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The target reservoirs in many CO2 projects exhibit point bar geology characterized by the
presence of shale drapes that act as barriers preventing the leakage of CO2. However, the
extent of the flow barriers can also impede the displacement of CO2 in such reservoirs and
restrict the storage volume. Therefore, developing a framework for modeling point bars
and their associated heterogeneities is crucial. Yet, for the point bar model to be
geologically realistic and reliable for evaluating CO2 sequestration potential, it should
be calibrated to reflect historical data (e.g., CO2 injection data). This study is therefore in
two parts. The first part focusses on the modeling of point bar heterogeneities (i.e., lateral
accretions and inclined heterolithic stratifications). To ensure that the heterogeneities are
preserved, we implemented a gridding scheme that generates curvilinear grids
representative of the point bar curvilinear geometry. We subsequently incorporated a
grid transformation scheme to facilitate geostatistical modeling of reservoir property
distributions. The second part of this study is a model calibration step, where the point
bar model is updated by assimilating CO2 injection data, in an ensemble framework.
Ensemble-Kalman Filter was used first to update ensembles of point bar geometries, to
select the geometry that yields the closest match to observed data. Within this geometry,
indicator-based ensemble data assimilation was used to perform updates to the ensemble
of point bar permeability models. The indicator approach overcomes the Gaussian
limitation of the traditional ensemble Kalman filter. The workflow was run on the
Cranfield, Mississippi CO2 injection dataset. It was observed, after model calibration,
that the final updated ensemble of models yields a reasonable match with the historical
data. The updated models were run in a forecast mode to predict the long-term CO2

sequestration potential of the Cranfield point bar reservoir. Results demonstrate that 1)
preserving the heterogeneities in the point bar modeling process, and 2) constraining the
point bar model to historical data (e.g., CO2 injection data) are essential for accurately
evaluating the CO2 sequestration potential in point bar reservoirs.
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1 INTRODUCTION

Point bars are fluvial deposits formed at the inner bend of a
meandering channel by erosion of channel sediments at the outside
of a meandering channel (i.e., cutbank) and deposition of the
eroded sediments at the inner bend of themeander (Willis & Tang,
2010). Point bar reservoirs have significant storage capacity. For
example, the Athabasca Oil Sands deposit in the Lower Cretaceous
McMurray Formation—which hosts one of the world’s largest
heavy oil accumulations—is predominantly composed of point bar
deposits (Labrecque et al., 2011; Austin-Adigio et al., 2018). Also,
The Cranfield, Mississippi reservoir which is considered by several
studies (e.g., Daley et al., 2014; Delshad et al., 2013; Lu et al., 2013a;
Yang et al., 2013; Zhang et al., 2013) as a viable candidate for CO2

sequestration experiments is largely composed of a point bar
deposit. However, point bars exhibit a high level of spatial
heterogeneity (Su, et al., 2013). These heterogeneities interrupt
reservoir connectivity and impede fluid flow, which then affects the
distribution of fluids and the recovery efficiency of recovery
schemes in point bar reservoirs (Davies and Haldorsen, 1987;
Stephen, et al., 2001). Developing a geologically realistic modeling
framework for representing point bar heterogeneities, as well as
implementing a data assimilation procedure for calibrating the
model is essential.

In point barmodeling, data from outcrop analogs have been used
(e.g., Pranter et al., 2007;Musial et al., 2013) to predict andmodel the
internal heterogeneities (e.g., shale drapes). However, outcrop-based
models may not reflect subsurface conditions because the details of
the heterogeneities may not be preserved in the outcrop sections
(Nardin et al., 2013). Therefore, the use of outcrop-based models
may result in an inaccurate prediction of process performance such
as injection of CO2 for subsurface sequestration.

Other methods have been proposed for improving the
modeling of point bar reservoirs. Examples of such methods
include object-based methods (e.g., Deutsch & Wang, 1996;
Deutsch and Tran, 2002; Deutsch & Tran, 2002; Boisvert,

2011; Yin, 2013), process-based methods (e.g., Pyrcz, 2001;
Pyrcz and Deutsch, 2004; Pyrcz et al., 2009; Shu et al., 2015),
surface-based methods (e.g., Pyrcz et al., 2005; Niu et al., 2021)
and geostatistical simulation methods (e.g., Sequential Indicator
Simulation (Deutsch, 2006)).

