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As errors in point forecasts of wind power are unavoidable, interval forecasts can
adequately describe the uncertainty in wind power and thus provide further guidance
to dispatchers in their decision making. Current interval prediction methods are still
incomplete in terms of tapping into the physical variability of wind power, especially for
the specific time scale of the ultra-short term. This paper therefore proposes a new
framework for interval forecasting of ultra-short-term wind power that incorporates the
power fluctuation process. Firstly, a fluctuating process of wind power series is defined
and a Kalman-SOM method for clustering the fluctuating processes of wind power is
constructed. Secondly, a quantile regression forest interval prediction model is
constructed for multiple fluctuation processes for ultra-short-term time scales. Finally,
the effectiveness of the overall framework is validated at a wind farm in Jilin Province,
China. Compared with the traditional interval prediction method. The interval bandwidth is
reduced by 0.86% on average, and the interval coverage is increased by 1.4% on average.
The results demonstrate the effectiveness and feasibility of the method in this paper.
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1 INTRODUCTION

The development of new energy sources is particularly important due to current fossil fuel resource
constraints (Zhang et al., 2021). The current scale of grid-connected wind power is gradually
increasing, imposing a large number of disorderly shocks on the grid during the operation of the
power system, and high-precision wind power forecasting has become a necessary operational
technique for a high proportion of new energy sources to be connected to the power system (Xue and
Yu, 2015). The current point prediction is the most widely used form of prediction when doing wind
power prediction, but the point prediction form of wind power cannot completely reflect the
uncertainty of wind power. Due to the random nature of the wind power series, errors in point
forecasting are inevitable. Wind power interval prediction constructs prediction intervals that
quantify the prediction uncertainty, which is a representation of the uncertainty of wind power
in the time series, and thus provides further guidance to the dispatching department for decision
making, improving wind power consumption and grid decision making (Alexandre et al., 2008; Wan
and Cui, 2021).

Traditionally, research on wind power has focused on improving the accuracy of point prediction
(Wu and Qiao, 2017; Ma et al., 2019), but due to the random, intermittent and fluctuating nature of
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wind power, its uncertainty has diverse characteristics, and
interval prediction can adequately describe the uncertainty of
wind power. Research on interval prediction methods for wind
power has achieved some results, mainly including physical
methods (Bludszuweit et al., 2008), parametric methods
(Bruninx and Delarue, 2014; Yuan et al., 2019), non-
parametric methods (He and Zhang, 2020; Gu et al., 2021),
artificial intelligence methods (Wan et al., 2013; Qi et al.,
2020), etc. Physical methods require high accuracy for
numerical weather forecast information, and their
modelling process is more complicated due to the need for
a large amount of historical data for calculation. Parametric
methods for fitting the error distribution of wind power
mainly include Gaussian distribution, Beta distribution,
generalised error distribution (Ye and Ren, 2016), etc. The
modelling process of parametric methods is relatively simple,
but the accuracy rate is low. Non-parametric methods such as
kernel density estimation (KDE) and Monte Carlo (Yang and
Dong, 2021) are too dependent on sample data and their
estimated intervals are too conservative. The use of intelligent
algorithms such as extreme learning machines and BP neural
networks also has the problem of large data requirements.

