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Remaining useful life (RUL) prediction of lithium-ion batteries plays an important role in
battery failure prediction and health management (PHM). By accurately predicting the RUL
of the battery, the battery can be replaced accordingly, thereby effectively avoiding the
occurrence of an accident and ensuring the normal operation of the entire system. In the
prediction of the remaining service life of lithium-ion batteries, it is difficult to ensure
accuracy due to the problem of particle degradation and the influence of singular values in
the particle filter algorithm. In view of these problems, this article introduces the unscented
Kalman algorithm to improve the particle filter algorithm from the perspective of re-
weighting the particles, so as to improve the accuracy of the prediction results of the
remaining service life of lithium-ion batteries. The improved particle filter is simulated and
verified using the battery sample data in the Arbin experimental test platform. Comparing
the simulation results with the traditional particle filter method, when the number of
reference samples is the same, the PDF width of the prediction results of the improved
particle filter algorithm is slightly smaller than that of the particle filter algorithm, indicating
that the fluctuation of the prediction result is more accurate. It is proved that the improved
particle filter method proposed in this article can provide more accurate battery RUL
prediction results and can effectively improve the accuracy and robustness of the
remaining service life prediction of lithium-ion batteries.
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1 INTRODUCTION

In modern production and life, the electronic system has become indispensable, and people have
been paying more and more attention to the reliability and safety of its operation. Electronic system
fault prediction and health management (Zheng et al., 2018; Saxena et al., 2019) has become one of
the hotspots in recent years, and fault prediction is, especially important in PHM technology. This
means predictive diagnostics for systems based on their current or historical state to determine their
remaining useful life (Wang and Mamo, 2018; Wang et al., 2020a). On this basis, analyzing and
managing the system status can effectively reduce or avoid catastrophic losses caused by system
failures.

As the energy source for many key electronic devices and systems (McTurk et al., 2020), lithium-
ion batteries play a crucial role in the whole electronic system; are now widely used in portable
electronic devices, such as laptops, video cameras, and mobile communication tools; and have been
successfully promoted in important fields such as new energy vehicles and aerospace (Chen et al.,
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2019; Liu et al., 2019a). However, with the wide application of
lithium-ion batteries, their own health management,
performance degradation, safety maintenance, and remaining
life estimation have also become urgent problems to be solved.
Condition monitoring, performance analysis, and application
management of Li-ion batteries have become one of the
challenges in the field of electronic system failure prediction
and health management (Hu and Tang, 2018).

Since the battery itself is a complex electrochemical system, the
lithium battery system is highly nonlinear, with multi-spatial
scales (such as nano-active materials, mm cells, and battery
packs) and multi-time scale aging, which is difficult to
accurately model (Huangfu et al., 2018; Wang et al., 2020b).
In order to effectively evaluate the reliability of lithium-ion
batteries, it is particularly important to predict the remaining
useful life of lithium-ion batteries. The remaining service life of a
Li-ion battery is defined as the number of remaining
charge–discharge cycles before the battery capacity drops to
the rated failure threshold (Zhao et al., 2019). Scholars have
conducted a lot of research on RUL prediction of Li-ion batteries,
and great progress has been made in battery modeling and state
estimation methods, which can be broadly classified into three
categories: mechanistic model-based methods, data-driven
methods, and model- and data-driven fusion-based methods
(Liu et al., 2019b; Feng et al., 2020; Nagulapati et al., 2021).

The model-based methods rely less on historical data and can
carry out forecasting research even without too many sample
data. This approach focuses on identifying the correspondence
between observables and health indicators by establishing a
physical model of the degradation process that affects battery
life (Wang et al., 2020c). Chao et al. (2016) combined the
electrochemical model of the battery and proposed a new
particle filter framework for the RUL prediction of lead-acid
batteries, which regarded the model parameters reflecting battery
degradation as state variables. Li et al. (2016) developed a
simplified multi-particle model through a prediction-correction
strategy and quasi-linearization, which allowed researchers to
accelerate the process of battery design, aging analysis, and RUL
estimation. Si et al. (2015) proposed an adaptive nonlinear
prediction model that uses the system’s observation data
history so far to estimate the battery RUL. Because this
method needs to build a system mechanism model based on
the physics, chemistry, or experience of the predicted battery
itself, it is difficult to obtain an accurate model under the
influence of different external conditions (Qian and Yan, 2015).

The data-driven method does not need to consider the
material properties, structure, and complicated electrochemical
reaction process of the battery itself. It only needs to extract the
historical data of the lithium-ion battery itself and track and learn
the trend in the data to achieve the purpose of predicting the RUL
of the lithium-ion battery (Ren et al., 2018; Li et al., 2019). Wu
et al. (2016) proposed to use a neural network to simulate the
relationship between battery constant current charging curve and
battery RUL. Patil et al. (2015) proposed a multi-node support
vector machine method to predict the remaining useful life of the
battery under different working conditions. Zhao et al. (2017)
developed a fault diagnosis method for electric vehicle battery

systems based on big data statistical methods. Since intelligent
algorithms such as vector machines and neural networks used in
data-driven methods require a large amount of calculation, how
to reduce computational complexity and improve computational
efficiency is an urgent difficulty to be solved.