Of all these methods, geostatistical simulationmethods remain
popular among modelers. The geostatistical methods use
statistical measures such as semi-variograms or multiple point
statistics to describe the spatial continuity of reservoir rocks.
These methods are very useful in situations where there is good
knowledge about the typical spatial variability observed in such
reservoir albeit with conditioning data. However, heterogeneities
exhibited by complex reservoir geometries such as in point bars
can be destroyed during the modeling process. The reason is that,
most geostatistical methods (whether variogram-based methods
(e.g., Gringarten and Deutsch, 1999) or multiple-point statistical
methods (e.g., Caers and Zhang, 2005; Eskandari and Srinivasan,
2018)) rely on regular grids (and templates) to model spatial
continuities. Therefore, they are of limited use for modeling
spatial heterogeneity such as those introduced by erosional
and truncation surfaces (Li and Srinivasan, 2015).

The methods discussed thus far, have fostered developments
in point bar reservoir modeling; however, the use of these
methods in workflows to assess the displacement of CO2

plume and calibration of point bar reservoir models is, at best,
rare. Therefore, a systematic workflow is necessary to improve the
geologic modeling process, to ensure a reliable study of the CO2

sequestration potential in point bar reservoirs.
This study is in two parts; in the first part, we propose a

geologic modeling approach that honors the curvilinear geometry
and heterogeneities of point bars. The preservation of point bar
geometry and heterogeneities is achieved by 1) implementation of
a gridding scheme that generates high quality curvilinear grids
representative of the point bar geometry, 2) incorporation of an
appropriate grid transformation scheme in the geostatistical
simulation process.

FIGURE 1 | (A) point bar schematic showing laterally accreating sigmoidal inclined heterolithic surfaces, as adapted from (McMahon and Davies, 2018), and (B)
workflow for modeling point bar reservoir geometry and petrophysical properties.
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In the second part of this study, the point bar reservoir model
is history matched (i.e., calibrated) to reflect the observed CO2

injection data. This step is necessary as it reduces the uncertainty
in the geologic model for a reliable assessment and prediction of
the CO2 sequestration potential of the point bar reservoir. The
entire workflow in this study is implemented on a dataset from
the Cranfield in Mississippi, which is a large scale storage site for
CO2 sequestration (Hovorka, et al., 2013). In the model
calibration procedure, we take into account the fact that: 1)
the reservoir geometry exerts important controls on fluid flow
(e.g., Willis and White, 2000; Pranter et al., 2007; Deveugle et al.,
2011), and therefore needs to be constrained, and 2) the
petrophysical property distribution in the point bar reservoir
is likely to be non-Gaussian, given the depositional trends and the
complex spatial structure of the Cranfield reservoir geology as
described in previous works (e.g., Lu et al., 2013). In response to
these considerations, a two-step ensemble-based data
assimilation procedure is used in the model calibration. For
step 1, ensemble Kalman filter (EnKF) is used to update
ensembles of point bar reservoir model geometries (e.g., the
shape of the IHS surfaces etc.), to select the geometry that
yields the closest match to observed data. For step 2,
Indicator-based data assimilation (InDA) is adapted to update
ensembles of spatially distributed permeabilities within the
optimal reservoir geometry as determined in step1. The
indicator-based model updating scheme does not presume
Gaussianity of the property distribution.

1.1 Point Bar Reservoir Heterogeneities
The heterogeneities and depositional trends in point bars have
stimulated several scholarly contributions among researchers and
modelers (e.g., Allen, 1964, Allen, 1965, Allen, 1970; Visher, 1964;

Thomaset al., 1987). The heterogeneities are formed by episodic
migration of sinuous channels, which leads to erosion and
deposition of channel sediments. Several periodic lateral
accretions are prominent patterns that are observed in point
bars (Ghazi & Mountney, 2009; Miall, 1988). The lateral
accretions define the aerial dimensions of the heterogeneities
while the inclined heterolithic stratifications (IHS) define the
vertical dimensions (see Figure 1A). Within point bars, a fining
upward trend is common. Sand-prone sediments dominate the
bottom of the sequence and transition to silt-prone and mud-
prone sediments at the top (Thomas et al., 1987; Labrecque et al.,
2011; Fustic et al., 2012). In the past, research studies (e.g., Li and
White, 2003; Yue and Shiyue, 2016; Sun et al., 2017) have shown
that the lateral accretions (and IHS) constitute the most
important heterogeneities that influence fluid flow in point bar
systems. This is because of the shale drapes that occur along the
surfaces of the lateral accretions and the IHS. The shale drapes are
potential flow baffles (Richardson et al., 1978; Hartkamp-Bakker
and Donselaar, 1993); they compartmentalize the point bar
reservoir and greatly reduce CO2 storage capacity of the point
bar (Issautier et al., 2013; Issautier et al., 2014). In this study, we
will make an attempt to represent these heterogeneities in the
geological model of the point bar.