In order to further describe the uncertainty of wind power, a
single error analysis method cannot accurately portray the
uncertainty of wind power, and interval prediction is improved
by the division of prediction error scenarios into intervals, e.g.,
In Ref. (Ye and Ren, 2016), used the magnitude and fluctuation
characteristics of the error to do the stratification of the error;
In Refs (Pinson and Kariniotakis, 2010; Xue et al., 2020; Yang
and Dong, 2021). divided the error scenarios according to
Numerical Weather Prediction (NWP) wind speed class and
wind power output level; In Refs. (Jyotirmayee et al., 2019;
Zhao et al., 2020), divided the error scenarios and interval
prediction by season or month, respectively; In Ref. (Qiao
et al., 2021), considered the time-series-conditional nature of
the errors, thus enhancing the interval prediction effect. None
of these error scenario partitioning methods can provide an
accurate portrayal of the fluctuating nature of wind power. The
current research on the fluctuating nature of wind power
focuses on wind power point prediction, and studies such as
Ref. (Wang and Wang, 2013), give a fractal scheme for
different fluctuation types through the analysis of wind
power fluctuation characteristics, and put forward a new
idea of ultra-short-term prediction based on the mining of
low-frequency class fluctuation processes and dynamic fusion.
In Refs. (Lin and Wen, 2012; Yang and Qi, 2015; Yang et al.,
2021), by fitting the fluctuation changes of wind power It is
also pointed out that the prediction accuracy of wind power is
not only related to the mathematical model used, but also
related to the fluctuation characteristics of wind power itself.
In Ref. (Yang and Zhang, 2020), the SEI index proposed can
more accurately describe the uncertainty characteristics of
wind power fluctuation, thus making a stronger correlation
between the proposed index and the prediction error. All the
above analyses of wind power fluctuation characteristics are
applied to wind power point prediction, which improves the

accuracy of point prediction, but does not provide an adequate
description of the uncertainty of wind power.

In summary, many scholars have done a lot of in-depth
research on interval prediction, but most of the prediction
models built only use a single statistical or physical method,
resulting in the prediction models built not being able to fully
reflect the impact of the fluctuating characteristics of wind
power historical data on the power at the time to be predicted.
The current error scenario classification method also cannot fully
reflect the impact of the fluctuating characteristics of wind power
on the uncertainty of wind power. In Ref. (NICOLAI, 2006). A
Quantile Regression Forest (QRF) combined with QR was
proposed. As a non-parametric integrated machine learning
method, QRF has the advantages of fast computing speed, low
model performance influenced by parameters, and high noise
tolerance. Therefore, this paper combines the fluctuating
characteristics of wind power and the advantages of QRF, and
we propose an interval forecasting framework that considers the
clustering division of fluctuating processes and QRF for the ultra-
short-term time scale of wind power forecasting. The main
contributions of this paper are as follows:

1) The Kalman filter is used to remove the randomness of the
original sequence and to analyse the components at the lower
frequencies that reflect the trend of the wind power sequence.

2) A clustering division of power fluctuation process and Self-
organizingmap (SOM) is proposed. The fluctuation process
of wind power is divided into several types, and the
construction of error scene based on physical process
and data-driven fusion is realized.

3) In this study, an interval predictive quantile regression forest
model is built for ultra-short-term time scale and considering
the clustering division of wave process.

4) Using 6 months of data from a wind farm in Jilin, China,
the proposed interval prediction framework was compared
and analyzed against several parametric and non-
parametric models at multiple time spans, with optimal
performance at 80, 90, and 95% confidence intervals.

The paper is structured as follows: Section 3 describes how the
clustering of the wind power fluctuation process was carried out
and the proposed interval prediction model based on QRF.
Section 4 describes in detail the comparative analysis of the
data analysis and the interval prediction results. Section 5 draws a
final conclusion.

2 BASIC METHODOLOGY

The new framework for interval prediction proposed in this paper
obtains the final wind power interval results by clustering and
dividing the fluctuation process of the wind power series and then
using QRF. This is then compared and analysed by other interval
prediction models. The framework is illustrated in Figure 1 and is
described as follows:
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1) The input of NWP data and historical wind power series data is
used to obtain ultra-short-term point predictions for different
steps and to calculate the distribution of their errors, which are
used for subsequent interval predictions and comparisons.

2) Filtering the original sequence to remove the sequence
uncertainty components. In turn, the fluctuation process
of wind power is defined and relevant features are
extracted. The fluctuating process is clustered and
classified by SOM.

