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With the application of advanced information and communication technology in building cluster
energy system (BCES), energy management based on two-way interaction has become an
effectivemethod to improve its operation efficiency. BCEScanquickly respond to themismatch
between supply and demand by adjusting flexible load and system operation strategy, which
can improve operation reliability and reduce energy cost. This paper proposes an energy
management and pricing framework of BCES based on two-Stage optimization method. First,
on the basis of profit-seeking modeling of energy service provider (ESP) and building clusters
(BCs), a dynamic pricing decision-making framework for energy management in a hierarchical
energy market is proposed, which considers both ESP’s energy supply income and BCs’
comprehensive benefit. The dynamic pricing problem is formulated as a discrete finite Markov
decision process (MDP), and Q-learning algorithm is adopted to solve the MDP problem.
Moreover, an operation optimization model of the BCES based on the obtained optimal price
decision is established, and the establishedmodel is solved by the alternating directionmultiplier
method algorithm (ADMM). Through numerical simulation case studies, it is demonstrated that
the proposed method can achieve the optimal pricing decision-making closer to the
psychological needs of ESP and BCs, and can significantly reduce the cost of BCs and
improve the operational efficiency of BCES.

Keywords: building cluster energy system, two-stage optimization method, dynamic pricing, energy management,
operation optimization

1 INTRODUCTION

1.1 Background and Motivation
With the rapid development of urban economy and the large-scale application of smart energy
technology, Building Cluster Energy System (BCES) plays an increasingly important role in the
construction of smart cities. On the one hand, with the increasing number of commercial and
residential urban complexes, the energy demand of building energy system is also increasing, and its
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energy consumption accounts for more than 40% of the total
urban energy consumption (Winkler et al., 2020). At the same
time, it faces the problems that the energy structure of building
system is unreasonable, and it is easy to increase the peak-valley
difference of urban power grid load. On the other hand, the
diversified energy supply mode and flexible terminal equipment
of the BCES make it a smart energy body with strong flexibility
and adjustability, which greatly increases its potential to
participate in the energy management and regulation of urban
energy systems. Therefore, the wide application of multi-energy
coupling technology in buildings and the increasing demand for
diversified energy use make the energy supply-demand
relationship and energy management of BCES more complex
(Li et al., 2021a; Lombardi et al., 2021).

BCES has great adjustable potential to participate in demand
response (DR) programme and energy optimization of urban
energy system due to its diversity of energy supply and
flexibility of terminal equipment (Li et al., 2021a). Building
clusters can strengthen the information interaction with
external urban energy networks and optimize energy
consumption mode, which can reduce the peak load of
urban energy networks and realize building energy
conservation. With the deepening of energy market reform
and the transformation of urban energy consumption patterns,
the emerging energy supply patterns are developing
continuously. In 2015, the Rocky Mountain Research
Institute put forward a more innovative energy service
provider (ESP) model in the design process of net zero
energy consumption urban comprehensive development
zone in the United States. The innovative highlight of this
model is that it uses a user-centered one-stop solution for
resource integration and coordinated energy supply
management. In this new mode of energy supply and
management, ESP can not only aggregate and guide BCs to
participate in the energy management of urban energy
networks, but also directly participate in the energy supply
of urban energy networks and building clusters as an energy
supplier (Xie et al., 2018). In this process of energy interaction,
the ultimate goal of BCs is to optimize the energy consumption
mode and reduce the energy cost as much as possible while
satisfying its own comfort. ESP seeks the maximum benefit
between utility grid and BCs. The key to achieve this goal lies in
the reasonable pricing strategy of ESP for BCs and the best
operating conditions of energy supply equipment. Therefore,
reasonable pricing strategy, optimal energy consumption mode
and optimal equipment operation strategy are the key to realize
the efficient and economic operation of urban energy system
with the participation of building energy BCs and ESP.

1.2 Literature Review
To resolve the above-mentioned key problems, some scholars and
institutions have conducted research on building cluster energy
management from the aspects of building energy modeling,
power grid optimization with BCES participation, demand
response and so on. Literature (Mason and Grijalva, 2019)
presents a model for energy management system of a building
microgrid coupled with a battery energy storage. The model can

be used to dispatch the battery as a flexible energy resource using
a market-based setting. Energy management is one of the main
challenges in Microgrids (MGs) applied to Smart Buildings (SBs).
Literature (Antoniadou-Plytaria et al., 2020) proposes a novel
energy management architecture model based on complete
Supervisory Control and Data Acquisition system duties in an
educational building. Literature (Kermani et al., 2021) presents a
hardware testbed for testing the building energy management
system based-on the multi agent system and the objective is to
maximize user comfort while minimizing the energy extracted
from the grid. Literature (Ma et al., 2019) put forwards an energy
management method to optimally control the energy supply and
the temperature settings of distributed heating and ventilation
systems for residential buildings. Literature (Paul and Padhy,
2019) elaborates a real-time energy management strategy for a
smart residential apartment building and designs a distributed
energy management algorithm. Literature (Shakeri et al., 2020)
introduces a trading energy management framework for the
residential buildings to address grid overloading and building
cost optimization problem.

In addition, with the application of data acquisition terminals
and communication equipment in smart buildings, advanced
technologies such as big data and artificial intelligence have
been widely used in building energy system optimization and
control. Data-driven method is one of the effective solutions used
for control problems and has had many successful applications in
the area of building energy management. Literature (Soetedjo
et al., 2019) summarizes the application of reinforcement learning
algorithm in building indoor environment control system, and
analyzes application of multi-agent reinforcement learning
algorithm in building comfort control. Literature (Nizami
et al., 2020) prospects the application of machine learning
algorithm in building thermal comfort prediction model, and
puts forward the application of artificial intelligence algorithm in
building thermal comfort control. Literature (Rezaei and
Dagdougui, 2020) analyzes the application of artificial
intelligence and big data technology in energy saving of
commercial/residential building design and operation, and
verifies that the combination of artificial intelligence and big
data technology can improve building energy efficiency and cost-
effectiveness.

The above research focuses on energy management method
and the application of artificial intelligence in building energy
system, but few studies consider the impact of pricing decision-
making between ESP and BCs on energy management. Dynamic
pricing is a business strategy that adjusts the energy price in time,
to allocate the right service to the right customer at the right time.
Exploring the principle of demand response pricing is the key for
ESP to make reasonable price strategies and gain benefit.
Literature (Zhong et al., 2021) presents a deep reinforcement
learning framework for dynamic pricing demand response of
regenerative electric heating. Literature (Taherian et al., 2021)
studies the dynamic pricing of electricity service provider in the
day-ahead spot market. Literature (Lu et al., 2018) presents a
dynamic pricing DR algorithm using reinforcement learning in
smart grid. From the perspective of residential users, Literature
(Wang et al., 2021) establishes a residential user evaluation
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system by selecting indicators related to user characteristics and
electricity consumption data, and as well proposes a new
interactive real-time pricing mechanism. Literature (Lu et al.,
2021) proposes a pricing method that combines long short-term
memory networks and reinforcement learning to solve the pricing
problem of service providers. Literature (Xu et al., 2020)
establishes a decision system for end-user to choose electricity
price schemes. Literature (Kong et al., 2020) presents data-
driven-based dynamic pricing method for sharing rooftop
photovoltaic energy in a single apartment building.