2 METHODOLOGY

2.1 Geological Model Construction
The geological modeling process basically involves recreating the
channel flow path and its subsequent migration. The
heterogeneities are gridded separately and combined to form a
3D point bar grid. Finally, the point bar property distribution is

FIGURE 2 | Facies identification from SP log. (A) Typical SP log signatures for point bars (bell shape) and channels (cylindrical shape), as adapted from (Wilson and
Nanz, 1959), (B) point bar and (C) channel facies identified from SP log readings for wells31-F1 and 48-2, using the Cranfield dataset. shale breaks, typefied by sudden
increase in SP logs readings are prominent trends observed for the Cranfield reservoir geology.
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modeled within the gridded geometry using geostatistical
simulation, by incorporating a grid transformation scheme.
Figure 1B summarizes the workflow for modeling the point
bar reservoir.

2.1.1 Geometric Modeling of the IHS and Lateral
Accretions
The IHS surfaces are typically modeled as approximately
sigmoidal surfaces (Thomas et al., 1987) (see Figure 1A).
Accordingly, we modeled the geometry of the IHS using a
sigmoidal function defined as:

f � h

1 + e−ax
(1)

where h is the vertical thickness of the point bar and a controls the
slope of the IHS over a horizontal distance x. The lateral
accretions were modeled by approximating the meandering
channel path with a sine generation function (SGF). The SGF
describes the most probabilistic path defined by the channel as it
migrates, and it is based on the idea that the direction angle along
the channel path changes sinusoidally (Hathout, 2015). The
original SGF as proposed by (Langbein and Leopold, 1966) is
in radial coordinates. In this study, we will work in Cartesian
coordinates, therefore, the parametric forms of the SGF

(Movshovitz-Hadar and Shmukler, 2000; Hathout, 2015) will
be used (see Eqs 2a, 2b).

x(t) � ∫
t

0

cos[ω · sin(2πl
L
)]dl (2a)

y(t) � ∫
t

0

sin[ω · sin(2πl
L
)]dl (2b)

where ⍵ is the maximum angular displacement of the channel
with the horizontal; 0+ <ω< 90+; l is the length at any point along
the channel; 0< t< L and the total length of the channel, L, can be
approximated numerically by dividing the channel path into n
subintervals to generate P points, so that L becomes:

L � lim
n→∞

∑ n
i�1

∣∣∣∣∣∣∣Pi+1 − Pi

∣∣∣∣∣∣∣ (2c)

2.1.2 Channel Path Recreation
Tomodel the heterogeneities, it is necessary to recreate the channel
flow path conditioned to well data. Based onwell logs, the facies are
grouped into channel facies and point bar facies. In previous works
(e.g., Odundun and Nton, 2011; Nazeer et al., 2016), SP logs have
been used to infer channel and point bar facies, where a bell shape

FIGURE 3 | Channel path simulation for the Cranfield dataset, (A)Modelling stage 1-Locations for the point bar (red) and channel facies (blue) interpreted using SP
logs, (B) Modelling stage 2-channel path recreation begins. secondary node is inserted to guide the channel path, (C) Modelling stage 3 and (D) final Modelling stage-
channel path follows the channel nodes sequentially until all the well data is accommodated. The circled area in the final figure is the Detailed Area of Study(DAS) at the
Cranfield injection site.
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signal has been interpreted as a point bar while a blocky or
cylindrical shape has been interpreted as a channel (see
Figure 2A). In this study, SP logs from the Cranfield dataset
were used for facies interpretation. Figures 2B,C show some of the
wells (31-F1 and 48-2) used in this study and how the facies
interpretation was done.

The workflow for channel path recreation is as summarized in
Figure 3. In modeling stage 1 (Figure 3A), the facies are grouped
into point bars and channels, based on well logs. All the blue points
are channel well locations and the red ones are point bar locations.
We then sort the facies in the direction of the channel flow path,
which is in the NW-SE direction (Olulana, 2015). In modeling stage
2 (Figure 3B), the channel path recreation begins. The channel path
is conditioned to go through the channel locations sequentially and
bend to accommodate the point bar locations on the concave side of
the bend. This is consistent with the formation of point bars at the
inner bends of the channel meanders during lateral migration. In
modeling stage 2, the channel path should have progressed from
channel node two to channel node three; but in that case, the
channel path will not be able to bend to accommodate the point bar
at location one on the concave side of the bend. In situations such as
this, secondary nodes are inserted to guide the channel path. From
there onwards, the channel path follows the channel nodes
sequentially until all the well data is accommodated, as

illustrated in stage 4 (Figure 3D). The encircled region in the
lastmodeling stage (Figure 3D) is theDetailed Area of Study (DAS),
which is the CO2 injection site at Cranfield in Mississippi. This area
would be selected for developing the detailedmodel of the point bar.