3) A QRF model was constructed for ultra-short-term
forecasting under multiple volatility process types. The
interval prediction results of different volatility process
types are reorganized to obtain interval prediction results

4) The results of step 16, step 12, step 8 and step 4 are
compared with those of parametric methods such as
Gaussian distribution, t-distribution and non-parametric

methods such as KDE, QR and Monte Carlo method at
different confidence levels.

5) Framework of the novel wind power interval prediction
hybrid

2.1 Clustering of Fluctuating Processes
2.1.1 Definition of Fluctuating Processes
High frequency disturbances in the time series of wind power
disturb the wind power output, which is unpredictable (Liu et al.,
2018; AasimSingh and Mohapatra, 2019). Therefore, the Kalman
filter is used in this paper to perform the filtering process. As
shown in Figure 2, the comparison of the wind power series
before and after filtering is shown. The filtered series can reflect
the main trend changes in power.

A fluctuating process is defined as follows: In this paper, from
the time scale of the extreme value parameter of the wind power

FIGURE 1 | The framework of the proposed combined prediction.

FIGURE 2 | Comparison before and after filtering of wind power sequence.
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series, a period of power series that grows from a local minimal
value below the threshold (through the statistical characteristics
of the local wind farm historical power data) to a local maximal
value, and then decays from a local maximal value to a local
minimal value below the threshold is a fluctuating process.

2.1.2 Clustering of Fluctuating Processes
The purpose of the definition and classification of the
fluctuation process is to organize the long-period irregular
and wind power series into several minimum research units, so
as to characterize and extract the fluctuation process by
considering the time scale parameters, i.e., the extreme
value to define the wave process and cluster it. The wind
power is normalised, and the fluctuating process is clustered
using the SOM, which is a competitive learning unsupervised
neural network that maps similar sample points in a high-
dimensional space to proximity neurons in the output layer of

the network to obtain clustering results, as shown in the
structure of the SOM neural network in Figure 3.

In this paper, the feature vector K of the fluctuation process will be
used to input into the SOMneural network for the classification of the
fluctuation process. The input features K are shown in (1)

K � [Pmax − Pmin, N, T] (1)
where Pmax, Pmin are the maximum and minimum values of the
fluctuation process respectively,N is the number of peaks of a
fluctuation process, and T is the duration of the fluctuation
process. The results of the clustering delineation of the
fluctuating processes are shown in Figure 4. Based on the
delineation results, the fluctuating processes are named as
follows.

(1) Single-peaked large fluctuations: The minimum value at both
ends of the fluctuation. 143 process is below the threshold z,
the maximum value is greater than P’, the fluctuation time
span is. 144 less than W’ , and the number of peaks is
equal to 1

F1 �
Pmina − Pminb ∈ (0, z]
Pmax >P′
W>W′
N � 1

(2)

(2) Multi-peaked large fluctuations: the minimal values at both
ends of the fluctuating process are below the threshold z, the
maximum values are greater than P′ and the number of peaks
is greater than 1

F2 �
Pmina − Pminb ∈ (0, z]
Pmax >P′
N> 1

(3)

(3) Single-peaked small fluctuations: the minimum value at
both ends of the fluctuation process is below the

FIGURE 3 | Structure of SOM neural network.

FIGURE 4 | Schematic diagram of volatility division. (1) Single-peaked large fluctuations: The minimum value at both ends of the fluctuation process is below the
threshold z, the maximum value is greater than P′, the fluctuation time span is less than W′, and the number of peaks is equal to 1.
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threshold z, the maximum value is between z and P′, the
fluctuation time span is less than W′, and the number of
peaks is equal to 1

F3 �
Pmina − Pminb ∈ (0, z]
Pmax ∈ (z, P1)
W<W′
N � 1

(4)

(4) Multi-peaked small fluctuations: the minimal values at both
ends of the fluctuating process are below the threshold z, the
maximum values are between z and P′ and the number of
peaks is greater than 1

F4 �
Pmina − Pminb ∈ (0, z]
Pmax ∈ (z, P1)
N> 1

(5)

(5) Low output fluctuation: Any power value during fluctuation
is less than the threshold value z