From the above-mentioned literatures, it can conclude that the
focus of building cluster energy management is to find the
balance of interests between ESP and BCs, which is the key
point for ESP to participate in building cluster energy
management and for BCs to actively respond to ESP energy
management strategy. However, there are few studies on the
dynamic pricing between ESP and BCs, and the related studies do
not consider the influence of dynamic pricing and energy
consumption characteristics of BCs on energy management
effect.

1.3 Paper Contributions and Structure
To deal with the above-mentioned limitations, this paper
proposes an energy management and pricing strategy of BCES
based on two-Stage optimization method. The main
contributions of this paper include the following:

1) Proposed a dynamic pricing method by Markov decision in a
regional energy market composed of ESP and BCs.
Reinforcement learning is used to illustrate the pricing
decision-making framework, and Q-learning is adopted to
solve this Markov decision-making problem.

2) Focusing on the energy interaction under the dynamic pricing
mechanism, a building cluster energy management
framework under the guidance of ESP is proposed, and a
distributed scheduling strategy is formulated based on the
alternating direction multiplier method (ADMM). The ESP
and BCs sub-problems are solved by transferring a few
parameters to update the operation state, so as to realize
the energy optimal utilization, reduce the operational pressure
of ESP and protect the privacy information of BCs.

The rest of this paper is organized as follows: Section 2
describes the framework and mechanism, Section 3 presents
the model and research approach, Section 4 discusses
simulation results, Section 5 presents the main conclusions of
this paper.

2 SYSTEM FRAMEWORK AND ENERGY
MANAGEMENT MECHANISM

2.1 System Architecture
In this paper, a typical thermal-electrical hybrid energy system
structure of building cluster is constructed, as shown in Figure 1.

The system includes two stakeholders: ESP and BCs. ESP is
equipped with Combined Cooling Heating and Power (CCHP)

units and distributed photovoltaics (PV, installed on residential
roofs), which are responsible for supplying electricity and
thermal energy to commercial and residential buildings in
the BCES. Commercial buildings are generally installed with
PV, but ESP is still needed to supply insufficient electricity,
thermal and cooling demand. There is no energy generation
equipment in residential building, and its energy demand is
completely met by ESP.

2.2 Pricing and Energy Management
Framework
As shown in Figure 1, ESP is the most important operating entity
in BCES, and the effectiveness of its energy management scheme
is directly affected by the price strategy. Figure 2 shows the
pricing decision-making and energy management framework in
the BCES.

As shown in Figure 2, the Utility Grid Operator (UGO)
calculates and announces the wholesale electricity prices to the
ESP though internal optimization algorithms, considering the
procurement cost and electricity generation capacity. Upon the
receipt of wholesale electricity prices from UGO, the ESP will
launch the DR program to its enrolled BCs. In specific, the ESP
will firstly collect the energy demand and private parameters
from BCs at the precondition of taking actions on behalf of BCs
(Step1). Then ESP will calculate the optimal retail electricity and
thermal prices for BCs by maximizing energy sales revenue via
reinforcement learning method. Once getting the optimal retail
prices, the ESP will announce these prices to its BCs (Step2). At
the same time, ESP will formulate the best operation strategy of
equipment and report the energy consumption information to
UGO in line with its maximum benefit (Step3), and BCs finally
form the actual consumption strategy of electric-thermal
energy.

It is important to note that in the second stage, the RL method
can simulate the social behavior of ESP and BCs, and work out the
transaction prices that meet the psychological expectations of
both parties.

3 ENERGY COLLABORATIVE
MANAGEMENT MODEL BASED ON
MARKOV DECISION
3.1 Building Energy Cluster Model
3.1.1 Electrical Load Model
Electrical load profiles of BCs can be classified as critical and
adjustable loads according to priorities (Yuan et al., 2021).

Critical load: it is very important that these electricity demands
of BCs are met, such as consumption of electricity usage of fire
control monitoring centers.

Ecritic
n,de (t) � Ecritic

n,co (t) (1)
Here, Ecritic

n,de (t) and Ecritic
n,co (t) indicate the energy demand and

energy consumption of nth BC at time t.
Adjustable load: Compared with critical load, electricity

demands such as heating, ventilation and electric vehicles of
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BCs usually decrease as the electricity price increases, these loads
are uniformly classified as adjustable load, including transferable
load and reducible load. The adjustable load model established in
this paper not only considers BC’s willingness to adjust energy
consumption behavior due to demand response price, but also
considers the negative impact of ESP’s low energy price strategy.
The consumed energy of the adjustable load for nth BC at time t is
defined as:

∑T�24
t�1

Etrans
n (t) − ∑T�24

t�1
Etrans
n (t) � 0 (2)

Ereduc
n (t) � Ereduc

n (t) · ζen(t) ·
⎧⎨⎩1 − pugo,e

buy (t) − pe
buy(t)

pugo,e
buy (t)

⎫⎬⎭ (3)

Here, Etrans
n (t) and Etrans

n (t) indicate the transferable load after
and before demand response of nth BC at time t. Ereduc

n (t)

FIGURE 1 | Energy system structure of building cluster.

FIGURE 2 | Pricing and energy management framework.
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indicates the reducible load. ζen(t) indicates electric elasticity
coefficient of nth BC at time t. pe

buy(t) indicates the ESP
electric selling price at time t. pugo,e

buy (t) indicates the UGO
electric selling price at time t. Ereduc

n (t) indicates the upper
limit for reducible load at time t.

3.1.2 Thermal Load Model
Thermal load of BCs is defined as air heating or cooling load of
commercial or office buildings in this paper. Thermal load
profiles of BCs can be classified as critical and adjustable loads
according to priorities (Liu et al., 2019).

Critical load: it is very important that these thermal demands
of BCs are met. It is directly related to the living standards of BCs
and generally cannot be affected.

Hcritic
n,de (t) � Hcritic

n,co (t) (4)
Here, Hcritic

n,de (t) and Hcritic
n,co (t) indicate the thermal demand and

consumption of nth BC at time t.
Adjustable load: The load characteristics are closely related to

ambient temperature and building characteristics.

θinn (t + 1) � θinn (t)e
−Δt
RC + (θoutn (t + 1) − RHinj

AC,n(t))(1 − e
−Δt
R·C) (5)

Htotal
N (t) � ∑N

n�1

Φh(θoutn (t) − θin,setn (t))
R

(6)

Here, θinn and θoutn indicate the indoor and outdoor temperatures.
R indicates the thermal resistance material. C indicates the
specific heat capacity of air. Hinj

AC,n(t) indicates the thermal
power injected into the room at time slot t. Htotal

n (t) indicates
total thermal power required to ensure temperature at time t. N
indicates the number of users in BC. Φh indicates simultaneity
factor. θin,setn (t) indicates equipment temperature value set by user
at time slot t.

