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Renewable energy outputs such as wind turbines and photovoltaics, as well as data center
workloads are both random and uncertain. In order to enhance the stability and economy
of the data center in actual operation effectively, a multi-time scale optimal dispatch
method for the data center microgrid based on stochastic model predictive control is
proposed in this paper. In the day-ahead scheduling stage, the characteristic of the data
center that batch workloads are allowed to be served delayed is considered. And the
scenario analysis method is applied to describe the uncertainty of loads and renewable
energy outputs, based on which an economic optimization scheduling model is
established to minimize the system operating cost. The intra-day scheduling utilizes
the rolling optimization and feedback correction of model predictive control to correct
the deviation of loads and renewable energy outputs and adjust the day-ahead dispatch
plan in real time, which ensures the effectiveness of day-ahead plan and the stability of
system operating. Through the simulation results of a typical data center microgrid, the
effectiveness of the proposed method is verified.

Keywords: data center, stochastic model predictive control, scenarios analysis method, batch workload, energy
optimal dispatch

1 INTRODUCTION

With the rapid development of big data and cloud computing technology in recent years, the quantity
and scale of data centers have been expanding. At the same time, the electricity consumption is also
growing tremendously. It is estimated that about 2% of the world’s total electricity consumption is
related to data centers, and the power demand of this sector is increasing at an annual rate of
15%–20% (Ebrahimi et al., 2015). The electricity bills that some data centers pay to the electricity
market is as high as tens of millions. In order to reduce the electricity consumption costs, more and
more data centers choose to connect lower-cost renewable energy generators such as wind turbines
(WT) and photovoltaics (PV) to their power supply system (Liu B et al., 2021). Futhermore, data
centers belong to the category of first-class loads; hence, power supply cannot be interrupted. It is
necessary for data centers to equip with alternative power sources to ensure the sustainable and
reliable power supply (Wang et al., 2020). Thus, data center construction areas always integrate
energy storage systems (ESS), conventional power generators, and renewable energy generators,
which constitute a typical microgrid system (Li and Qi, 2018; Yu et al., 2018). On the other hand,
batch workloads in data centers are allowed to be served delayed and migrated and can be flexibly
allocated according to the peak–valley difference of the electricity price. With the technology of the
energy management and optimal dispatch, the power consumption and operating cost of data
centers can be reduced effectively.
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Recently, the research on energy management in data
centers has been increasing. In the study by Chen et al.
(2016a), the data center is considered as a microgrid, where
renewable energy outputs and ESS are optimized, but the
scheduling of data center workloads was ignored. The
classification of data center workloads was studied by Ding
et al. (2019), wherein by allocating the batch workloads and
utilizing renewable energy, the energy consumption of the data
center was reduced effectively. The impact on the main grid
caused by data center workload migration is considered in a
study by Wang et al. (2016), and the interaction between the
main grid and data center is modeled as a two-stage
programing problem. In a study by Wen and Liu (2019), an
optimal scheduling model of the hybrid wind–solar–hydro
power generation system with data center workloads was
studied. The demand side and power supply side-joint
scheduling was adopted, which improved the economy of
the system. In a study by Wang et al. (2017), a day-ahead
resource dispatch problem considering conventional generator
fuel and carbon emission costs was proposed, and a mixed
integer linear programming (MILP) model was formulated to
solve it.

Although many progresses have been made in the research
on energy management of the data center, most research mainly
studied the energy management of the data center operating in a
certain scenario. In fact, the renewable energy and data center
workloads are quiet random and uncertain. The randomness of
renewable outputs and workloads distribution, as well as the
change of electricity price, are considered in Ding et al. (2018),
and a day-ahead stochastic planning scheme for the data center
microgrid (DCMG) was proposed. A stochastic programming
based on the MILP model for the data center energy
management was proposed in Xu et al. (2019), which can
deal with the influence of uncertainty effectively. The
aforementioned studies consider the influence of uncertain
factors in the data center, but the optimal dispatch was only
in the day-ahead stage. In actual operation, real-time variety of
workloads and renewable energy outputs will still affect the
security and economy of the data center, and the stability of the
main grid will be affected at the same time (Liu et al., 2018;
Xiong et al., 2020).