F5 � Pn ∈ (0, z] (6)

(6) Spike fluctuation: the minimum value of the fluctuation
process is below the threshold z at both ends, the
maximum value is between z and P′, the fluctuation time
span is less than W′, the number of peaks is equal to 1

F6 �
⎧⎪⎪⎪⎨⎪⎪⎪⎩

Pmina − Pminb ∈[0, z]
Pmax >P’
W<W’
N � 1

(7)

where Pmin a, Pmin b are the minima at each end of a fluctuation,
Pmax are the maxima in a fluctuation, P′ are the thresholds for
classifying large and small fluctuations,W′ are the thresholds for
classifying the time span of a spike, and Pn are the power values at
any point in a fluctuation.

As mentioned above, this paper is based on a fluctuating
process of data-driven adaptive segmentation, with obvious
physical implications at the same time.

2.2 Quantile Regression Forests
QRF is an improvement of the Random Forest algorithm that
provides information on the full conditional distribution of
the dependent variable by combining the properties of QR.

FIGURE 5 | Point prediction error distribution.
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QRF has a theoretical basis as a non-parametric machine
learning method and has also been shown to be consistent
(NICOLAI, 2006). In contrast to the random forest
algorithm, which retains only the mean of the observations
belonging to this node and ignores all other information,
QRF retains the values of all observations in this node, not
just their mean, and evaluates the conditional distribution
based on this information, defining QRF in terms of the
weighted mean of 1{Yi ≤ i} E � (1{Y≤y}|X � x), i.e.

F̂(y|X � x) � ∑n
i�1
wi(x)1{Yi ≤ i} (8)

The specific steps of the algorithm can be summarised as
follows.

a) Generate n decision trees T(θt) (t = 1,2.... k) just like in the
random forest algorithm. Instead of just looking at the mean
of the decision trees, the observations for each decision tree
and each leaf are considered.

b) For the given X Iterate through all the decision trees and
calculate the weights of each tree as follows.

wi(X) � k−1∑k
t�1
wi(X, θt) (9)

The weights of each observation are obtained by averaging the
decision tree weights wi(X, θt) wi(X).

c) For all y ∈ R, and using the weights obtained in step b, the
final estimated conditional distribution result value is
obtained via Eq. 8.

For each node of each decision tree, in contrast to the
regression of the random forest algorithm, which only retains
the mean of its observations and ignores other information, QRF
retains all observations in the node and on this basis calculates the
conditional distribution to obtain the upper and lower bounds of
the desired prediction interval.

3 CASES STUDY AND ANALYSIS

A wind farm in Jilin, China was selected for investigation. The
wind farm has a total installed capacity of 249.9 MW The data
used in this study (i.e., the total power generated by the entire
WF and the corresponding NWP data) were collected at

intervals of 15 min between 00:00 on January 1 and 23:45
on 31 June 2019,a total of 17280 points. January to May is the
training set and June is the test set. To improve the ultra-short-
term power prediction accuracy, the NWP wind speed and
historical power are used as inputs, and the point prediction
results of 16 steps are obtained by ELM neural network, whose
RMSE and prediction error distribution of the results of step
16, step 12, step 8 and step 4 are shown in Figure 5; Table 1.
And the part of the training set is divided for the fluctuation
process for the subsequent part of the interval prediction.

RMSE �

													∑n
i
(yi − y′

i)2
caps2

×
1
n

√√
(10)

yi is the true value, y′
i is the predicted value, caps is the installed

capacity and n is the number of sample points.

3.1 Interval Forecast Indicators
For the uncertainty of wind power prediction, suitable interval
optimisation criteria need to be constructed for the system in
order to obtain the optimal model parameters. The
optimisation criterion for the prediction interval should be
considered in terms of two aspects: reliability and clarity.
Reliability is expressed in terms of the probability of the
actual observations falling into the prediction interval,
which should be as large as possible to make the prediction
more accurate; clarity is measured in terms of the average
width of the prediction interval, which should be as small as
possible to make the prediction width as narrow as possible.
However, these two are in conflict with each other and this
paper constructs an optimisation criterion by using the
following specific predictor interval evaluation metrics.