In this paper, the thermal load of BCs is mainly used for indoor
heating or cooling, which is non-transferable. In a certain range,
changing the temperature of indoor heating or cooling has little
impact on BCs. Therefore, the thermal load of BC can be
scheduled by adjust heating or cooling power.

Hinj−DR
AC,n (t) � Hinj

AC,n(t) ·
⎧⎨⎩1 − pugo,t

buy (t) − pt
buy(t)

pugo,t
buy (t)

⎫⎬⎭ (7)

Here, Hinj−DR
AC,n (t) indicates the amount of thermal load demand

response at time t. pt
buy(t) indicates the ESP thermal selling price

at time t. pugo,t
buy (t) indicates the UGO thermal selling price at time

t.Hinj
AC,n(t) indicates the upper limit for thermal load that nth BC

can make adjustment at time t.

3.1.3 Comprehensive Benefit Model
The comprehensive benefit of BCs consists of utility function,
satisfaction loss function and cost function (Wei et al., 2017; Li
et al., 2021b). The utility of BCs is defined as the sum of
satisfaction obtained by consuming various kinds of energy,
which is commonly expressed by quadratic function.

UE
n(t) � zEnP

E
n,co(t) − βEn(PE

n,co(t))2 (8)

UT
n(t) � zTnP

T
n,co(t) − βTn (PT

n,co(t))2 (9)
Here, zEn and βEn indicate the satisfaction coefficient of electric
energy consuming for nth BC. zTn and βTn indicate the satisfaction
coefficient of thermal energy consuming for nth BC.

The BCs has the most suitable energy consumption in each
period, and it deviates from the most suitable energy
consumption, there will be a loss of utility.

⎧⎪⎪⎨⎪⎪⎩
USL,E

n (t) � 1
2
λEn(ΔEn(t))2 + ηEnΔEn(t)

ΔEn(t) �
∣∣∣∣PE

n,co(t) − Ecritic
n,co (t)

∣∣∣∣ (10)

⎧⎪⎪⎨⎪⎪⎩
USL,T

n (t) � 1
2
λTn(ΔHn(t))2 + ηTnΔHn(t)

ΔHn(t) �
∣∣∣∣PT

n,co(t) −Hcritic
n,co (t)

∣∣∣∣ (11)

Here, USL,E
n (t) and USL,T

n (t) indicate the utility loss for electric
and thermal loads of nth BC at time t. ΔEn(t) and ΔHn(t)
indicate the deviation for electric and thermal loads of nth BC at
time t. PE

n,co(t) and PT
n,co(t) indicate the actual consumption for

electric and thermal loads of BC n at time slot t. λEn and η
E
n indicate

the loss coefficient of electric load utility for nth BC. λTn and ηTn
indicate the loss coefficient of thermal load utility for nth BC.

The energy cost of BCs mainly includes the cost of purchasing
electricity and thermal from ESP.

Cenergy
n (t) � pe

buy(t)PE
n,co(t) + pt

buy(t)PT
n,co(t) (12)

Here, Cenergy
n (t) indicates the energy cost of nth BC at time t.

To sum up, the interest pursuit of BCs can be expressed as the
maximized comprehensive benefit function.

Max FBC,n � ∑T�24
t�1

{UE
n(t) + UT

n(t) − USL,E
n (t) − USL,T

n (t) − Cenergy
n }
(13)

3.2 Energy Service Provider Model
3.2.1 Operating Condition Model
3.2.1.1 Distributed Photovoltaic
PV is an important renewable energy power generation unit in
the BCES. The output power of PV depends on the illumination
intensity and the temperature of photovoltaic module.

Ppv(t) � PSTC
Gpv(t)
GSTC

[1 + αp(Tpv(t) − Tr)] (14)

Here, Ppv(t) indicates the output power of PV at time slot t.Gpv(t)
indicates the light intensity at time slot t. PSTC indicates the
maximum output power of PV under standard test conditions.
GSTC indicates the light intensity under standard test conditions. αp
indicates power temperature coefficient.Tpv(t) indicates the actual
surface temperature of PV module. Tr indicates the rate
temperature of PV module under standard test conditions.

3.2.1.2 Ice Storage Air Conditioner System [25]
ISAC is composed of refrigeration unit and storage tank. In the
period of low power consumption and low electricity price, ISAC
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can make ice and store cold by electric power, and then melt ice
flexibly to supply cooling, thus reducing the electric power
consumption during the peak period. The mathematical model
of its refrigeration unit is as follows.

PISAC(t) � HISAC(t)
FCOPco[c(HISAC(t)

HISAC
)2

+ b HISAC(t)
HISAC

+ a]
(15)

Here, PISAC(t) and HISAC(t) indicate the electric power and
cooling power of ISAC at time t. FCOPco indicates the rated
energy efficiency ratio of ISAC system. HISAC indicates the
maximum cooling power of ISAC system. a, b and c are the
fitting coefficients of dynamic energy efficiency ratio of ISAC
system.

3.2.1.3 Combined Cooling Heating and Power System
CCHP is a key energy production equipment, which burns
natural gas to provide electricity energy, thermal energy and
cooling energy at the same time. CCHP is mainly composed of
micro gas turbine (MT), WHR and LBR. In this paper, we only
consider the relationship between output power and fuel
consumption of CCHP.

PT
mt(t) �

PE
mt(t)(1 − ηe − ηl)

ηe
(16)

PT
whr(t) � PT

mt(t)ηwhr (17)
Vng(t) � PE

mt(t)
ηe × LHVNG

(18)

Here, PE
mt(t) and PT

mt(t) indicate electrical and thermal power
of MT at time t. ηe and ηl indicate operating efficiency and
thermal loss coefficient of MT. PT

whr(t) indicates the thermal
power of WHR at time t. ηwhr indicates the thermal recovery
efficiency of WHR. Vng(t) indicates the natural gas
consumption of MT. LHVNG indicates the low calorific
value of natural gas.

LBR is a thermal-driven refrigeration equipment, and its main
parameters are thermal consumption, cold output and coefficient
of performance.

PT
lbr(t) � COPTP

T
in(t) (19)

Here, PT
lbr(t) indicates the cooling power of LBR at time t. COPT

indicates the coefficient of performance of LBR. PT
in(t) indicates

the thermal energy input into LBR at time t.

3.2.2 Comprehensive Benefit Model
The comprehensive benefit of ESP consists of revenue function
and cost function. ESP’s revenue is defined as the sales revenue of
ESP supplying energy to BCs.

Renergy
ESP � ∑T�24

t�1
[pe

buy(t)PE
n,co(t) + pt

buy(t)PT
n,co(t)] (20)

Here, Renergy
ESP (t) indicates the sales revenue of ESP at time t.

The cost of ESP mainly includes transaction cost with UGO,
fuel cost, equipment operation cost and environmental cost.