2.1.3 Meander Path Migration
Migrating the current channel path back in time to recreate the
initial channel path allows us to capture the geometry of lateral
accretions. The channel path in the DAS in Figure 3D is
approximated using the SGF. As can be seen in Figure 4A, the
SGF gives a close approximation of the original channel path; this
confirms earlier reports by (Langbein and Leopold, 1966; Hathout,
2015). The backward migration of the channel is done by
decreasing the angular placement (⍵) in the SGF to recreate the
initial channel path (see Figure 4B; arrow indicates the direction of
backward migration). The corresponding vertical heterogeneities
aremodeled, such that any section across the channel paths as done
in Figure 4C displays the IHS as illustrated in Figure 4D.

2.1.4 Grid Generation for the
Heterogeneities
Grid generation constitutes a crucial part of the workflow for
preserving the point bar heterogeneities, and internal

FIGURE 4 |Meander migration process. (A) Illustration of close match between SGF prediction and the original meander path, (B)Current and initial meander path
location after backward migration of channel (arrow indicates direction of backward migration, i.e., migration starting from today’s channel path to the ancient path), red
line shows section across the meanders, and (D) IHS revealed along section in (C).
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architecture. The scheme implemented in this study generates
grids that adequately capture the curvilinear geometry of point
bars. The gridding scheme was implemented separately for the
lateral accretions and IHS. A domain of interest is initially
defined, which for the lateral accretions is the region bounded
by the initial and current channel path (see Figure 5A). If the
number of grid blocks along each channel path is nx, then the
cumulative distance at a grid node i along each channel, denoted
li , can be computed as li � L

nx · (i − 1) . li is substituted into Eqs
2a, 2b, to generate the coordinates of the grid nodes (Xij, Yij)
along the channel paths (see Figure 5B). In Figure 5B, all the grid
nodes on any of the gridded paths have their corresponding pairs
on the other gridded path. Specifying the number of grid blocks
between these corresponding pairs of grid nodes as ny, we can
compute the coordinates of the grid nodes between the gridded
channel paths using Eqs 3a, 3b, to complete the gridding of the
lateral accretions (see Figure 5C), with the equivalent curvilinear
grid displayed in Figure 5D.

The same procedure is repeated to generate the grid for the
IHS (see Figures 5E,F).

Combining the grids for the IHS and the lateral accretions
generates a 3D grid for the entire point bar.

xij � Xij ± (j − 1) · Dij

ny
· cos αij (3a)

yij � Yij ± (j − 1) · Dij

ny
· sin αij (3b)

where Dij and αij are respectively, the distance and angle
between a grid node at position i, j on the current meander
path and its pair on initial meander path; ny is number of grid
blocks between meanders; Xij and Yij are grid node coordinates
along meanders.

2.1.5 Geostatistical Simulation on a
Transformed Grid
As indicated earlier, traditional geostatistical methods when
applied on regular Cartesian gids cannot properly preserve the
curvilinear characteristics and the heterogeneity of point bars. To
overcome this challenge, a grid transformation scheme was
incorporated. Grid transformation is a way of standardizing
the position parameters with respect to the channel
boundaries, where the layers are unraveled and flattened onto
an orthogonal grid. Geostatistical simulation is then conducted in

FIGURE 5 |Grid generation process: (A) domain to be gridded for the lateral accretions, bounded by the initial channel path (red) and current channel path(green),
(B) grid nodes computed along each channel meander path, (C) grid nodes computed between the channel meanders, to complete the gridding of lateral accretions, (D)
equivalent curvilinear grid and (F) equivalent curvilinear grid for the IHS. (E) IHS domain to be gridded, bounded by the reservoir top (green) and bottom IHS surfaces(red).
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the transformed space, after which the properties are mapped
back into the original curvilinear grid. A summary of this
workflow is shown in Figure 6. To account for the pinch out
of point bars, the pinch-out grid blocks are treated as net-effective
zero thickness blocks, using volume modifiers; therefore, the
pinch-out arrays will not contribute to fluid flow to affect flow
simulation results.

Identifying the direction of spatial continuity is also necessary
for preserving the heterogeneities and depositional trends. For
point bars, maximum continuity is in the downstream direction
while least continuity is in the perpendicular direction between
successive IHS sets (i.e., accretion direction). Between these limits
is the medium continuity, which occurs in the dip direction.
Accordingly, the maximum range (hmax), medium range (hmed)
and minimum range (hmin) were chosen to be in the direction of
continuity in the downstream flow, dip, and accretion directions,
respectively. Figure 7 shows the directions of spatial continuity as
depicted in curvilinear and orthogonal space. The point bar is
modeled with 5 inclined layers (i.e., IHS sets) and for each set,
hmax, hmed and hmin were specified as the major, medium, and
minor axis of anisotropy, respectively, for the variogram model
(Table 1). Using the SGSIM algorithm (Deutsch & Journel, 1998;
Remy, 2004), the IHS sets were modeled separately on an
orthogonal grid with dimensions 150 × 30 × 25. The complete
3D point bar model was obtained by stacking the IHS sets orderly
from set 1 to 5 and mapping their properties into the point bar
curvilinear grid of dimensions 150 × 150 × 25 (see Figure 8A).
Typical trends seen in point bar systems like the Cranfield
reservoir include overall fining up trend in the sediments.
High porosity sediments like conglomerates occupy the
bottom of the sequence followed by relatively lower porosity