3.1.1 (1) PICP
The PI coverage probability (PICP) indicator reflects the
probability that the actual power falls within the predicted
fluctuation interval and allows the reliability of the prediction
model to be assessed.

PICP � 1
n
∑n
i�1
ci(a) (11)

where: n is the number of forecast samples; α is the given
confidence level; ci is the Boolean quantity, ci � 1 if the
forecast target value t is contained in the upper and lower
bounds of the interval forecast, otherwise. ci � 0

In practice, if the prediction result is much smaller than the
given confidence level α, the prediction interval is invalid and
should be reconstructed. the larger the PICP value is, the more
target values fall into the prediction interval, the better the
prediction effect.

3.1.2 (2) PINAW
The PI normalized average width (PINAW) indicator reflects the
clarity of the forecast. To avoid the loss of decision value due to

TABLE 1 | Point prediction error index.

Number
of prediction steps

RMSE

Step 16 point prediction results 0.0893
Step 12 point prediction results 0.0829
Step 8 point prediction results 0.0754
Step 4 Point prediction results 0.0577
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the simple pursuit of reliability, where the forecast interval is too
wide and does not give valid information on the uncertainty of the
forecast value.

PINAW � 1
nr

∑n
i�1
[Ut(xi) − Lt(xi)] (12)

where r is the range of variation of the predicted target
value, are the upper and lower limits of the interval
predictions for the corresponding points. It is used to
normalize the average bandwidth for the corresponding
point. When the PICP is constant, the smaller the value of
PINAW is, the narrower the prediction interval is, and the
better the prediction effect is.

3.2 Comparative Analysis of Interval
Prediction Effects
Firstly, we compared the PICP, PINAW of the interval prediction
results of 16 steps at each confidence level for the t-distribution,
KDE and Gaussian distribution. QR, QRF methods divided by
fluctuating process, as shown in Table 2, in which PICP of the
QRFmethod divided by fluctuating process was higher than most
other methods, and the Gaussian distribution divided by
fluctuating process The PICP obtained by the QRF method is
higher than that of most other methods, and the PICP obtained
by the Gaussian distribution divided by the fluctuation process is
higher than that of this paper, but its PINAW is too high, because
the PICP and the PINAW need to be considered together. In the
next section, we will compare and analyse the results from the
perspective of multiple time scales and whether or not the error
scenarios are divided.

In order to further verify the validity of this paper,
statistics of interval prediction results were conducted at
multiple time scales. As shown in Figure 6, the interval
prediction results for a 3-day period using QRF after
fluctuation division can be seen that the interval prediction
model based on QRF under fluctuation division can closely
follow the trend of the fluctuation process of wind power
series at different confidence levels at different time scales,
and the better interval prediction results can provide more
accurate forecast information for decision makers. Table 3
shows the interval prediction results of the methods divided
by fluctuations under different confidence levels in the 16th
and 12th stages. It can be seen that the interval prediction
effect of the method used in this paper is better than that of
most other methods under different confidence intervals, and
the PICP is increased while reducing PINAW of the
prediction interval compared with other non-parametric
methods. In this paper, the average PINAW of the

TABLE 2 | Interval prediction indicators with different confidence levels for each
method.

Method Confidence (%) PICP PINAW

FP-Gaussian distribution 85 88.84 34.17
90 92.03 36.78
95 94.33 40.04

T-location 85 87.76 36.86
90 90.48 39.46
95 92.05 41.26

KDE 85 87.29 33.94
90 89.71 36.11
95 91.73 37.77

FP-QR 85 88.74 31.08
90 90.43 33.04
95 92.79 35.21

FP-QRF 85 90.29 30.42
90 91.87 31.96
95 93.98 33.84

Themeaning of the bold value is that the optimal PINAWand PICP are obtained under the
same confidence interval.