Ctotal
ESP � ∑T�24

t�1
[pugo,e

sell (t)max( − PE
ugo(t), 0) + pugo,e

buy (t)max(PE
ugo(t), 0)]

+ ∑T�24
t�1

png
buy(t)Vng(t) + ∑T�24

t�1
∑N
i�1
pop
i Pi(t) + ∑T�24

t�1
∑M
m�1

pen
mθ

en
mVng(t)

(21)

Here, Ctotal
ESP indicates the total cost of ESP. pugo,e

buy (t) and
pugo,e
sell (t) indicate the price at which ESP buys and sells

electric energy from UGO. PE
ugo(t) indicates the exchange of

power between ESP and UGO at time t. png
buy indicates the

nature gas price. pop
i indicates the operating cost per unit

power of equipment i. Pi(t) indicates the power of equipment i.
pen
m indicates the emission cost per unit mass of pollutant m.

θenm indicates the emissions of pollutant m produced by unit
volume of natural gas.

Therefore, the interest pursuit of ESP can be expressed as the
maximized comprehensive benefit function.

Max FESP � Renergy
ESP − Ctotal

ESP (22)

3.3 Pricing MDP Model Based on RL
Algorithm
In this paper, the dynamic retail pricing problem is modeled as
a discrete finite horizon Markov decision process (MDP). In
this pricing decision-making MDP model for ESP, the reward
and electricity and thermal energy consumption depend only
on the energy demand and retail price at the corresponding
time slot but not on the historical data. Figure 3 shows the
framework and mechanism of the MDP dynamic
pricing model.

As shown in the Figure 3, where the price-energy interaction
process between ESP and BCs constitutes an environment for
reinforcement learning agent. ESP pricing strategy denotes the
action that the ESP sends to the BCs, the load information of the
BCs represent the state, and the comprehensive benefit of ESP
and BCs indicate the reward.

MDP is usually described by state space S, action space A,
reward function R and state transition rate P (Zhang et al., 2019;
Lu et al., 2021). According to the MDP pricing model between
ESP and BCs discussed in this paper, the main elements are
modeled as follows.

FIGURE 3 | Framework of the MDP dynamic pricing model.

Frontiers in Energy Research | www.frontiersin.org May 2022 | Volume 10 | Article 8651906

Ma et al. Energy Management and Pricing Strategy

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


3.3.1 Selection of State Space
For the state space S in this paper, it mainly includes the power
consumption of electrical load of BCs, the power consumption of
thermal load of BCs, and the adjustment of electric load and
thermal load. For BCs, the state space St at sampling time t can be
defined as:

St � [PE
n,co(t), PT

n,co(t), Etrans
n (t), Ereduc

n (t), Hinj−DR
AC,n (t), t] (23)

At each transaction time, BCs will formulate load response
strategy and load consumption strategy according to the ESP
pricing information and the operation state information such as
energy demand collected and reported by each BC, and then
update the whole state space.

3.3.2 Selection of Action Strategy Set
In the process of energy trading between ESP and BCs, ESP is
always in a dominant position, and is willing to gain the
maximum benefit for itself by adjusting the energy price
strategy. For ESP, the action strategy space At at sampling
time t can be defined as:

At � [pe
buy(t), pt

buy(t), t] (24)
However, the advantages of ESP are not unlimited. Energy pricing
strategy is also limited to some extent:

pugo,e
buy,min ≤pe

buy ≤p
ugo,e
buy,max (25)

pt
buy ≤p

ugo,t
buy,max (26)

Here, pugo,e
buy,min and pugo,e

buy,max indicate minimum and maximum
value of UGO wholesale electricity price. pugo,t

buy,max indicates
the maximum value of UGO thermal wholesale price. pe

buy and
pt
buy indicate the ESP average electric and thermal

selling price.
At each transaction moment, ESP will update the pricing

strategy and action space. Then agent calculate the current
transaction reward value and cumulative reward value.

3.3.3 Selection of Reward Function
It is precisely because the energy trading behavior between ESP
and BCs is similar to a price game behavior, and the benefits
generated by both sides should be considered in the pricing
decision-making process. Therefore, we consider both ESP’s
benefit and BCs’ benefit as the components of reward function
(Rajaei et al., 2021).

Rt � Max∑N
n�1

∑T�24
t�1

((1 − r)FBC,n + rRenergy
ESP ) (27)

Here, r ∈ [0, 1] indicates the weighting factor of relative
importance between ESP’s benefit and BCs’ benefit.

3.3.4 MDP Process Based on RL Algorithm
In most cases, the state transition rate is difficult to estimate, and
the traditional model-based methods such as dynamic
programming are difficult to solve. In particular, the energy
consumption behavior of BCs is regarded as the environment

of ESP pricing decision-making, which cannot be modeled,
because the BCs energy consumption behavior is integrated
with information, society and physics, and it cannot be
accurately described by mathematical model.

Therefore, this paper adopts the model-free reinforcement
learning method, which can effectively deal with model-free
problems and does not need information such as state
transition rate. In this paper, a model-free Q-learning
algorithm is chosen to solve the MDP problem and basic
theory of Q-learning algorithm can be referred to (Lu et al.,
2021). Table 1 shows the flowchart for implementing the
Q-learning mechanism.

3.4 Optimized Scheduling Model Based on
ADMM Algorithm
3.4.1 Distributed Solution Mechanism of Energy
Management Problem for ESP and BCs
The core of energy management problem between ESP and BSs is
that two sides form optimal operation strategy and energy
consumption strategy driven by interests. Mechanism of ESP
and BCs energy management problems is shown in Figure 4.

ESP and BCs have their own virtual computing centers, ESP
will upload its current policy parameters to the computing center,
and the computing center will issue ESP energy supply strategy
and update the parameters according to the solution results. The
calculation centers of both sides will transfer the calculated shared
variable values to each other, and update the shared variable
values and energy supply and demand.

In order to avoid the problems of complex model and
excessive traffic, this paper uses ADMM algorithm to solve the
energy management problem between ESP and BCs. The ADMM
algorithm has the characteristics of fast convergence and good
convergence performance, which has been widely applied in the
field of energy system optimization. The basic principle of
ADMM algorithm can be referenced to (Wang et al., 2019).

Based on this solution mechanism, the transmission power at
the junction of ESP and BCs is selected as the shared variable,
which is the energy supply power at ESP side and the energy
demand power at BCs side. Equation 28 is used to characterize
the coupling relationship between the two subjects.

[ Pde,bc

Hde,bc
] − [ Psup,esp

Hsup,esp
] � 0 (28)

Here, Pde,bc and Hde,bc indicate the electric and thermal demand
of BCs. Psup,esp and Hsup,esp indicate the electric and thermal
supply of ESP.

3.4.2 Distributed Optimization of BCES Based on
ADMM
According to the ADMM algorithm, the energy management
problem is decomposed into two sub-problems: ESP optimal
operation and BCs optimal consumption. Each sub-problem
aims at the maximum benefit. Then the energy management
model of the whole BCES is solved, and the optimal energy
management strategy is obtained. The energy management
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problem between ESP and BCs is deduced as the standard
form of ADMM.

max(FESP + FBCs) (29)

FBCs � ∑N
n�1

FBC,n (30)

Considering the physical boundary of system energy
management, the related variables should not only satisfy the
constraints in Part A and Part B, but also satisfy the power
balance constraints of system.