The method based on fusion technology aims to combine the
aforementioned model-based and data-driven methods as much
as possible, trying to overcome the limitations of the two types of
methods, so as to improve the accuracy of prediction by making
better use of all available information (Chang et al., 2017; Duan
et al., 2020). This method is currently a research hotspot in the
prediction of RUL of lithium-ion batteries. Sbarufatti et al. (2017)
proposed a lithium-ion battery discharge end-point prediction
method based on the combination of particle filter and radial
basis function neural network. Wang et al. (2016) constructed a
state-space model of lithium-ion battery capacity to evaluate
capacity degradation and used a spherical volume particle
filter to solve the state-space model. Liu et al. (2017) proposed
an improved particle learning framework combined with a
battery prediction model to predict the RUL of lithium-ion
batteries.

2 PARTICLE FILTER AND UNSCENTED
KALMAN FILTERING ALGORITHM

2.1 Particle Filter
The particle filter algorithm is a recursive Bayesian estimation
method based on the sequential Monte Carlo idea, which is often
used to solve system state estimation problems under non-
Gaussian, nonlinear conditions and widely used in static
environments or dynamic predictable scenarios.

Since the idea of the particle filtering algorithm is to
approximate the posterior probability distribution P(xk|yk) by
a set of random particles, the posterior distribution is recursively
estimated in real time by using theMonte Carlo sampling method
and exploiting the prior distribution of the system and Bayesian
estimation. Therefore, we usually assume that the posterior
probability density P(xk−1|yk−1) of the system at the moment
k-1 is known, and we use particle filtering to predict the posterior
probability density P(xk|yk) of the system at the moment k.
Assuming that the prior distribution of the system P(xk) is
known, then a random sampling sample can be selected based
on P(xk). After obtaining the marginal distribution of the system
P(yk) at moment k, the distribution represented by the sampled
samples is modified so that the modified sample distribution can
approximate the posterior distribution of the system at moment
k. When we get more samples, the predicted posterior
distribution is closer to the true posterior distribution.

The spatial state model of the system is as follows:

{xk � fk(xk−1, vk−1),
yk � hk(xk, nk). (1)

In Equation 1, fk(·) and hk(·) are the state transition function
and measurement function of the system, respectively. Among
them, xk and yk are the system state and measurement data of the
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system at moment k, respectively, and vk and nk are the process
noise and observation noise of the system independently and
identically distributed.

The specific implementation steps of the basic particle filter
algorithm are as follows:

1) Algorithm data parameter setting:

Number of particles N, process noise vk, observation noise nk,
initial state value, and driving matrix V, etc.

2) Initial setting of particle set:

When k = 0, the set of sampled particles xi
0 is obtained

according to the known state prior probability density P(x0)
of the dynamic system, and the weight of each particle is
ωi
0, i � 1, 2 . . .N.

3) Importance distribution:

Assuming that the posterior distribution P(x0:k|y1:k) is
known, the sampled particles obtained from the posterior
distribution are the most reliable. However, this posterior
distribution is multivariate and nonstandard, and it is very
difficult to sample particles directly from this distribution.
Therefore, we usually choose to sample from the prior
distribution or introduce a similar distribution whose
probability density function is known and easy to sample, and
this distribution is called the importance distribution.

4) Importance weight calculation:

Before carrying out the system state update of particle filtering
and optimization of observations, we need to calculate the
weights of particles by the observations at the current
moment, and the formula for calculating the weights of
particles is as follows:

ωk(x0:k) � p(y1:k

∣∣∣∣x0:k)p(x0:k)
q(x0:k

∣∣∣∣y1:k) . (2)

Since the aforementioned equation is not a recursive formula
and ωk(x0:k) in the equation is a non-normalized importance
weight, in practical applications, the weights of the particles need
to be recalculated as the observations are updated, which causes
an increase in computational effort. Assuming that the current
moment state only considers filtering and does not depend on
future observations, the importance function can be rewritten as
follows:

q(x0:k|y1:k) � q(x0)∏k
j�1

q(xj|x0:j−1, y1: j). (3)

Assuming that the system state is consistent with a Markov
process at this point, we can obtain:

p(x0:k) � p(x0)∏k

j�1p(xj|xj−1), (4)

p(y1:k|x0:k) � ∏k

j�1p(yj|xj). (5)

Substituting Eqs 3–5 into Equation 2, the following recursive
weight formula can be obtained:

ωk � ωk−1
p(xk|xk−1)p(yk|xk)
q(xk|x0:k−1, y1:k) . (6)

Assuming that the prior distribution p(xk|xk−1) is taken as the
importance distribution, the following equation can be obtained:

q(xk|x0:k−1, y1:k) � p(xk|xk−1). (7)
Substituting Equation 7 into Equation 6, we can get:

ωk � ωk−1p(yk|xk). (8)
Finally, the importance weight is normalized:

ωi
k �

ωi
k∑N

i�1ω
i
k

. (9)

5) Resampling:

The purpose of resampling is to solve the problem of particle
degradation. If Noff � 1∑N

i�1 (Wi
k
)2 < Nthreshold, resampling is

performed to get a new sample of weights {~xi
0: k,w

i
k}Ni�1 and

reset the weights of all particles such that wi
k = 1/N, where

Nthreshold is the resampling threshold, which is generally taken
as Nthreshold = 2N/3.