Model predictive control (MPC) is an advanced method for
process control, which has been widely used in a variety of
complex dynamic systems (Camacho and Bordons, 2004).
Recently, it also has drawn much attention of the energy
management studies. In the study by Chen et al. (2013), a
MPC-based appliance scheduling method for a smart home
was proposed with the consideration of dynamic prices and
appliance usage patterns. In the study by Zhang et al. (2015),
a closed-loop scheduling model for microgrid energy
management was established based on MPC. Through the
closed-loop feedback, model prediction, and iterative update
strategy of MPC, the economy of the system was improved.
However, the aforementioned scheduling models lack the
guidance of day-ahead plans, and the optimization results do
not have the global optimality.

The contributions of this article are listed as follows:

(1) Considering the unique characteristics of data center
workloads and describing stochastic factors with the
scenario analysis method, a multi-time scale optimal
dispatch model combining day-ahead and intra-day rolling
correction of DCMG was constructed based on stochastic
model predictive control (SMPC).

2) The case study of a typical DCMG scenario was conducted to
verify the effectiveness and feasibility of the proposed multi-
time scale model.

2 THEDATACENTERMICROGRID SYSTEM

The structure of the DCMG is shown in Figure 1. A DCMG usually
consists of conventional generators, distributed renewable
generators, ESS, and data center loads. In most cases, it needs to
purchase electricity power from the main grid. The main difference
between the DCMG and general microgrids is the unique power
consumption characteristic. Theworkload of the data center refers to
the information and data that need to be processed, which depends
on the user’s behavior of using the network, and has greater
randomness and uncertainty. The workload also determines the
total power consumption of the data center, which is the basis for the
flexible adjustment of the data center’s electrical load.

According to the differences in user’s computing
requirements, the data center workload can be divided into
two categories: the interactive and batch workloads. The
interactive workload must be served immediately (usually a
few seconds) when the users submit requests for computing
services, such as opening a web page, entering passwords, and
sending voice messages. The batch workload can be processed
more flexibly before the deadline. The service time can be
delayed by several hours or even 1 day. The batch job
normally includes scientific computing, data backup, image
processing, and other data-intensive tasks (Chen et al.,
2016b). Therefore, dispatching the batch workload according
to the peak-to-valley electricity price can reduce the operating
cost of the data center.

FIGURE 1 | The structure of a DCMG.
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The total power consumption of the data center includes the
consumption of IT equipments and non-IT equipments (such as
refrigeration system, lighting system, etc.). power usage
effectiveness (PUE) is an important indicator to measure the
energy efficiency of a data center (Jaureguialzo, 2011). It is
defined as the ratio of the total power consumption of the
data center to the power consumption of IT equipments. The
PUE value is always greater than 1, and the lower the PUE value,
the more energy-efficient the data center. According to the PUE
value and the power consumed by IT equipment, the total power
consumption of the data center can be calculated.

3 ENERGYOPTIMAL DISPATCHMODELOF
THE DCMG BASED ON SMPC

3.1 Day-Ahead Optimization Scheduling
3.1.1 The Objective Function
The objective of the day-ahead optimization scheduling is to
minimize the total operating cost of the data center. In this article,
power demand and renewable energy output forecasts are
considered as stochastic parameters owing to their
randomness and uncertainty. The scenario analysis method is
based on the probability theory; the research object of uncertainty
information is described by scenarios, and each scenario
constructed corresponds to a certain probability. The key of
the method is to fully reflect the uncertainty information with
limited scenarios. In this article, it is used to transform the
uncertainty of the DCMG into multiple deterministic
scenarios. The objective function is shown as follows:

minC � ∑S
s�1
∑T
t�1
Prs · Ft

s (1)

Ft
s � ∑NDG

i�1
(Cf(Ps,t

Gi) + COM(Ps,t
Gi) + Ceav(Ps,t

Gi)) + Cpp(Ps,t
Grid) (2)

where C indicates the total operating cost of the data center; S
indicates the number of total scenarios, which is the combination
of the sample sets of each part; Prs indicates the probability of the
scenario s, which is the product of sample probabilities of each
part; T indicates the total time periods of day-ahead optimization
scheduling, which is 24 h; F t s indicates the operating cost in the
t-th period and the s-th scenario; and NDG indicates the number
of distributed generators. Cf (·), COM (·), and Ceav (·) indicate the
fuel consumption cost, maintenance cost, and pollution emission
cost of distributed generators, respectively; P s,t Gi indicates the
output of the ith distributed generator in the t-th period; P s,tGrid
indicates the electricity purchase power from the main grid in the
t-th period; and Cpp (·) indicates the cost of the purchasing
electricity from the main grid.