Pde,bc � ∑(Ppv + PE
mt + PE

ugo − PISAC) (31)
Hde,bc � ∑(HISAC + PT

mt) (32)
Constraints 31) and 32) ensure that the actual electricity and
thermal supply of ESP are equal to the expected energy
consumption of BCs, so as to minimize the total operating
cost. According to the principle of ADMM algorithm, the
iterative form of each sub-problem can be deduced.

xk+1 � argmax
w

⎛⎝FESP + ρ

2

���������[ Pde,bc

Hde,bc
] − [ Pk

sup,esp

Hk
sup,esp

] + uk

���������
2

2

⎞⎠ (33)

wk+1 � argmin
w

(FBCs + ρ

2

��������[ Pk+1
de,bc

Hk+1
de,bc

] − [ Psup,esp

Hsup,esp
] + uk

��������
2

2

) (34)

uk+1 � uk + [ Pk+1
de,bc

Hk+1
de,bc

] − [ Pk+1
sup,esp

Hk+1
sup,esp

] (35)

w � [Ppv, P
E
mt, P

E
ugo, PISAC, Psup,esp,HISAC, P

T
mt,Hsup,esp] (36)

x � [Pde,bc, Hde,bc] (37)

Here, ρ indicates the penalty coefficient. k indicates the iterations.
uk indicates the Lagrange multiplier vector in the iteration k.

According to the solving rules of ADMM algorithm, original
residual rk and dual residual sk are taken as the convergence
conditions.

����rk����22 �
���������[ Pk+1

de,bc

Hk+1
de,bc

] − [ Pk+1
sup,esp

Hk+1
sup,esp

]
���������
2

2

≤ εpri (38)
����sk����22 � �����ρ(wk − wk−1)�����22 ≤ εdual (39)

Here, εpri and εdual indicate the set value of convergence
error corresponding to the original residual and the dual
residual.

In the process of optimization, BCs performs optimization
scheduling to obtain the electricity consumption of each user, the
electric energy and thermal energy that BCs expect ESP to
provide, and upload the optimized expected energy supply to
ESP. Secondly, considering the expected value of BCs, ESP
performs distributed iteration on the cost, optimizes
equipment output and broadcasts it to BCs, while the
Lagrange multipliers are updated independently by ESP and
BCs. Table 2 shows the solution flow of ADMM algorithm in
optimal scheduling stage.

4 CASE STUDY

4.1 Basic Data
In this paper, a BCES comprising of one commercial building,
one residential building and one hotel building is selected as the
study case. All the load data are collected from the smart meters of
buildings in Guangzhou, China in summer. Considering that the
energy system studied in this paper involves power system,
thermal system and gas system, and different systems operate
in different dynamic processes and time scales. In this paper, the
optimization time scale is set to 1 h ().

The daily load curves of these buildings are shown in
Figure 5. The ESP is responsible for the energy supply, and
it has distributed PV (Installed on the residential roof) and
CCHP systems. The equipment attribution and load demand
of the BCES system are shown in Table 3. Figure 6 shows the
rated photovoltaic output at different installation positions.

TABLE 1 | Flowchart for implementing the Q-learning mechanism.

Algorithm 1 Q-Learning Algorithm Executed
in Pricing Stage

1 Start initializing Q value table
2 Determine the current status St and select an action At

3 Observe the state at the next moment St+1
4 Calculate the reward value and update the Q value table
5 If Satisfy convergence conditions End If
6 Else Does not satisfy the convergence condition t = t+1 and return

to step 2
7 Until iterative condition is satisfied

FIGURE 4 | Mechanism of ESP and BCs energy management problems.
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It can be seen from the physical characteristics of the system in
Table 3 that ESP has an absolute dominant advantage in this
BCES. Nevertheless, ESP’s pricing strategy still needs to be
influenced and restricted by UGO. Table 4 shows the
wholesale prices of UGO on a typical day.

Table 5 shows the load preference parameters of different
BCs, and Table 6 shows the electrical load elastic coefficient
ζEn for different BCs. Table 7 shows the equipment
parameters.

4.2 Simulation Results
4.2.1 ESP and BCs Pricing Results
This section presents numerical simulation results to assess
the performance of the proposed pricing decision-making
MDP model according to the algorithm flow shown in
Table 1. And the parameters required are shown in
Section 3.1.

In the simulation of this section, the value of weighting factor r
(Relative importance between ESP’s benefit and BCs’ benefit) is
taken as 0.5. Figures 7–9 show the pricing decision-making and

load adjustment willingness results of commercial building,
residential building and hotel building respectively.

The wholesale price of UGO is a widely known information
for both ESP and BCs. For BC, it will evaluate its own energy
consumption behavior under the influence of such open
information, which leads to BC’s willingness to adjust its
own load according to the wholesale energy price in the
market, namely BC’s load adjustable capacity. This
willingness is constrained by BC’s own electricity
consumption behavior and comfort, which can be
represented by load elastic coefficient. In order to increase
income, ESP will guide BCs to adjust energy consumption
behavior by setting energy prices, whose average value is less
than the UGO wholesale price, and the ESP prices curve can be
seen from the Figures 7–9.

The above factors will lead to some unusual phenomena in the
MDP pricing stage of ESP and BCs, and BCs will weaken the
willingness of load reduction due to the wholesale price of the
market driven by the psychology of interest balance. In this
phenomenon, the psychological desires of ESP and BCs will be
satisfied. Due to the above reasons, the actual load adjustment of
commercial cluster, residential cluster and building cluster is less
than the expected adjustable capacity, as shown in the
Figures 7–9.

In this stage of interaction, ESP and BCs made energy
transaction pricing decisions under influence of profit-
seeking psychology. ESP gives BCs the acceptable energy
price within its own profit range, and BCs feeds back the
actual energy consumption demand that can satisfy profit-
seeking psychology of ESP. In a word, the real transaction
intention between ESP and BCs is solved by the established
MDP pricing model.

TABLE 2 | Solution flow of ADMM algorithm in optimal scheduling stage.

Algorithm 2 ADMM Algorithm Executed
in Scheduling Stage

1 Initialization parameters
2 Iterative calculation is carried out with formula (33) and

formula (34)
3 If Satisfy convergence conditions, judging from (38) and (39) End If
4 Else Does not satisfy convergence condition
5 Until iterative condition is satisfied. k = k+1 and return to step 2

FIGURE 5 | Energy demand profile of three building clusters.
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4.2.2 Optimal Scheduling Results of BCES
In this section, the energymanagement of BCES is carried out through
the established optimal schedulingmodel on the basis of obtaining the
tradingwillingness of both parties. Figures 10, 11 show the real energy

consumption curves of three building clusters, and Figure 12 shows
the electro-thermal equipment operating conditions of ESP.

As shown in Figure 10, the commercial building reduced
the electrical load and refrigeration load greatly from 10:

TABLE 3 | Equipment capacity and energy demand.