TABLE 3 | The interval predictive index of different methods of unreasonable confidence interval.

Methods Confidence (%) Step 16 Step 12 Step 8 Step 4

PICP (%) PINAW (%) PICP (%) PINAW (%) PICP (%) PINAW (%) PICP (%) PINAW (%)

Gaussian distribution 85 88.23 40.96 89.50 38.45 87.04 30.68 90.59 26.59
90 90.63 42.72 91.62 40.44 91.98 33.37 93.89 30.60
95 92.54 43.88 94.49 43.78 94.66 38.59 94.85 33.90

T-distribution 85 88.45 41.05 88.24 37.24 89.64 31.04 89.97 28.06
90 91.22 43.01 91.77 40.36 92.04 34.25 93.66 31.09
95 92.56 43.98 94.67 42.69 94.79 38.66 94.92 34.15

Monte Carlo 85 87.89 39.21 87.34 35.99 88.36 29.86 90.34 23.36
90 89.24 40.77 89.55 38.50 91.82 31.44 92.56 26.33
95 91.69 42.39 92.43 42.46 92.59 34.69 93.44 29.65

KDE 85 86.64 38.87 85.66 36.54 88.49 30.40 91.77 25.48
90 88.52 41.52 88.72 38.88 90.89 32.13 93.34 27.62
95 91.49 42.98 91.35 41.24 92.47 35.59 93.59 29.64

QR 85 86.15 35.88 87.43 34.50 89.55 28.94 91.84 24.99
90 88.29 38.96 89.04 36.03 91.20 30.84 93.22 26.36
95 91.50 41.15 92.11 38.58 93.54 32.95 94.00 28.18

QRF 85 88.52 34.95 90.06 33.34 90.75 28.44 91.85 24.96
90 90.83 36.61 91.24 34.62 92.01 30.52 93.40 26.07
95 93.21 39.28 93.89 36.15 94.51 32.07 94.31 27.89

The meaning of the bold value is that the optimal PINAW and PICP are obtained under the same confidence interval.
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FIGURE 6 | Prediction interval of proposed model in different time scales. The labels (A–D) is the interval prediction effect diagram of the method proposed in 16th,
12th, 8th, 4th.
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prediction interval is reduced by 2.17% and the average PICP
is increased by 1.4%. It can be seen that under different
prediction steps, the method used in this paper can get
higher PICP under narrower PINAW at different
confidence levels. Compared with most other methods, the
interval prediction effect of this method is better. In step 12,

step 8, step 4, the coverage of the parametric method is
higher, but this is easy to explain because the bandwidth
of the parametric method is wider.

In order to further verify the effectiveness of the proposed
method, the interval prediction effect with or without
fluctuation division is analyzed by selecting four different

FIGURE 7 | A comparative analysis of whether the four methods have been divided by volatility (From left to right, Gaussian distribution, KDE,QR,QRF) the labels
(A–D) is the interval prediction effect diagram of four methods.

TABLE 4 | Calculation of indicators for different error scenario classification methods.

Methods Scene division Step 16 Step 12 Step 8 Step 4

PICP (%) PINAW (%) PICP (%) PINAW (%) PICP (%) PINAW (%) PICP (%) PINAW (%)

Parametric method Without divisions 90.15 43.45 91.34 40.82 91.58 33.92 93.13 32.17
Power levels 90.33 43.14 91.48 40.67 91.81 33.69 93.52 31.55
Fluctuation division 90.63 42.72 91.62 40.44 91.98 33.37 93.89 30.60

KDE Without divisions 87.68 42.75 88.23 40.45 90.11 33.17 92.82 28.07
Power levels 88.10 42.11 88.54 39.69 90.51 32.98 93.05 27.34
Fluctuation division 88.52 41.52 88.72 38.88 90.89 32.13 93.34 27.62