3.1.2 The Constraint Conditions
Based on the structure of the DCMG shown in Figure 1, the
constraints including power consumption of the data center,
distributed generators, ESS, and interaction with the main grid
need to be considered in the day-ahead dispatch model. In

addition, the DCMG system must satisfy the power balance
between supply and demand, which is the premise for the data
center to realize stable and economic operation.

(1) Data Center Workload Constraint

Suppose that there areM servers with the same structure in the
data center, and the loads distribution of each server is equal,
limited by the computing power of CPU, there is an upper limit
on the workloads that can be processed in each time period that
can be calculated as follows:

Lt ≤ LC,∀t (3)
where Lt indicates total workloads processed by the CPU in the
t-th period, and LC indicates the upper limit of the workloads
processed by the CPU of the data center, and

Lt � Lt
ds + Lt

dt − σt
load,∀t (4)

where Ltds and Ltdt indicate the interactive and batch workloads of
the data center in the t-th period, and σ t

load indicates theworkloads
that is being processed in the t-th period.

The process of the flexible scheduling of batch workloads can
be expressed as follows (Wang et al., 2017):

Qt
dt � Qt−1

dt + Lt
dt − σtload, ∀t≤ (5)

QT
dt � 0 (6)

where Q t
dt indicates the batch workloads that have not been

processed by the data center until the t-th period.
The power consumed by IT equipments is related to the

quantities of workloads processed by the CPU. According to
the concept of PUE, the total power consumption of the data
center can be calculated. The total power of the data center in the
t-th period can be expressed as shown in (Yu et al., 2014):

Pt
Load � M(δ + μLt),∀t (7)

δ ≜ Pidle + (PUE − 1)Ppeak (8)
μ ≜ Ppeak − Pidle (9)

where P t
Load indicates the total power of the data center in the t-th

period;M is the quantity of servers in the data center; δ and μ are
the intermediate variables for calculation; Pidle and Ppeak
respectively indicate the power consumption when the server
is in the idle and busy states.

(2) System Power Balance Constraint

∑NDG

i�1
Ps,t
Gi + Ps,t

Grid � Ps,t
Load + Ps,t

ESS (10)

where P s,t ESS indicates the charging and discharging power of
ESS in the tth period, the positive value represents ESS charging,
and the negative value represents ESS discharging.

(3) Interaction Power with the Main Grid Constraint

Pmin
Grid ≤P

s,t
Grid ≤P

max
Grid (11)

Frontiers in Energy Research | www.frontiersin.org March 2022 | Volume 10 | Article 8632923

Zhu et al. SMPC-Based Optimal Dispatch of DCMG

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


where Pmin Grid and Pmax Grid respectively indicate the upper
and lower limits of the interaction power between the DCMG and
the main grid.

(4) Distributed Generators Operating Constrain

Pmin
Gi ≤Ps,t

Gi ≤P
max
Gi (12)

ΔPmin
Gi ≤Ps,t

Gi − Ps,t−1
Gi ≤ΔPmax

Gi (13)
Eq. 12 is the output power constraint of distributed

generators, where Pmin Gi and Pmax Gi respectively
indicate the maximum and minimum output power of the
ith distributed generator. Eq. 13 is the climb power
constraint of operating distributed generators, where
ΔPmax Gi and ΔPmin Gi respectively indicate the upper
and lower limits of the climbing power of the ith
distributed generator.

(5) ESS Constraint

The constraints during the operation of ESS mainly include
the upper and lower limits of charging and discharging power and
the state of charge (SOC) constraint.

−Pmax
ESS ≤P

s,t
ESS ≤Pmax

ESS (14)
where P s,t ESS indicates the maximum of charging and
discharging power of ESS.

The SOC of ESS in the t-th period can be expressed by the
formulas in following:

Ss,tESS � Ss,t−1ESS (1 − σ) + η
Ps,t
ESSΔt
EESS

(15)

where S s,t ESS indicates the SOC of ESS in the t-th period; σ
indicates the self-consumption rate of ESS; η indicates the
charging and discharging efficiency of ESS; EESS indicates the
total capacity of ESS; and Δt indicates the time interval.

The SOC constraint of ESS is expressed as follows:

Smin
ESS ≤ Ss,tESS ≤ S

max
ESS (16)

Ss,t�0ESS � Ss,t�TESS (17)
where Smax ESS and Smin ESS respectively indicate the upper
and lower limits of the SOC. In addition, the SOC should
be consistent at the beginning and the end of the
dispatch cycle.