Subject Equipment Energy Demand Energy Source

ESP PV (50kW), CCHP (1000kW), ISAC (2000kW) Natural Gas, Electricity UGO
Commercial building PV (300kW, Self-use) Electricity, Refrigeration ESP
Residential building — Electricity ESP
Hotel building — Electricity ESP

FIGURE 6 | Rated photovoltaic output at different installation positions.

TABLE 4 | UGO wholesale prices on a typical day CNY/kWh.

Price Type Off-Peak Mid-peak On-Peak

Time window 1–6 a.m; 22–24 p.m. 7–10 a.m; 15–17 p.m. Other time

Price Electricity 0.543 0.856 1.432
Refrigeration — 0.35 —

TABLE 5 | Load preference parameters of BCs.

BCs λEn , ηEn λTn , ηTn

Commercial building (0.001,0.15) (0.002,0.25)
Residential building (0.002,0.25) (0,0)
Hotel building (0.002,0.25) (0,0)

TABLE 6 | Electrical load elastic coefficient for different BCs.

Price Type Off-Peak Mid-peak On-Peak

Time window 1–6 am; 22–24 p.m. 7–10 a.m; 15–17 p.m. Other time
Commercial building 0.1 0.5 0.7
Residential building 0.2 0.3 0.6
Hotel building 0.1 0.5 0.5

TABLE 7 | Equipment parameters in the BCES.

Parameter Value Parameter Value

FCOPco 5.28 ηwhr 85%
ηe 0.25 COPT 1.1
ηl 0.52 LHVNG 51.88MJ/Nm3
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00–20: 00. In this period, commercial building is in the
business stage, and the gap between ESP price and UGO
wholesale price is small. Therefore, the commercial
building has carried out load adjustment in a way close to

the maximum load reduction intention. However, the energy
demand of commercial building is relatively small in other
periods, and the lower energy price of ESP does not affect its
energy consumption behavior.

Compared with commercial building, residents building and
hotel building show different energy consumption behaviors,
which are caused by their operating habits and ESP price
stimulation.

For the resident building, ESP gives an energy price far
lower than the wholesale price from 8: 00–13: 00, which
makes the resident building give up the original load
reduction plan (As shown in the figure, the load curve of
the resident building is hardly adjusted in this period). In
other periods, ESP electricity price is almost close to
wholesale price, and resident building is not active in
changing its plan. Similarly, hotel building shows similar
behavior to resident building, because their operating habits
are similar.

Figure 12 shows the best operation strategy of ESP equipment
under the condition of meeting the electricity and cooling demands
of 3 BCs. ESP gives priority to dispatching CCHP and PV in the
system to supply the power demand of BCs and ISAC. However,
the gas turbine is constrained by the operating cost and
environmental emissions, and the power output by the gas
turbine and PV cannot meet all the power demands, and the
insufficient power is obtained by trading with UGO. It can be seen
from Figure 12 that ESP buys a large amount of electricity from
UGO during the period of low wholesale price at 1: 00–8: 00 and
22: 00–24: 00. At the same time, the refrigeration demand in the
system is preferentially met by CCHP system, and the insufficient
part is provided by ISAC.

4.3 Discussion and Analysis
As mentioned earlier, this paper makes pricing decision and
system operation optimization in BCES system in order to

FIGURE 7 | Pricing decision-making results of Commercial building cluster.

FIGURE 8 | Pricing decision-making results of residential building
cluster.

FIGURE 9 | Pricing decision-making results of hotel building cluster.
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improve the operation efficiency of ESP and BCs. The economic
results of energy management are shown in Table 8 and
Figure 13.

As shown in Table 8, ESP can obtain a total benefit of
1429.08 CNY in the optimization of a typical day. The benefit
of ESP is the remaining part of energy supply income
obtained from BCs excluding the total operating cost.
Figure 13 shows the cost composition and hourly benefit
of ESP.

Figure 13 shows in detail the change trend of ESP benefit in
1 day. During 1:00–10:00 and 22:00–24:00, ESP is in a state of benefit
loss. During these periods, the electricity and refrigeration demand
of BCs are small. ESP shut down CCHP in order to avoid the gas
turbine running under a low load state. As a result, the energy supply
in the system must depend on UGO, which makes ESP have to pay
high electricity bills and ISAC operating expenses. This benefit trend
of ESP is consistent with the operating conditions of the electric-
thermal unit shown in Figure 12.

FIGURE 10 | Energy consumption curves of commercial BC.

FIGURE 11 | Real energy consumption curves of other BCs.
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In addition, from Figure 13, we can clearly observe the daily
cost composition of ESP, in which fuel cost and electricity
purchase cost account for almost 90% of the total cost. At the
same time, commercial building, resident building and hotel
building need to pay 20,611.39 CNY, 4382.92 CNY and

4354.75.77CNY energy costs respectively. Compared with
direct acquisition of electric energy and thermal energy from
UGO, their energy costs have been reduced by 2.11, 24.71 and
10.86%, respectively.

The above-mentioned economic dispatching results of ESP
and BCs are obtained when the reward weight factor r in MDP is
0.5, in which case ESP and BCs have equal importance in pricing
decision-making. However, in the actual energy trading market,
each trading subject has different positions, which leads to the
fact that this weighting factor is not necessarily fair to all parties.
Figure 14 shows the impact of reward weight factor in MDP on
economic dispatch results.

From Figure 14, we can observe that an increase in r from 0 to
1 lead to a decrease of the ESP benefit and the BCs’ energy cost.
The reason is obvious: as weight factor increases, the BCs’ costs
become more important compared to the ESP benefit. In
particular, in the case when r = 1, the system tends to
minimize the BCs’ costs, and the ESP chooses relatively low
energy prices to the BCs. On the contrary, when r = 0, the ESP
aims at maximizing its own benefit that does not consider the
BCs’ costs. Hence, the ESP chooses relatively high retail prices.
The above-mentioned reward weight factor finally leads to the
trend shown by the curve in the Figure 14 as the ESP benefit and
BCs cost change with the reward weight factor in the system
operation optimization stage.

In addition, it can be seen from the Figure 14 that when the
reward weight factor changes in the range of 0.3–0.6, the system
economic dispatching result fluctuates less, while in other
ranges, it will change greatly. However, even in the extreme
case where the reward weight factor is 1 or 0, the optimization
result is still strictly constrained. For example, when the reward
weight factor is 0, it can still ensure that the energy cost of BCs is
not higher than the cost of purchasing energy from UGO.

FIGURE 12 | Equipment operating conditions of ESP.

TABLE 8 | Optimal results of the ESP.

Benefit Composition Calculated Value/CNY

Operation cost 2210.40
Fuel cost 13855.91
Carbon emission cost 791.77
Electricity purchase cost 11031.90
Energy supply income 29319.06
ESP benefit 1429.08

FIGURE 13 | Cost composition and hourly benefit of ESP.
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Moreover, when the reward weight factor is 1, ESP can still be
guaranteed to be profitable. This is because the strategies of ESP
and BCs are clearly and reasonably constrained in the pricing
decision-making stage.