sediments like sandstones, muddy-sandstones, and mudstones.
These trends were imposed in the simulation with locally varying
prior probabilities. It was ensured that the probability of
encountering high porosity is maximum at the bottom of each
IHs set and minimum at the top. Horizontal slices taken at
different depths across the point bar illustrate a fining upward
trend as captured in the geostatistical simulation (see
Figures 8B–D).

The point bar property model displayed here is one of the 50
realizations that were generated using geostatistical simulation.
The reservoir response computed over the suite of realizations
would provide an assessment of uncertainty associated with
response predictions. For a reliable assessment of the CO2

sequestration potential of the point bar reservoir, the
uncertainty in the point bar geologic model must be reduced
by constraining the model to available flow-related data. In the
next section, we will discuss how to achieve this by further
conditioning the realizations of the point bar model to
observed CO2 injection data.

2.2 Point Bar Reservoir Model Calibration
Model calibration (history matching) is an essential step in
characterizing reservoirs and forecasting future reservoir
performance. It is grounded on the premise that the static or
primary reservoir variables (e.g., porosity, permeability, seismic
behavior etc.), influence the dynamic or secondary response of
the reservoir (e.g., bottom-hole pressure, CO2 saturation, CO2

injectivity etc.). Accordingly, in this study, the static reservoir
variables will be systematically adjusted to ensure that simulated
dynamic variables acceptably agree with the observed
historic data.

FIGURE 6 |Outline of property modeling: (A) point bar curvilinear Grid (B)Orthogonal grid transformation (C)Geostatistical simulation on transformed grid (D) back
transformation, indicating the 3D distribution of reservoir properties in the final point bar model.
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In the model calibration procedure, we consider the fact that:
1) reservoir geometry influences fluid flow response variables (e.g.,
pressure and transmissibility), and therefore should be accounted
for in the history matching, 2) the Cranfield reservoir exhibits
non-gaussian characteristics (due to the continuity of the
depositional structure); and furthermore, the joint relationship
between the primary reservoir variable (like permeability), and the
secondary variable (like bottom-hole pressure) is non-linear. We
use a two-step ensemble-based data assimilation procedure where:
step 1 uses ensemble Kalman filter (EnkF) to update ensembles of
point bar reservoir model geometries, to select the geometry that
yields the closest match to observed data; and step 2 applies
indicator-based data assimilation (InDA) to update ensembles of

permeability models within the optimal reservoir geometry
determined in step1.

2.2.1 Point Bar Geometry Calibration
With the limited coverage of wells in the CO2 injection area, there
is likely to be significant uncertainty associated with the
prediction of reservoir geometry. Calibrating models for point
bar geometry using injection data is necessary to constrain the
uncertainty. Every angular displacement (ω) in the SGF defines a
unique point bar geometry; therefore, 50 realizations of ω were
drawn from a normal distribution with mean 35 and standard
deviation 10, to generate an ensemble of point bar reservoir
geometries. Figure 9 shows some of the realizations of point bar
geometry ensembles that were generated. The ensemble of
geometries are the initial uncertainties that would be updated
upon the availability of secondary variables (e.g., bottom-hole
pressure, reservoir pressure, injection rate). Using CMG-GEM
simulator (CMG-GEM, 2019), flow simulation was run on the
ensemble for a period of 450 days. The geometries were described
using curvilinear grids of dimension 150 × 150 × 25, making
562500 grid blocks in total. Reservoir properties like porosity
and permeability were kept the same over the ensemble. The
injection schedule used for simulation is shown in Figure 10.

FIGURE 7 | Variogram directions in (A,B,C) curvilinear grid and (D) rectilinear grid. hmax, hmed and hmin are in the downstream direction, dip direction and accretion
direction, respectively. Please note: the lengths of arrows indicated here are not depicting the magnitude of the ranges; they are just guiding the reader in identifying the
directions of spatial continuities.

TABLE 1 | Variogram inputs for SGSIM.