3.2 Intra-Day Rolling Optimization
Scheduling
The MPC is a kind of a model-based closed-loop optimization
control strategy. The core of MPC is to continuously perform
rolling optimization in a finite-time domain based on the
mathematical model of the controlled object. The strategy
mainly includes the following steps:

(1) At the current time step k and the current state x(k), MPC
predicts the future state of the system based on the

prediction model. Considering the current and future
constraints, obtain the control command sequences at
the future time steps k+1, k+2, . . . , k + M by solving the
optimization problem.

(2) Apply the control command of the first time step to the
system.

(3) At the time step k+1, update the state x(k+1) and repeat the
aforementioned steps.

Taking a typical grid-connected DCMG as an example, it
consists of WT, PV, a micro gas turbine (MT), a fuel cell
generator (FC), ESS, and data center loads. The state variable
at the time step k is

x(k) � [PMT(k), PFC(k), PESS(k), SESS(k), PGrid(k)]T

The control variable is

u(k) � [ΔPMT(k),ΔPFC(k),ΔPESS(k)]T

The disturbance variable is

r(k) � [ΔPLoad(k),ΔPWT(k),ΔPPV(k)]T

The output variable is

y(k) � [PGrid(k), SESS(k)]T

The multi-input and multi-output state space model can be
established as follows:

x(k + Δt) �

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

PMT(k + Δt)
PFC(k + Δt)
PESS(k + Δt)
SESS(k + Δt)
PGrid(k + Δt)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
�

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 −η Δt
EESS

1 − σ 0

0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

PMT(k)
PFC(k)
PESS(k)
SESS(k)
PGrid(k)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0

0 1 0

0 0 1

0 0 −η Δt
EESS

−1 −1 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
ΔPMT(k)
ΔPFC(k)
ΔPESS(k)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ +
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0

0 0 0

0 0 0

0 0 0

1 −1 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
ΔPLoad(k)
ΔPWT(k)
ΔPPV(k)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(18)

y(k) � [PGrid(k)
SESS(k) ] � [ 0 0 0 0 1

0 0 0 1 0
]·

[PMT(k) PFC(k) PESS(k) SESS(k) PGrid(k) ]T
(19)

The objective of the intra-day optimization dispatch is to
minimize the error between the prediction output value of
the output variable and the day-ahead plan value and
ensure that the adjustment value of each controllable
device in the system is as small as possible. The intra-day
rolling optimization dispatch model can be expressed as
follows:
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min J � (RDA − Y f )TWerr(RDA − Y f ) + UTQuU

s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ΔPmin
MT ≤ΔPt

MT ≤ΔPmax
MT

Pmin
MT ≤Pt

MT ≤Pmax
MT

ΔPmin
FC ≤ΔPt

FC ≤ΔPmax
FC

Pmin
FC ≤Pt

FC ≤Pmax
FC

ΔPmin
ESS ≤ΔPt

ESS ≤ΔPmax
ESS

Pmin
ESS ≤Pt

ESS ≤Pmax
ESS

Smin
ESS ≤ S

t
ESS ≤ S

max
ESS

(20)

where RDA and Yf respectively indicate the day-ahead plan value
and the intra-day prediction output value of the output variable;
Werr and Qu are the weight coefficient matrices.

By solving the above model, the optimal control command
sequences of output adjustment for each device in the control
time domain was obtained. At the current time step, only the first
control command was executed. At the next time step, the
aforementioned rolling optimization process is repeated. In
addition, the real-time operating state of the system is used for
feedback correction during each rolling optimization, which
ensures better stability and robustness of the rolling
optimization strategy.

3.3 Energy Optimal Dispatch Strategy
Based on SMPC
In this article, the energy optimal dispatch of the DCMG was
divided into two stages: day-ahead optimization scheduling and
intra-day rolling optimization scheduling, constituting a multi-
time scale optimal model. The flow chart of the specific optimal
model solution process is shown in Figure 2.

In the aforementioned solving process, the SMPC-based
energy optimal dispatch strategy of the DCMG constitutes the
MILP problem. Based on MATLAB software, this article uses=d
the CPLEX solver and the YALMIP toolbox to solve the
aforementioned MILP problem.

4 CASE STUDY

4.1 Setting
A typical DCMG system was taken as an example. The system
structure is consistent with the aforementioned DCMG system.
In addition, the data center can purchase electricity from the
main grid. The main basic parameters of the system are shown in
Table 1. The time-of-use electricity price of the main grid is
shown in Table 2 (Xiao et al., 2014).

Since it is currently difficult to obtain the detailed statistical
information of data center workloads, some studies assume that

FIGURE 2 | Flow chart of the energy optimal dispatch.