QR Without divisions 87.02 41.93 88.00 38.07 90.62 33.83 92.65 27.03
Power levels 87.65 39.65 88.87 37.09 90.86 31.92 93.01 26.75
Fluctuation division 88.29 38.96 89.04 36.03 91.20 30.84 93.22 26.36

QRF Without divisions 87.85 39.05 89.58 35.98 91.34 31.53 92.88 26.84
Power levels 88.36 37.69 90.67 34.42 91.85 31.09 93.14 26.59
Fluctuation division 90.83 36.61 91.24 33.62 92.01 30.52 93.40 26.07

The meaning of the bold value is that the optimal PINAW and PICP are obtained under the same confidence interval.
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methods of Gaussian distribution, KDE, QR and QRF for
prediction and analysis at 90% confidence level, and Figure 7
shows the interval prediction effect with or without
fluctuation division for a certain 3 days with 90%

confidence level for the four methods. Its interval prediction
after dividing fluctuations makes its upper and lower limits can
have a better prediction effect on the part of the violent
fluctuation segment, and can follow the trend of the
fluctuation process of wind power series better.

Table 4 shows the 90% confidence level interval prediction
metrics calculated for the four methods without error scenario
division, error scenario division for power output magnitude, and
error scenario division for division of fluctuations. Compared to
the interval prediction without considering the fluctuation
process of the wind power sequence, it can be seen that the
interval prediction of the four methods after the fluctuation
division in step 16, step 12, step 8, and step 4, all of which
reduce The average PINAW of the predicted intervals is reduced
by 0.86% and the average PICP is increased by 1.43%.This
indicates that interval forecasts that take into account the
division of fluctuating processes have better interval
forecasting results. Compared to the case where only the wind
power output is considered, the interval prediction with the
fluctuating process of wind power taken into account has a
better prediction effect and a higher PICP with a smaller
PINAW. At the same time, the method, i.e. the QRF
considering fluctuating processes, has better interval prediction
results than the other two non-parametric methods at different
prediction steps, and is able to obtain interval coverage greater
than the preset confidence level at different time scales, by
comparing with the two non-parametric methods, the PICP is
improved by 0.44–1.46% on average, and the PINAW is reduced
by 0.63–2.33%. The PICP is higher for the parametric method due

FIGURE 8 | Reliability analysis of different methods. The labels (A–D) is
the interval prediction effect diagram of the method proposed in 16th, 12th,
8th, 4th.

TABLE 5 | CWC at different confidence levels for each time scale.

Method Confidence (%) 16th 12th 8th 4th

CWC CWC CWC CWC

Gaussian distribution 85 0.4096 0.3845 0.3068 0.2659
90 0.4272 0.4044 0.3337 0.3060
95 0.8885 0.8778 0.7731 0.6785

T-Distribution 85 0.4105 0.3724 0.3104 0.2806
90 0.4301 0.4036 0.3425 0.3109
95 0.8904 0.8552 0.7740 0.6832

Monte Carlo 85 0.3921 0.3599 0.2986 0.2336
90 0.8185 0.7717 0.3144 0.2633
95 0.8620 0.8602 0.7022 0.5976

KDE 85 0.3887 0.3654 0.3040 0.2548
90 0.8365 0.7826 0.3213 0.2762
95 0.8749 0.8401 0.7209 0.5970

QR 85 0.3588 0.3450 0.2894 0.2499
90 0.7859 0.7240 0.3084 0.2636
95 0.8376 0.7829 0.6638 0.5664

QRF 85 0.3495 0.3334 0.2844 0.2496
90 0.3661 0.3462 0.3052 0.2607
95 0.7926 0.7270 0.6429 0.5597

Themeaning of the bold value is that the optimal PINAWand PICP are obtained under the
same confidence interval.
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FIGURE 9 | Prediction interval of proposedmodel in different time scales in spring. The labels (A–D) is the interval prediction effect diagram of themethod proposed
in 16th, 12th, 8th, 4th.
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to the relatively higher PINAW of the intervals at step 12 versus
step 4.