IHS sets hmax (ft) hmed (ft) hmin (ft)

1 7324 120 80
2 6592 120 80
3 6262 120 80
4 6074 120 80
5 5566 120 80
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Flow simulation was conducted on the ensemble to obtain the
corresponding simulated dynamic bottom-hole pressures that
can be used to infer the required covariance between state
parameters, and subsequently update the initial geometry
ensembles. The error variance representing the measurement
error is made proportional to the variance of bottom-hole
pressure observed over the ensemble. Updates were performed
on the reservoir geometries using the EnKF formulation in Eq. 4
(Kumar and Srinivasan, 2019).

zao � zfo + [Cpz(hjo)]1×n[[Cp(hlj)]n × n
+ diag[C∈∈(hlj)]n × n

]−1
[Pobs − Psim]n×1

(4)
In Equation 4, Cpz(hjo) terms are the covariance between the

primary and secondary variables, the matrix containing the
Cp(hij) terms are the covariance between the dynamic

response variables. Equation 4 yields the updates zo for the
ensemble locations o � 1, 2, 3...n; zfo is the initial value of the
primary variable, which is angular displacement in our case; The
superscript a represents the updated value. Pobs and Psim are
respectively, the observed and simulated secondary variables,
which are bottom-hole pressures in our case. ∈ is a vector of
uncorrelated observation errors (which is made proportional to
the variance of pressures observed over the ensemble), C∈∈
therefore becomes a diagonal matrix. To account for possible
errors in the observations, samples (number of samples equals the
size of ensemble being used) drawn from the distribution
N(0, C∈∈) are added to the observed data. (Please note that in
this study C∈∈ � 10 kPa).

The update (or error) term constitutes all the terms after the
first term in Eq. 4. Figure 11B illustrates the updates realized after
EnKF implementation. It could be observed that the updates at
higher angles are higher than those at lower angles. After
performing EnKF updates and running flow simulation on the

FIGURE 8 | (A) single SGSIM realization of property distribution for the various IHS sets within the point bar. Downstream direction is from left to right. (B)Horizontal
slices taken at the bottom, (C) mid-section and (D) top of the point bar, showing fining upward trend. Arrow points to the top of the point bar.
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updated ensembles, a reduction in the spread (i.e., uncertainty) in
the simulated bottom-hole pressures is observed (see Figures
11A,C). The reservoir geometry with the least uncertainty
(i.e., least error) has an approximate angular displacement of
19.4°. For this reservoir geometry, the update made to the point
bar geometry is illustrated as the black point in Figure 11B. The
smaller update indicates that the updates using the CO2 injection
data have stabilized. The corresponding simulated bottom-hole
pressure after EnKF updates is the red plot in Figure 11C, and the
updated geometry is shown in Figure 11D. This reservoir
geometry was selected for the next phase of the history
matching process.

Figure 11 also suggests that the geometry alone does not fully
explain the dynamic response characteristics of the point bar

reservoir under study. A further confirmation is seen after
running flow simulation on the ENKF-updated reservoir
geometry ensembles. As shown in Figure 11C, after ENKF
updates, the simulated bottom-hole pressures still exhibit
appreciable uncertainty even though, overall, the uncertainty is
reduced. Yet, this calibration step is important as it allows us to
select a reservoir geometry that will ensure a more successful
history match of static reservoir properties.

Please note that the standardized errors on Figure 11B,
denoted SE ∈ [a, b] were obtained by using Eq. 5, to scale the
updates to a desired range [a, b].

SE � E −min(E)
max(E) −min(E) · (b − a) + a (5)

FIGURE 9 | Randomly selected realizations of the point-bar reservoir geometries used for performing EnKF. Perturbation of the angular displacements of the sine
generation function used to represent the lateral migration of the points bars at (A) ω = 19.4° (B) ω = 45° and (C) ω = 36°. In the EnKF, only the geometry was altered,
reservoir properties like porosity and permeability were not changed. The figure is displayed in the Computer Modeling Group (CMG) Software.

FIGURE 10 | Cranfield CO2 injection schedule used for simulation at injection well F1.
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where E is the absolute error or update and SE is the standardized
absolute error for the ensembles.

2.2.2 Indicator-Based Data Assimilation
In indicator-based method, reservoir properties like permeability
are transformed into binary indicator variables of 1s and 0s.
Updates are performed by updating the conditional cumulative
distribution function (ccdf) of the variable. There is no
assumption made regarding the form of the ccdf. Therefore,
InDA is free from the Gaussian assumptions that underly
ensemble Kalman filter. Before applying InDA to update the
geologic models, a brief description of InDA is presented below.

Definition of Indicator Thresholds
In indicator transformation, thresholds (zk) are applied to define
the binary variables. The thresholds are quantiles (samples)
retrieved to adequately capture the distribution (cdf) of the
variable. Therefore, relatively more quantiles are retrieved from
portions of the cdf that correspond to major variations in
permeability values.