TABLE 1 | Parameter values of the DCMG system.

Equipment Parameter Value

WT Rated power 400 kW
Operation and maintenance Cost 0.0296 ￥/kWh

PV Rated power 300 kW
Operation and maintenance Cost 0.0096 ￥/kWh

MT Rated power 800 kW
Climbing power 160
Operation and maintenance Cost 0.0352 ￥/kWh

FC Rated power 400 kW
Climbing power 80 kW
Operation and maintenance Cost 0.0293 ￥/kWh

ESS Total capacity 2,400 kWh
Rated charge and discharge power 240 kW
Initial value of SOC 0.2
Range of SOC 0.1–0.9
Charge and discharge efficiency 95%
Self-consumption rate 0.01

The main grid Maximum of the interaction power 2000 kW

TABLE 2 | Electricity price of the main grid parameter values.

Time period Time interval Price(￥/kWh)

Valley period 0:00–7:00 0.291
23:00–24:00

Normal period 7:00–10:00 0.633
15:00–18:00
21:00–23:00

Peak period 10:00–15:00 1.005
18:00–21:00
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there is a certain proportion relationship between the interactive
and batch workloads (Luo et al., 2014; Li and Qi, 2018). In this
article, it was set that the ratio of interactive and batch
workloads were 4:1. In the actual situation, the ratio depends
on the users of the data center. The parameters of the data center
are set based on the data in the stdy by Yu et al. (2014). The PUE
value is set to 1.2 based on the description of the study by Dou
et al. (2017).

4.2 Result Analysis
4.2.1 Day-Ahead Optimization Results
The prediction power curves of WT, PV outputs, and total loads of
the data center are shown in Figure 3. Considering that all the
prediction errors of them obey the normal distribution, first, a large
number of initial power scenarios were generated by Latin hypercube

sampling (LHS). Then, based on the similarity of each scenario, the
initial scenarios were reduced by employing the backward reduction
algorithm (Wang et al., 2015). Finally, a set of loads and renewable
energy output scenarios was obtained, as well as corresponding
probabilities. Considering that the outputs of WT changes more
dramatically (Liu J et al., 2021), the number of WT output scenarios
after the reduction was 6, and the number of PV output and load
scenarios was 5, with a total of 150 scenarios. Figure 4 shows the
results of scenario generation and the reduction of the WT output.

Figure 5 shows the allocation result of the batch workloads of the
DCMG system. The interactive workloads in each period need to be
served immediately, while the batch workloads allows flexible
scheduling. It can be seen that the batch workloads are allocated
to the period with the lowest electricity price (23:00-7:00) as far as
possible.

FIGURE 3 | Prediction power of WT, PV, and load of the data center.

FIGURE 4 | Scenario generation and reduction results of WT.

FIGURE 5 | The allocation of data center batch workloads.

FIGURE 6 | Day-ahead Optimization results.
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The day-ahead optimization dispatch plan of each device in the
DCMG system is shown in Figure 6. For the convenience of
analysis, the concept of “equivalent load” in the figure was
derived from Eq. 10. The equivalent load is equal to the sum of
the load and the charging and discharging power of ESS. It can be
seen from Figure 6 that the output of each unit in theDCMG system
satisfies the power balance constraint. Because the output power of
WT and PV is limited by the installed capacity, it only accounts for a
small part of the load demand. When the electricity price is at the
peak, MT and FC are the main power supply sources. In the valley
period of electricity price, since some batch workloads allocated to
these periods are to be served and ESS works in the charging state,
the proportion of electricity purchased from the main grid increased
obviously.

The SOC of ESS is shown in Figure 7. The variation of SOC is
maintained within the set range of 0.1–0.9, and SOC satisfies the
balance at the beginning and end of the dispatch cycle. It can be seen
that ESS is arranged to charge in the valley period and discharge in
the peak period, which achieves the “peak-to-valley arbitrage” and
improves the economy of system operation.

4.2.2 Intra-day Rolling Optimization Results
The intra-day rolling optimization period is 1 h, and the time step
is 5 min. The number of rolling optimization in 1 day is 288. After
the intra-day rolling optimization and adjustment, the actual
outputs of MT, FC, and ESS are shown in Figure 8. In order to
ensure that the interaction power between the DCMG and the
main grid can effectively track the day-ahead plan value, the

FIGURE 7 | SOC of ESS.

FIGURE 8 | Intra-day rolling optimization results.

FIGURE 9 | Comparison of interaction power with the main grid.

