/ρf)[(G′)2 − (G + F)G′′], (12)

β′′ � − 1

1(R1+ϕ(ρCp)s/(ρCp)f)Pr [[ks+2kf−2pϕR2]
[ks+2kf+2pϕR2] + Rd] [

+ Rd

Pr
[(βw − 1)3(3β2β′2 + β3β′′) + 3(βw − 1)2(2ββ′2

+ β2β′′) + 3(βw − 1)(β2 + ββ′′)] + β′(G + F)]. (13)

Now, the following transformations are assigned:

[ ~c1 ~c2 ~c3 ~c3
′ ]t � [F F′ F′′ F′′′ ]t,

[~c4 ~c5 ~c6 ~c6
′]t � [G G′ G′′ G′′′]t,

FIGURE 14 | Skin friction via (A) R1 (B) γ1 and (C) St.
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[~c7 ~c8 ~c8
′]t � [β β′ β′′]t,

Utilization of the aforementioned transformations leads to the
following version of the model:

~c3
′ � R

−25
10

1 (R1 + ϕρs/ρf)[(~c2′)2

− (~c4 + ~c1)~c3],
~c6
′ � R

−25
10

1 (R1 + ϕρs/ρf)[(~c5′)2

− (~c4 + ~c1)~c6],

c̃8
′ � − 1

1(R1+ϕ(ρCp)s/(ρCp)f)Pr [[ks+2kf−2pϕR2]
[ks+2kf+2pϕR2] + Rd]

⎡⎢⎢⎣ + Rd

Pr
⎡⎢⎢⎣(βw − 1)3⎛⎝3~c

2
7
~c
′2
8 + ~c

3
7c̃8

′′′⎞⎠ + 3(βw − 1)2⎛⎝2~c7~c
′2
8

+ ~c
2
7c̃8

′′′⎞⎠ + 3(βw − 1)⎛⎝~c
2
7 + ~c7c̃8′

′′⎞⎠⎤⎥⎥⎦ + ~c8(~c4 + ~c1)⎤⎥⎥⎦.
Thereafter, the code is executed for the results.

FIGURE 15 | Skin friction in y-direction via (A) R1 (B) St and (C) γ1.
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RESULTS AND DISCUSSION AGAINST THE
PHYSICAL CONSTRAINTS

The velocities (F′, G′), temperature, and skin friction coefficient
under the impact of various physical constraints such as St (the
stretching parameter), γ1 (the slip parameter), R1 (the suction
parameter), Bi (the Biot parameter), and Rd (thermal radiation)
are provided in the subsequent subsections.

The Velocity F9 of [(MgZn6Zr)/C8H18]nf
The influences of suction, velocity slip, and stretching parameter on
the velocity F′ of [(MgZn6Zr)/C8H18]nf over the desired region are
displayed in Figures 3–5, respectively. The velocity drops by
strengthening the suction effects from the surface. Physically,
when the fluid sucks from the surface, more fluid particles are
attracted toward the surface. Consequently, attachment of the
particles to the surface upsurges due to which the motion drops.
The motion of the fluid layers adjacent to the surface abruptly
declines due to the dominant effects of suction. Furthermore, the
velocity from the surface to the free stream decays rapidly when γ1 �
0.5 is fixed. However, this region increases by assigning the slip
parameter value, i.e., γ1 � 2.0. In the surroundings of the surface, the

velocity decays promptly because of stronger R1 influences. This
behavior of the velocity gradient F’ is elucidated in Figure 3.

The slip parameter effects on F’ are showed in Figure 4. Figure
4A depicts the behaviour of velocity profile against varying γ1. The
analysis of the results reveals that the velocity significantly changes for
higher slip effects. The asymptotic velocity region decreases for
R1 � 0.2, and the velocity obeys the free streamflow condition
almost after η> 2.0. Another view of the fluid motion for various
γ1 and R1 � 2.0 is depicted in Figure 4B. Observation from the
results reveals that this time, maximum decrement in F′ occurs
because the suction parameter rises from 0.2 to 1.0. Physically, the
particles are stuck with the surface. The fluid layer in the
surroundings of the surface has an optimum decreasing behavior,
whereas it becomes minimum for successive layers as the friction
declines between those layers which allow the particles tomove freely.

The stretching effects (St) on the velocity gradient F′ are
pictured in Figure 5. The gradient of velocity drops for a more
stretchable surface. Physically, the stretching surface enlarges the
flow region, and the particles spread over the surface in both
directions. Due to enlargement in the surface area, the velocity
gradient reduces. However, quite a rapid decrement is noticed
when γ1 is fixed at 2.0.

FIGURE 16 | Streamlines via (A) R1 � 0.8, (B) R1 � 3.0, (C) 3D for R1 � 0.8, and (D) 3D for R1 � 3.0.
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The Velocity G9 of [(MgZn6Zr)/C8H18]nf
Figures 6–8 explain to analyze the behavior velocity gradient G′
of [(MgZn6Zr)/C8H18]nf over a 3D stretchable surface. The results
are plotted for R1, St , and γ1 in Figures 6–8, respectively.

The suction parameter opposes the fluid motion G’ over the
surface. The fluid particles along the y-direction are also dragged
at the surface due to constant suction. The attraction of particles
at the surface is a dominant characteristic of the suction
phenomena. Therefore, more particles transform in the
surroundings of the surface. The fluid layer very near to the
surface moves very slowly due to suction, and the extra existence
of friction between the surface and adjacent layer opposes its
motion. Thus, the frictional phenomena reduce far from the
surface, and the friction between the successive layers decreases;
therefore, its fluid velocity drops slowly. It is also noticed that
when slip effects change from 0.5 to 2.0, optimum declines in the
velocity occur. All these effects are discussed in Figure 6.