Indicator Definition of the Primary Variable
The defined indicator thresholds form the basis for the indicator
definition of the primary variable, so that the indicator definition
of a primary variable Z, at location u after applyingK thresholds,

z1, z2 . . . zk , can be defined over the entire n ensemble of
models as:

I(Zf
α(u), zk) �

⎧⎪⎨⎪⎩
1 if Zf

α ≤ zk
.

0 if Zf
α > zk

k � 1, 2, 3 . . .K (6)

where Zf
α is the value before update for an ensemble member

α; α � 1, 2, 3 . . . n

Indicator Definition of the Secondary Variable
The secondary variables are dynamic because they change with
time as the flow simulation runs. Therefore, instead of applying
the threshold definitions on the secondary variable itself, we apply
the indicator definition on the mismatch (|ΔP|) between the
observed (Pf

obsα
) and simulated (Pf

simα
) secondary variables. The

mismatch can be defined as:

|ΔP| �
∣∣∣∣∣Pf

obsα
− Pf

simα

∣∣∣∣∣ (7)
The indicator definition applied on |ΔP| at a given threshold

|ΔP|p, denoted Yp can then be expressed as:

Yp � Yp(∣∣∣∣ΔPf
α

∣∣∣∣, |ΔP|p) � { 1 ∀
∣∣∣∣ΔPf

α

∣∣∣∣≤ ∣∣∣∣ΔP∣∣∣∣p
0 otherwise

p � 1, 2, 3 . . . n

(8)

FIGURE 11 | Results obtained by applying the EnFK procedure at the end of the simulation period, (A) BHP before EnFK. (B) the updates to the angular
displacement obtained using EnFK for various members of the initial ensemble (C) BHP after EnFK. Red plot indicates BHP from geometry with least error (D) Updated
point bar geometry with the least error to be used in the next phase of workflow.
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In defining thresholds based on data mismatch, the key idea is
to choose the thresholds such that the updated conditional cdf of
the static variable (for our case, permeability) does not change
significantly when the threshold for the data mismatch is
perturbed around the optimum. For details about the criterion
for selection of secondary thresholds and the theory behind the
InDA formulation, the reader is referred to (Kumar and
Srinivasan, 2019).

Updating the Static Variable Using InDA
Procedure
The applied thresholds and indicator definitions are used in the
InDA formulation to perform updates. Updates are performed by
updating the cumulative density function (cdf) of the primary
variable. In the InDA formulation, the update cdf equation,
expressed as a conditional expectation of the indicator variables is
written as:

F(Zf
α(u)≤ zk

∣∣∣∣Yp) �

E((I(Zf
α(u), zk)) + ∑i�n

i�1
λi(Yi − E(Yi))

(9)

Like the EnKF update equations discussed previously, λi are
the Kalman gain computed on the basis of the indicator cross-

covariance between the primary indicator data I and the
secondary indicator data Y. InDA is immune to non-linear
transformations because of the binary nature of the indicator
variable. In addition, it does not suffer from Gaussian
assumptions as applying Eq. 9 directly generates the
conditional cdf without making any parametric assumptions.

Using the point bar geometry corresponding to the lowest
error, the next task is to perturb the spatial variation of rock
properties to match the observed data. Like the traditional
geostatistical methods, InDA runs optimally on orthogonal
grids; therefore, we modified its implementation by
incorporating the grid transformation scheme within the
update process.

2.2.3 Implementing InDA to Update the Point bar
Model
Indicator-based data assimilation was used to update ensembles
of permeability models for the point bar reservoir as follows:

Generation of Initial Ensembles and
Reference Model
At the time of modeling, hard data for permeability was not
available, therefore, from the porosity (∅) ensemble of models
that have been generated earlier, the permeability (k) ensemble of

FIGURE 12 | (A) cumulative disribution function for permeability for reference model, and the primary indicator thresholds retrieved for permeability distribution, (B)
Indicator definitions for Bottom -hole pressure (BHP) at injection well location, and (C) update of primary variable (permeability).
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models were generated from Eq. 10, which comes from micro-
modeling for enhanced small scale porosity-permeability
relationship (Boisvert et al., 2012).

ln(k) � 4121.2 ·∅4 + 3963.6 ·∅3 − 1353.3 ·∅2 + 202.05 ·∅
− 4.3571

(10)

Defining Primary and Secondary Indicator
Thresholds
The use of Eq. 9 for performing updates is contingent upon
defining appropriate indicator thresholds for the primary and
secondary variables. Figure 12A represents the cdf of the
reference permeability model under consideration, and the
thresholds that were retrieved. The secondary data thresholds
were defined based on the mismatch between the simulated and
observed bottom-hole pressure data from the Cranfield injection
well (see Figure 12B)

Updating Permeability Using InDA
Using the defined thresholds and the indicator definitions, CO2

flow simulation was run on the entire initial ensemble of
permeability models. Updates were performed by assimilating
the mismatch between the observed and simulated bottom-hole
pressure at the CO2 injection well location, using Eq. 9.
Figure 12C shows the initial and InDA updated cdf at each
location.