FIGURE 10 | Comparison of SOC.
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intra-day optimization scheduling revises the day-ahead outputs
of controllable devices to a certain extent.

Figure 9 shows the results of the interactive power with the
main grid in different cases. In actual operation, if the rolling
optimization is not applied, the power fluctuations caused by the
prediction error of uncertain factors are all compensated by the
main grid. It can be seen from Figure 9 that the interaction
power curve without rolling optimization fluctuates sharply
near the planned value, resulting in poor stability and
security when the DCMG is connected to the main grid.
However, the interaction power curve after SMPC-based
optimization is basically consistent with the day-ahead
planned curve.

The comparison results of the SOC value between the actual
value and the day-ahead plan value are shown in Figure 10. It can
be seen that ESS can track the SOC curve of day-ahead plan well
during the intra-day actual operation. According to Figures 9, 10,
the SMPC-based optimization method proposed in this article
can deal with the influence of uncertain factors and ensure the
stability and security of the data center in actual operation.

Table 3 compares the total operating costs of the DCMG
system under different scheduling strategies. It can be seen that
the cost of the SMPC-based dispatch decreases more than the no-
SMPC dispatch, which shows that the SMPC-based optimal
dispatch strategy considering the batch workloads can reduce
the operation cost and improve the economy of the DCMG
system.

5 CONCLUSION

In order to futher improve the operating economy of the data
center and reduce the adverse effects casued by the uncertainty of

renewable energy outputs and data center workloads, this artilce
puts forward a SMPC-based energy optimal dispatch strategy of
the DCMG system. The scenario analysis method is used to
describe the uncertainty by transforming it into multiple
deterministic scenarios. Based on the SMPC method, the
DCMG system was optimized from day-ahead and intra-day
time scales. In the day-ahead scheduling stage, the optimization
dispatch model is established with the objective of preparing the
lowest operating cost, which achieves flexible allocation of batch
workloads and obtains the optimal output plan for each device. In
the intra-day rolling optimization scheduling stage, the actual
outputs of controllable devices were adjusted, and the interactive
power with the main grid and SOC value of ESS tracked the day-
ahead planned value. The results of case analysis show that the
rolling optimization and feedback correction mechanism of
SMPC can cope with the negative influence of uncertain
factors and guarantee the stability and economy of the DCMG
system in actual operating.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included
in the article/Supplementary Material, further inquiries can be
directed to the corresponding author.

AUTHOR CONTRIBUTIONS

YZ and JW contributed to conception and design of the study and
wrote the original draft. KB contributed to the studymethodology
and data analysis. QS contributed to data investigation and
software analysis. YZ and CZ contributed to supervision and
writing-review and editing. All authors have read and agreed to
the published version of the manuscript.

FUNDING

This work was supported by the National Natural Science
Foundation of China (NSFC) (51807079).

REFERENCES

Camacho, E. F., and Bordons, C. (2004).Model Predictive Control. second ed. New
York, USA: Springer-Verlag.

Chen, C., Wang, J., Heo, Y., and Kishore, S. (2013). MPC-based Appliance
Scheduling for Residential Building Energy Management Controller. IEEE
Trans. Smart Grid 4 (3), 1401–1410. doi:10.1109/TSG.2013.2265239

Chen, T., Wang, X., and Giannakis, G. B. (2016b). Cooling-Aware Energy and
Workload Management in Data Centers via Stochastic Optimization. IEEE
J. Sel. Top. Signal. Process. 10 (2), 402–415. doi:10.1109/JSTSP.2015.2500189

Chen, T., Zhang, Y., Wang, X., and Giannakis, G. B. (2016a). Robust Workload and
Energy Management for Sustainable Data Centers. IEEE J. Select. Areas
Commun. 34 (3), 651–664. doi:10.1109/JSAC.2016.2525618

Ding, Z., Cao, Y., Xie, L., Lu, Y., andWang, P. (2019). Integrated Stochastic Energy
Management for Data Center Microgrid Considering Waste Heat Recovery.
IEEE Trans. Ind. Applicat. 55 (3), 2198–2207. doi:10.1109/TIA.2018.2890789

Ding, Z., Xie, L., Lu, Y., Wang, P., and Xia, S. (2018). Emission-Aware Stochastic
Resource Planning Scheme for Data Center Microgrid Considering Batch
Workload Scheduling and Risk Management. IEEE Trans. Ind. Applicat. 54
(6), 5599–5608. doi:10.1109/TIA.2018.2851516