In order to comprehensively evaluate the validity of this
method, the reliability of this method and other methods were
analyzed and evaluated by finding the reliability indexes, and the
reliability indexes and coverage width-based criterion (CWC)
were calculated as follows:

R(a) � PICP − α � 1
n
∑nt
i�1

ci(a) − α (13)

CWC � PINAW(1 + γe−(PICP−α)) (14)
γ � { 0 PICP≥ α

1 PICP< α (15)

where α is the confidence level, γ determined by the PICP and α.
Figure 8 shows the reliability of the interval prediction

methods for the parametric and non-parametric methods
analyzed by clustering of the fluctuating process. The interval
prediction method by clustering the power series fluctuation
process and combining it with QRF has higher reliability and
better interval prediction than most of the interval prediction
methods at each prediction step and at each confidence level. The
parametric method has a larger PICP because of its higher
PINAW compared to other methods. The following will
calculate the CWC metrics for each method considering the
combined PICP and PINAW.

Table 5 shows the calculated CWCmetrics for eachmethod at 85,
90 and 95% confidence levels on different time scales. The CWC takes
into account the average bandwidth of the prediction intervals and the
interval coverage, and it can be seen that the method in this paper has
better interval prediction results than the other five methods, and
obtains a higher PICP with a lower PINAW. The interval prediction
framework proposed in this paper, which considers the division of
wind power series fluctuation process and QRF can effectively predict
the guaranteed output of wind power, thus providing more reliable
guidance for the operation and dispatch of power systems.

To further verify the validity of this paper, this study conducted
interval forecasting in spring using January to February as the training
set and March as the test set. Figure 9 shows the interval forecasting
effect of a 3-day period in March using the method proposed in this
study, and it can be seen that theQRF interval forecastingmodel based
on the clustering division of the fluctuation process considered at the
same confidence level. It is still able to get lower PINAW and higher
PICP while ensuring tracking wind power time series variation in
different seasons, which can provide more accurate forecast
information for decision makers.

6 CONCLUSION

This paper defines the fluctuation process by analysing the
volatility of the single point time series of wind power, and
uses the SOM to cluster and divide the fluctuation process,
and then uses the QRF to make interval predictions for
different fluctuation processes, and finally does a comparative
analysis by doing step 16, step 12, step 8 and step 4 under ultra-

short-term power prediction at different confidence levels, and
concludes as follows.

2. Compared with the traditional interval prediction method
based on error analysis andmodeling based on power, themethod of
clustering division of fluctuation process and each interval prediction
method is better than the prediction method without error scene
division, the average PINAWof the prediction interval is reduced by
0.86%, and the average PICP is increased by 1.43%. Compared with
the interval predictionmethod which only considers the output level
of wind power, the average PINAW is reduced by 0.63% and the
PICP is increased by 0.44%. which effectively improves the
prediction accuracy of uncertainty prediction.

2. The nonparametric method is better than the parametric
method as a whole, and the QRF which combines the fluctuation
characteristics of wind power has the best performance in related
methods. compared with the parameter method and other
nonparametric uncertainty prediction methods such as QR and
KDE the interval prediction effect of QRF under ultra-short-term
multi-step prediction is improved in all time scales and confidence
levels. It has higher interval coverage under narrower interval
average bandwidth, which is 2.17% lower on PINAW and 1.4%
higher on PICP than other methods. In the case of comprehensive
consideration of PICP and PINAW, the performance and effect of
interval prediction are improved, which is helpful to improve the
wind power consumption, reduce the operation risk, improve the
decision-making level, and provide more reliable guidance for the
operation and dispatching of power system.

3. This paper mainly considers the fluctuation process of wind
power, and the next step will comprehensively consider the
physical change process of wind power and wind speed, and
even the physical change process of regional weather in different
seasons, and comprehensively consider the fluctuation process of
power and wind speed, so as to provide more comprehensive
prediction information and provide data support for the decision-
making of power system.
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