5 CONCLUSION

In this paper, a dynamic pricing decision-making and energy
management framework is proposed for BCES with ESP and
different BCs based on two-Stage optimization method. First, this
paper establishes the comprehensive benefit models that can reflect
the characteristics and profit-seeking psychology of ESP and BCs,
and put forward a dynamic pricing decision-making method
between ESP and BCs in a hierarchical energy market, wherein
the ESP can adaptively decide the retail energy price using the data
driven methodology according to the BCs’ benefit and the UGO
wholesale prices. Then, an operation optimization model of the
BCES is established to optimize the energy consumption behavior of
BCs and formulate best operation strategy of ESP’ equipment, and
put forward a distributed solution framework, in which ADMM
algorithm is used to solve the operation optimization problem.

The simulation cases have shown the benefits of the
dynamic pricing decision-making and energy management
framework of the BCES. In the stage of pricing decision-
making, the pricing decision-making simulation process
constructed by reinforcement learning method can make
energy prices that not only meet the energy consumption
habits and consumption psychology of commercial building,
resident building and hotel building, but also meet the
operation interest needs of ESP. In the operation
optimization stage, the optimization model based on
ADMM algorithm can realize the economical and efficient
operation of the system and minimize the energy cost of BCs.
Compared with directly obtaining energy from UGO, BCs’
costs have been reduced by 2.11, 24.71 and 10.86%,
respectively. In addition, through numerical analysis, we
also find the relationship between energy management
results and the reward weight factors in MDP, and the
economic boundary of system energy management in some
extreme cases.

The pricing strategy proposed in this paper mainly focuses on
electricity price and thermal price. With the gradual
implementation of the carbon trading mechanism in the
energy market, the trading and pricing of carbon emission
quota will become the key factor in the future energy trading
market. Therefore, in the future research, we will consider the
carbon trading prices into the multi-energy pricing strategy.(Du
et al., 2017).

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in
the article/supplementary material, further inquiries can be
directed to the corresponding author.

AUTHOR CONTRIBUTIONS

1) LM: Modeling, writing and simulation 2) JL: instructor 3) QW:
Modeling.

REFERENCES

Antoniadou-Plytaria, K., Steen, D., Tuan, L. A., Carlson, O, and Fotouhi Ghazvini,M.
A., (2020). Market-based Energy Management Model of a Building Microgrid
Considering Battery Degradation. IEEE T Smart Grid 12 (2), 1794–1804.

Du, Y., Gai, W.-m., Jin, L.-z., and Sheng, W. (2017). Thermal comfort Model
Analysis and Optimization Performance Evaluation of a Multifunctional Ice
Storage Air Conditioning System in a Confined Mine Refuge Chamber. Energy
141, 964–974. doi:10.1016/j.energy.2017.09.123

Kermani, M., Adelmanesh, B., Shirdare, E., Sima, C. A., Carnì, D. L., and
Martirano, L. (2021). Intelligent Energy Management Based on SCADA
System in a Real Microgrid for Smart Building Applications. Renew. Energ.
171, 1115–1127. doi:10.1016/j.renene.2021.03.008

Kong, X., Kong, D., Yao, J., Bai, L., and Xiao, J. (2020). Online Pricing of Demand
Response Based on Long Short-Term Memory and Reinforcement Learning.
Appl. Energ. 271, 114945. doi:10.1016/j.apenergy.2020.114945

Li, A., Xiao, F., Zhang, C., and Fan, C. (2021). Attention-based Interpretable Neural
Network for Building Cooling Load Prediction. Appl. Energ. 299 (10), 117238.
doi:10.1016/j.apenergy.2021.117238

Li, P., Wu, D., and Li, Y. (2021). Optimal Scheduling Strategy of Multi-Microgrid
Integrated Energy System Based on Comprehensive Demand Response and
Master-Slave Game. Proc. CSEE 41 (04), 1307–1321+1538.

Liu, P., Ding, T., Zou, Z., and Yang, Y. (2019). Integrated Demand Response for a
Load Serving Entity in Multi-Energy Market Considering Network Constraints.
Appl. Energ. 250, 512–529. doi:10.1016/j.apenergy.2019.05.003

Lombardi, F., Roccoa, M. V., Belussi, L., Danza, L., Magni, C., Colombo, E., et al. (2021).
Weather-induced Variability of Country-Scale Space Heating Demand under
Different Refurbishment Scenarios for Residential Buildings. Energy 239, 122152.

Lu, R., Hong, S. H., and Zhang, X. (2018). A Dynamic Pricing Demand Response
Algorithm for Smart Grid: Reinforcement Learning Approach. Appl. Energ. 220
(JUN.15), 220–230. doi:10.1016/j.apenergy.2018.03.072

Lu, T., Chen, X., Mcelroy, M. B., Nielsen, C. P., Wu, Q., and Ai, Q. (2021). A
Reinforcement Learning-Based Decision System for Electricity Pricing Plan

FIGURE 14 | Impact of reward weight factor on economic dispatch
results.

Frontiers in Energy Research | www.frontiersin.org May 2022 | Volume 10 | Article 86519014

Ma et al. Energy Management and Pricing Strategy

https://doi.org/10.1016/j.energy.2017.09.123
https://doi.org/10.1016/j.renene.2021.03.008
https://doi.org/10.1016/j.apenergy.2020.114945
https://doi.org/10.1016/j.apenergy.2021.117238
https://doi.org/10.1016/j.apenergy.2019.05.003
https://doi.org/10.1016/j.apenergy.2018.03.072
https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


Selection by Smart Grid End Users. IEEE Trans. Smart Grid 12 (3), 2176–2187.
doi:10.1109/tsg.2020.3027728

Ma, K., Yu, Y., Yang, B., and Yang, J. (2019). Demand-Side Energy Management
Considering Price Oscillations for Residential Building Heating and Ventilation
Systems. IEEE Trans. Ind. Inf. 15 (8), 4742–4752. doi:10.1109/tii.2019.2901306

Mason, K., and Grijalva, S. (2019). A Review of Reinforcement Learning for
Autonomous Building Energy Management. Comput. Electr. Eng. 78, 300–312.
doi:10.1016/j.compeleceng.2019.07.019

Nizami, M. S. H., Hossain, M. J., and Fernandez, E. (2020). Multiagent-Based
Transactive Energy Management Systems for Residential Buildings with
Distributed Energy Resources. IEEE Trans. Ind. Inf. 16 (3), 1836–1847.
doi:10.1109/tii.2019.2932109

Paul, S., and Padhy, N. P. (2019). Real Time Bi-level Energy Management of Smart
Residential Apartment Building. IEEE T Ind. Inform. 16 (6), 3708–3720.