Dou, H., Qi, Y., Wei, W., and Song, H. (2017). Carbon-Aware Electricity Cost
Minimization for Sustainable Data Centers. IEEE Trans. Sustain. Comput. 2 (2),
211–223. doi:10.1109/TSUSC.2017.2711925

Ebrahimi, K., Jones, G. F., and Fleischer, A. S. (2015). Thermo-economic Analysis
of Steady State Waste Heat Recovery in Data Centers Using Absorption
Refrigeration. Appl. Energ. 139, 384–397. doi:10.1016/j.apenergy.2014.10.067

Jaureguialzo, E. (2011). “PUE: The Green Grid metric for evaluating the energy
efficiency in DC (Data Center). Measurement method using the power
demand,” in 2011 IEEE 33rd International Telecommunications Energy
Conference (INTELEC), 1–8. doi:10.1109/INTLEC.2011.6099718

Li, J., and Qi, W. (2018). Toward Optimal Operation of Internet Data Center
Microgrid. IEEE Trans. Smart Grid 9 (2), 971–979. doi:10.1109/TSG.2016.
2572402

TABLE 3 | Comparison of operating costs.

Comparison items Total cost/￥

Day-ahead 22,794
No-SMPC 21,873
SMPC 19,764

Frontiers in Energy Research | www.frontiersin.org March 2022 | Volume 10 | Article 8632928

Zhu et al. SMPC-Based Optimal Dispatch of DCMG

https://doi.org/10.1109/TSG.2013.2265239
https://doi.org/10.1109/JSTSP.2015.2500189
https://doi.org/10.1109/JSAC.2016.2525618
https://doi.org/10.1109/TIA.2018.2890789
https://doi.org/10.1109/TIA.2018.2851516
https://doi.org/10.1109/TSUSC.2017.2711925
https://doi.org/10.1016/j.apenergy.2014.10.067
https://doi.org/10.1109/INTLEC.2011.6099718
https://doi.org/10.1109/TSG.2016.2572402
https://doi.org/10.1109/TSG.2016.2572402
https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


Liu, B., Li, Z., Chen, X., Huang, Y., and Liu, X. (2018). Recognition and
Vulnerability Analysis of Key Nodes in Power Grid Based on Complex
Network Centrality. IEEE Trans. Circuits Syst. 65 (3), 346–350. doi:10.1109/
TCSII.2017.2705482

Liu, B., Li, Z., Dong, X., Yu, S. S., Chen, X., Oo, M. T., et al. (2021). Impedance
Modeling and Controllers Shaping Effect Analysis of PMSG Wind Turbines.
IEEE J. Emerging Selected Top. Power Electron. 9 (2), 1465–1478. doi:10.1109/
JESTPE.2020.3014412

Liu, J., Miura, Y., Bevrani, H., and Ise, T. (2021). A Unified Modeling Method of
Virtual Synchronous Generator for Multi-Operation-Mode Analyses. IEEE
J. Emerg. Sel. Top. Power Electron. 9 (2), 2394–2409. doi:10.1109/JESTPE.
2020.2970025

Luo, J., Rao, L., and Liu, X. (2014). Temporal Load Balancing with Service Delay
Guarantees for Data Center Energy Cost Optimization. IEEE Trans. Parallel
Distributed Syst. 25 (3), 775–784. doi:10.1109/TPDS.2013.69

Wang, H., Huang, J., Lin, X., and Mohsenian-Rad, H. (2016). Proactive Demand
Response for Data Centers: AWin-Win Solution. IEEE Trans. Smart Grid 7 (3),
1584–1596. doi:10.1109/TSG.2015.2501808

Wang, P., Cao, Y., Ding, Z., Tang, H., Wang, X., and Cheng, M. (2020). Stochastic
Programming on Cost Optimization in Geographically Distributed Internet
Data Centers. Csee Jpes, 1–14. doi:10.17775/CSEEJPES.2020.02930

Wang, P., Xie, L., Lu, Y., and Ding, Z. (2017). “Day-ahead Emission-Aware Resource
Planning for Data center Considering Energy Storage and Batch Workloads,” in
IEEE Conference on Energy Internet and Energy System Integration (EI2),
Beijing, China, 26-28 Nov. 2017 (IEEE), 1–6. doi:10.1109/EI2.2017.8245657

Wang, Y., Wu, W., and Zhang, B. (2015). Robust Voltage Control Model for Active
Distribution Network Considering Load and Photovoltaic Uncertaintie.
Automation Electric Power Syst. 39 (09), 138–144. doi:10.7500/
AEPS20141130008