To determine the updated permeability whose initial value is
say, 800 md, it is read on the horizontal axis (position 1) and the
equivalent probability is read on the initial cdf (position 2). This
same probability is read on the updated cdf (position 3). The
updated permeability value is therefore the permeability that
corresponds to the initial probability drawn from the updated
cdf, which is position 4 on Figure 12C.

3 RESULTS AND DISCUSSION

The CO2 flow simulation was re-run on the updated permeability
models to assess the extent to which the simulated bottom-hole
pressure matches the observed bottom-hole pressure. We
observed an improvement in the match of the updated
simulated BHP ensembles to the field BHP data. Comparing
the results in Figures 13A,B, it is evident that the uncertainty
associated with the prediction of BHP is reduced and the
uncertainty distribution better brackets the true response.
Additionally, as can be observed in the mean BHP trends
(Figures 13C,D), even though the historic data (field data) is
not exactly reproduced, the update procedure brings the response
of the models closer to the true response. The closer match of the
updated models to the field data (true response) can be attributed
to the more accurate spatial distribution of permeability obtained
by applying the history matching process. The simulation was
then run in a forecast mode for the next 50 years, and the
uncertainty evolution of the CO2 plume was analyzed.
Figure 14 shows the uncertainty in the various responses

FIGURE 13 | History Matching Results. (A) simulated bottom-hole pressure before InDA, (B) simulated bottom-hole pressure after InDA, (C) Ensemble mean
before InDA, and (D) Ensemble mean after InDA.
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before and after ensemble permeability updates. As observed in
this figure, there is a reduction in the variance associated with the
predictions and therefore, with the uncertainty in the prediction
of the CO2 displacement after performing updates. The trapped
CO2 (also called residual trapped CO2) saw the most significant
reduction in uncertainty as illustrated in Figures 14A,B. The
reduction in uncertainty is most likely due to more accurate
representation of the reservoir architecture and spatial
distribution of reservoir permeability after performing updates.

Unlike residual trapped CO2, pressure and temperature drive
dissolved CO2 (Duan and Sun, 2003; Portier and Rochelle, 2005) and
supercritical CO2 (Sapkale et al., 2010). Because the temperature is
held constant and pressure is a diffused response, the updating
process would not significantly reduce their uncertainty asmuch as it
does to the volume of residual trapped CO2.

4 CONCLUDING REMARKS

A geologic modeling approach that honors the point bar
curvilinear geometry and heterogeneities has been presented.
The reservoir architecture modeling method uses geometric
functions to model the point bar heterogeneities. The spatial

modeling of point bar properties is difficult due to its complex
geometry, but this was overcome by developing a gridding scheme
which accounts for the aerial shape of the accretion surfaces as well
as sigmoidal shape of the inclined heterolithic stratifications. A grid
transformation scheme was also implemented to allow for optimal
geostatistical simulation of the point bar properties.

To ensure reliable assessment and prediction of the CO2

sequestration potential of the reservoir, the point bar model was
calibrated, using a two-step ensemble-based history matching
procedure. The history matching accounts for the uncertainty in
the point bar geometry, and the non-Gaussian distribution of
the point bar permeability. The study used data from the
Cranfield, Mississippi CO2 injection reservoir to assess the
uncertainty in CO2 sequestration potential in the long-term,
after updating permeability. Incorporating model calibration
after geological modeling offers a reliable way to correctly
evaluate the long-term CO2 sequestration potential in point
bar reservoirs.

While the proposed method has the efficacy to perform
updates for successful evaluation of reservoir performance, we
acknowledge some potential non-uniqueness of the solution in
the proposed study. For example, the optimized point bar
geometry can change when the permeability and porosity used

FIGURE 14 | CO2 sequestration responses before and after permeability updates. Moles of residual trapped gas (A) before InDA and (B) after InDA. Moles of
dissolved gas (C) before InDA and (D) after InDA. Moles of super critical CO2 (E) before InDA and (F) after InDA.
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in the geometry calibration changes. Sequentially updating the
geometry and the spatial distribution of porosity and
permeability, such that at convergence, we have stable updates
of both the geometry and reservoir properties, will be explored in
future research to address the possible non-uniqueness of the
proposed method.

Additionally, the Cranfield dataset used as conditioning data
for the geologic modeling, and subsequent data assimilation were
limited. This would impact the extent to which the calibrated
models are able to reflect the reservoir flow behavior. Therefore,
the results could be improved upon the availability of more
conditioning data.
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