Rajaei, A., Fattaheian-Dehkordi, S., Fotuhi-Firuzabad, M., and Moeini-Aghtaie, M.
(2021). Decentralized Transactive Energy Management of Multi-Microgrid
Distribution Systems Based on ADMM. Int. J. Electr. Power Energ. Syst. 132,
107126. doi:10.1016/j.ijepes.2021.107126

Rezaei, E., and Dagdougui, H. (2020). Optimal Real-Time Energy Management in
Apartment Building-Integrating Microgrid with Multi-Zone HVAC Control.
IEEE T Ind. Inform. doi:10.1109/tii.2020.2972803

Shakeri, M., upuleti, J., Amin, N., Rokonuzzaman, M., Low, F. W., Yaw, C. T., et al.
(2020). An Overview of the Building Energy Management System Considering
the Demand Response Programs, Smart Strategies and Smart Grid. Energies 13
(13), 3299. doi:10.3390/en13133299

Soetedjo, A., Nakhoda, Y. I., and Saleh, C. (2019). An Embedded Platform for
Testbed Implementation of Multi-Agent System in Building Energy
Management System. Energies 12 (9), 3655. doi:10.3390/en12193655

Taherian, H., Aghaebrahimi, M. R., Baringo, L., and Reza Goldani, S., (2021).
Optimal Dynamic Pricing for an Electricity Retailer in the price-responsive
Environment of Smart Grid. Int. J. Elec Power, 130. doi:10.1016/j.ijepes.2021.
107004

Wang, Y., Wang, Y., Huang, Y., Yang, J., Ma, Y., Yu, H., et al. (2019). Operation
Optimization of Regional Integrated Energy System Based on the Modeling of
electricity-thermal-natural Gas Network. Appl. Energ. 251, 113410. doi:10.
1016/j.apenergy.2019.113410

Wang, Z., Sun, M., Gao, C., Wang, X., and Ampimah, B. C. (2021). A New
Interactive Real-Time Pricing Mechanism of Demand Response Based on an
Evaluation Model. Appl. Energ. 295, 117052. doi:10.1016/j.apenergy.2021.
117052

Wei, F., Jing, Z. X., Wu, P. Z., andWu, Q. H. (2017). A Stackelberg Game Approach
for Multiple Energies Trading in Integrated Energy Systems. Appl. Energ. 200,
315–329. doi:10.1016/j.apenergy.2017.05.001

Winkler, M., Yadav, A., and Chitu, C., (2020). Spiel und Pädagogik. IEEE, 265–276.
doi:10.2307/j.ctvvb7m51.25

Xie, Z., Weili, H. U., Tan, J., Xiao, J., Wu, G., and Liu, Y., (2018). Demand Response
Optimization Strategy of Intelligent Buildings for Regional Energy Service
Providers. Electric Power Construction.

Xu, X., Xu, Z., Zhang, R., Chai, S., and Li, J. (2020). Data-driven-based Dynamic
PricingMethod for Sharing Rooftop Photovoltaic Energy in a Single Apartment
Building. IET Generation, Transm. &amp; Distribution 14 (24), 5720–5727.
doi:10.1049/iet-gtd.2020.0606

Yuan, G., Gao, Y., and Ye, B. (2021). Optimal Dispatching Strategy and Real-
Time Pricing for Multi-Regional Integrated Energy Systems Based on
Demand Response. Renew. Energ. 179, 1424–1446. doi:10.1016/j.renene.
2021.07.036

Zhang, B., Hu, W., Cao, D., Huang, Q., Chen, Z., and Blaabjerg, F. (2019). Deep
Reinforcement Learning-Based Approach for Optimizing Energy Conversion
in Integrated Electrical and Heating System with Renewable Energy. Energ.
Convers. Manag. 202, 112199. doi:10.1016/j.enconman.2019.112199

Zhong, S.,Wang, X., Zhao, J., Li,W., Li, H.,Wang, Y., et al. (2021). Deep Reinforcement
Learning Framework for Dynamic Pricing Demand Response of Regenerative
Electric Heating. Appl. Energ. 288, 116623. doi:10.1016/j.apenergy.2021.116623

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Ma, Liu and Wang. This is an open-access article distributed
under the terms of the Creative Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is permitted, provided the original
author(s) and the copyright owner(s) are credited and that the original publication
in this journal is cited, in accordance with accepted academic practice. No use,
distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Energy Research | www.frontiersin.org May 2022 | Volume 10 | Article 86519015

Ma et al. Energy Management and Pricing Strategy

https://doi.org/10.1109/tsg.2020.3027728
https://doi.org/10.1109/tii.2019.2901306
https://doi.org/10.1016/j.compeleceng.2019.07.019
https://doi.org/10.1109/tii.2019.2932109
https://doi.org/10.1016/j.ijepes.2021.107126
https://doi.org/10.1109/tii.2020.2972803
https://doi.org/10.3390/en13133299
https://doi.org/10.3390/en12193655
https://doi.org/10.1016/j.ijepes.2021.107004
https://doi.org/10.1016/j.ijepes.2021.107004
https://doi.org/10.1016/j.apenergy.2019.113410
https://doi.org/10.1016/j.apenergy.2019.113410
https://doi.org/10.1016/j.apenergy.2021.117052
https://doi.org/10.1016/j.apenergy.2021.117052
https://doi.org/10.1016/j.apenergy.2017.05.001
https://doi.org/10.2307/j.ctvvb7m51.25
https://doi.org/10.1049/iet-gtd.2020.0606
https://doi.org/10.1016/j.renene.2021.07.036
https://doi.org/10.1016/j.renene.2021.07.036
https://doi.org/10.1016/j.enconman.2019.112199
https://doi.org/10.1016/j.apenergy.2021.116623
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles

	Energy Management and Pricing Strategy of Building Cluster Energy System Based on Two-Stage Optimization
	1 Introduction
	1.1 Background and Motivation
	1.2 Literature Review
	1.3 Paper Contributions and Structure

	2 System Framework and Energy Management Mechanism
	2.1 System Architecture
	2.2 Pricing and Energy Management Framework

	3 Energy Collaborative Management Model Based on Markov Decision
	3.1 Building Energy Cluster Model
	3.1.1 Electrical Load Model
	3.1.3 Comprehensive Benefit Model

	3.2 Energy Service Provider Model
	3.2.1 Operating Condition Model
	3.2.1.1 Distributed Photovoltaic
	3.2.1.2 Ice Storage Air Conditioner System [25]
	3.2.1.3 Combined Cooling Heating and Power System
	3.2.2 Comprehensive Benefit Model

	3.3 Pricing MDP Model Based on RL Algorithm
	3.3.1 Selection of State Space
	3.3.2 Selection of Action Strategy Set
	3.3.3 Selection of Reward Function
	3.3.4 MDP Process Based on RL Algorithm

	3.4 Optimized Scheduling Model Based on ADMM Algorithm
	3.4.1 Distributed Solution Mechanism of Energy Management Problem for ESP and BCs
	3.4.2 Distributed Optimization of BCES Based on ADMM


	4 Case Study
	4.1 Basic Data
	4.2 Simulation Results
	4.2.1 ESP and BCs Pricing Results
	4.2.2 Optimal Scheduling Results of BCES

	4.3 Discussion and Analysis

	5 Conclusion
	Data Availability Statement
	Author Contributions
	References