Wen, Z., and Liu, J. (2019). An Optimal Scheduling Method for Hybrid Wind-
Solar-Hydor Power Generation System with Data Center in Demad Side. Power
Syst. Technol. 43 (07), 2449–2460. doi:10.13335/j.1000-3673.pst.2018.1142

Xiao, H., Pei, W., Kong, L., Qi, Z., OuYang, H., and Mu, L. (2014). Decision
Analysis and Economic Benefit Evaluation of Microgrid Power Output
Considering Surplus Photovoltaic Power Selling to Grid. Automation
Electric Power Syst. 38 (10), 10–16. doi:10.7500/AEPS20130531009

Xiong, L., Liu, X., Liu, Y., and Zhuo, F. (2020). Modeling and Stability Issues of
Voltage-Source Converter Dominated Power Systems: A Review. Csee Jpes.
(Early Access), 1–18. doi:10.17775/CSEEJPES.2020.03590

Xu, T., Zhang, H., Yang, H., Zhang, M., and Liu, L. (2019). Research on Stochastic
Optimization Model of Energy Management for Data Center Microgrids.
J. Electric Meas. Instrumentation 33 (08), 101–107. doi:10.13382/j.jemi.
B1902158

Yu, L., Jiang, T., Cao, Y., and Zhang, Q. (2014). Risk-Constrained Operation for
Internet Data Centers in Deregulated Electricity Markets. IEEE Trans.
Parallel Distributed Syst. 25 (5), 1306–1316. doi:10.1109/TPDS.2013.
2297095

Yu, L., Jiang, T., and Zou, Y. (2018). Distributed Real-Time Energy Management in
Data Center Microgrids. IEEE Trans. Smart Grid 9 (4), 3748–3762. doi:10.1109/
TSG.2016.2640453

Zhang, Y., Zhang, T., Liu, Y., and Guo, B. (2015). Optimal Energy
Management of a Residential Local Energy Network Based on Model
Predictive Control. Proc. CSEE 35 (14), 3656–3666. doi:10.13334/j.0258-
8013.pcsee.2015.14.021

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors, and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Zhu, Wang, Bi, Sun, Zong and Zong. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice.
No use, distribution or reproduction is permitted which does not comply with
these terms.

Frontiers in Energy Research | www.frontiersin.org March 2022 | Volume 10 | Article 8632929

Zhu et al. SMPC-Based Optimal Dispatch of DCMG

https://doi.org/10.1109/TCSII.2017.2705482
https://doi.org/10.1109/TCSII.2017.2705482
https://doi.org/10.1109/JESTPE.2020.3014412
https://doi.org/10.1109/JESTPE.2020.3014412
https://doi.org/10.1109/JESTPE.2020.2970025
https://doi.org/10.1109/JESTPE.2020.2970025
https://doi.org/10.1109/TPDS.2013.69
https://doi.org/10.1109/TSG.2015.2501808
https://doi.org/10.17775/CSEEJPES.2020.02930
https://doi.org/10.1109/EI2.2017.8245657
https://doi.org/10.7500/AEPS20141130008
https://doi.org/10.7500/AEPS20141130008
https://doi.org/10.13335/j.1000-3673.pst.2018.1142
https://doi.org/10.7500/AEPS20130531009
https://doi.org/10.17775/CSEEJPES.2020.03590
https://doi.org/10.13382/j.jemi.B1902158
https://doi.org/10.13382/j.jemi.B1902158
https://doi.org/10.1109/TPDS.2013.2297095
https://doi.org/10.1109/TPDS.2013.2297095
https://doi.org/10.1109/TSG.2016.2640453
https://doi.org/10.1109/TSG.2016.2640453
https://doi.org/10.13334/j.0258-8013.pcsee.2015.14.021
https://doi.org/10.13334/j.0258-8013.pcsee.2015.14.021
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles

	Energy Optimal Dispatch of the Data Center Microgrid Based on Stochastic Model Predictive Control
	1 Introduction
	2 The Data Center Microgrid System
	3 Energy Optimal Dispatch Model of the DCMG Based on SMPC
	3.1 Day-Ahead Optimization Scheduling
	3.1.1 The Objective Function
	3.1.2 The Constraint Conditions

	3.2 Intra-Day Rolling Optimization Scheduling
	3.3 Energy Optimal Dispatch Strategy Based on SMPC

	4 Case Study
	4.1 Setting
	4.2 Result Analysis
	4.2.1 Day-Ahead Optimization Results
	4.2.2 Intra-day Rolling Optimization Results


	5 Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	References