Very fascinating trends in the velocity gradient G’ against higher
St (stretching effects) are elaborated in Figure 7. The stretching
parameter boosts the velocity gradient G’ abruptly. More significant
changes occur by increasing the stretching parameter. The particles
stuck with the surface gain extra momentum due to the sudden
stretching of the surface. Therefore, the velocity rises prominently for
higher St. Considering the concerns of the ambient position of the
surface, the velocity decays and follows the ambient flow conditions.

Figure 8 is associated with the variations in G’ for various
values of the slippery parameter γ1. The parameter opposes the
velocityG’ in the existence of suction (R1) and stretching (St). The

FIGURE 17 | Isotherms via (A) Rd � 1.5, (B) Rd � 3.0, (C) 3D for Rd � 1.5, and (D) 3D for Rd � 3.0.

FIGURE 18 | Authentication of the study with a previously reported
study.
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velocity behavior decreases for a more slippery surface, and
maximum changes were noticed when suction effects changed
from 0.2 (Figure 8A) to 1.0 (Figure 8B). Thus, it is observed that
the velocity can be controlled by reducing suction from the
surface.

Thermal Behavior of [(MgZn6Zr)/C8H18]nf
Figure 9 elucidates the temperature enhancement in
[(MgZn6Zr)/C8H18]nf for various convectively heated surface
values. From the results’ inspection, it discloses that the
temperature enhances by increasing surface convection. The
imposed heat convection condition at the surface contributes
to the energy transfer. Physically, the applied convection
condition transfers energy to the neighboring particles at the
surface. When these particles gain energy to some extent, these
provide the energy to the next particles. In a similar way, the fluid
temperature enlarges. In the surface surroundings, these effects
are dominant due to stronger convection. The temperature
vanishes ambiently for γ1 � 0.2,while for a more slippery
surface (γ1 � 2.0), the ambient position enlarges.

Thermal radiation is an imperative physical phenomenon to
improve thermal efficiency of the nanofluids and regular liquids
to some limit. Thermal radiations in the existence of the
convective heat condition imperatively contribute to thermal
enhancement of the nanofluid. Imposed thermal radiations
provide energy to the fluid particles that upsurge the ability of
the temperature. High thermal radiations are a better heat
transport source in the study of nanofluids. Furthermore, high
thermal conductance of the nanofluid plays an important role in
the energy transport. These effects are displayed in Figure 10.

Figures 11 and 12 highlight the temperature variations for
suction and stretching effects, respectively. It is inspected that
temperature β(η) drops for both suction and St. Physically,
collision between the particles declines, and when the fluid
particles become more compact due to a stronger suction
near the surface, temperature drops. Asymptotic behavior of
the temperature occurs far from the surface (free stream
position). On the other hand, temperature behavior against
stretching effects is shown in Figure 12. This time,
temperature reduces quite slowly than suction variations.
Figure 13 discloses that temperature of [(MgZn6Zr)/C8H18]nf
rises for the increasing temperature ratio parameter βw. The
temperature rises very slowly, and finally, it obeys the ambient
temperature condition.

Skin Friction, Streamlines, and Isotherms
Figures 14 and 15 present the shear stress trends along both
directions (−CfxRex and −CfyRey), against suction (R1), slip
(γ1), and stretching (St) effects, respectively. From Figure 14 to
Figure 15, decrement in the shear stresses (along both directions) is
noticed for a stronger slippery surface. However, shear stresses
upsurge for suction and stretching parameters. Maximum
increment occurs for (−CfxRex). An interesting pattern for

streamlines and isotherms against the pertinent parameters is
elucidated in Figure 16 and Figure 17, respectively.

Reliability of the Study
This subsection is organized to align the conducted study with
previously reported work. Therefore, a graphical comparison is
provided by restricting the involved physical constraints
(ϕ � 0.0, R1 � 0.0, γ1 � 0.0) with the published work of Devi
et al. (Devi and Devi, 2016) with M � 0. It is realized that the
velocity curves of the present work under restricted parametric values
coincide with the existing work which provide the study’s reliability.
Comparative analysis is depicted in Figure 18 for varying St

CONCLUSION

A study of [(MgZn6Zr)/C8H18]nf was conducted over a three-
dimensional surface by encountering the influences of thermal
radiations and the convective heat condition. The boundaries
of the surface are modified with velocity slip, suction, and
stretching effects. The governing flow model of [(MgZn6Zr)/
C8H18]nf is solved numerically, and the results are provided
against the physical constraints. From the study, it is
summarized that

• The velocities of [(MgZn6Zr)/C8H18]nf reduce by
strengthening suction (R1) and slip (γ1) parameters.

• The velocity G’ significantly rises for the stretching parameter,
and more significant changes occur at the surface.

• The convective heat condition provides extra energy to the
fluid particles from the surface which enhanced
[(MgZn6Zr)/C8H18]nf temperature.

• Thermal radiations are also significantly contributed for
thermal enhancement in [(MgZn6Zr)/C8H18]nf.

• The study of [(MgZn6Zr)/C8H18]nf will be more effective in
applied thermal engineering and heat transport problems in
the modern world.
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