6) Output state estimation:

Mathematical expectations of output sampled particles:

~xi
k � ∑N

i�1
wi

kx
i
k. (10)

7) Loop iteration:

Judge whether k is greater than the number of known
measured values, if yes, end and exit the algorithm, otherwise
return to step 3, and repeat steps 3–6 until the last measurement.

2.2 Unscented Kalman Filtering Algorithm
Instead of approximating the Taylor series expansion term of the
nonlinear function, the UKF algorithm approximates the
probability density distribution of the state vector in the
nonlinear function and then uses the prior mean and
covariance to generate a series of determined sigma sampling
points, and when these sampling points are passed through the
nonlinear system, the posterior mean and covariance of the
resulting state vector can be accurate to the third order
(Taylor series expansion term) (Zhang et al., 2020). Moreover,
UKF does not require the system to be differentiable, so there is
no need to derive and calculate complex Jacobian matrices, so the
UKF algorithm based on unscented transformation is easier to
implement than the extended Kalman filter algorithm, and has
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higher value in practical applications. At the same time, unlike the
local linearization in the extended Kalman filter algorithm, the
UKF algorithm does not ignore the higher-order terms and uses
the information that the nonlinear system has more state points
in the state space, which effectively overcomes the disadvantages
of the extended Kalman filter algorithm such as low estimation
accuracy and poor stability, and has higher computational
accuracy.

First, the basic principle of unscented transformation is
introduced. Suppose an n-dimensional random variable x is
nonlinearly transformed to obtain y = f(x), and the mean and
variance of the random variable x are known to be �X and Px,
respectively. In order to calculate the statistical characteristics of y
after passing through the nonlinear function, it is necessary to
obtain 2n + 1 Sigma sampling points χi. The selection principle of
these Sigma sampling points is:

⎧⎪⎨⎪⎩
χ0 � �X,
χi � �X + ( ��������(n + λ)Px

√ )
i
, i � 1,/, n,

χi � �X − ( ��������(n + λ)Px

√ )
i−n, i � n + 1,/, 2n.

(11)

In the formula, n represents the dimension of the random
variable x and ( ��������(n + λ)Px

√ )i represents the column in the square
root of the matrix.

The weight coefficients for these Sigma sample points are:

⎧⎪⎨⎪⎩
w0

m � λ/(n + λ),
w0

c � λ/(n + λ) + (1 − α2 + β),
wi

m � wi
c � 1/[2(n + λ)], i � 1,/, 2n.

(12)

In the formula, the subscript c represents the covariance and
the subscript m represents the mean, where λ � α2(n + κ) − n
represents the scaling parameter, which determines the distance
between the Sigma sampling point and the mean x, which can
reduce the prediction error. The parameter α in the formula
determines the distribution state of the Sigma sampling points
around the random variable x and is generally set to a small
positive value, and 10−4 ≤ α< 1. k represents the auxiliary scaling
parameter, which is generally set to 0 or 3-n. The parameter β is
the tuning parameter (for Gaussian distribution, β = 2 is the
optimal choice; if the state variable is univariate, then the optimal
choice is β = 0). These Sigma sample points are then propagated
through a nonlinear function to obtain:

yi � f(χi), i � 0, 1,/2n. (13)
Themean and covariance of y can be calculated from the mean

and covariance of the weighted Sigma sample points:

�y � ∑2n
i�0

wi
my

i, (14)

Py � ∑2n
i�0

wi
c(yi − �y)(yi − �y)T. (15)

Unscented transformation is very different from general
“sampling” methods (such as Monte Carlo methods): first, the
selection of sampling points in unscented transformation is oil
deterministic and second, Monte Carlo methods require larger

orders of magnitude sampling point. The unscented
transformation can obtain the mean and covariance of the
nonlinear transformation by a simple method and can achieve
third-order accuracy. For non-Gaussian distributions, at least
second-order accuracy can be achieved, and for third-order or
higher, accuracy is determined by the choice of α and β. It can be
seen from the process of formula derivation that the high
precision that can be achieved by unscented transformation
does not depend on the specific form of the equation, and the
aforementioned effect can be achieved for any nonlinear system.
After passing through the nonlinear system, the posterior
covariance and mean obtained by the first-order linearization
method are quite different from the true value, but after
unscented transformation, the estimated value is closer to the
true value, and the performance of the UKF algorithm is better.

The implementation process of the UKF algorithm is
described in detail as follows:

Consider the nonlinear systemmodel with process noise in the
form of Equations 16, 17:

Xk � f(Xk−1) + wk−1, (16)
Zk � h(Xk) + vk. (17)

In the formula, the state vector of the system at time k is
Xk ∈ Rn and zk ∈ Rn is the corresponding observation vector at
time k; f (·) represents the state model function of the nonlinear
system and h (·) represents the observation model function of the
nonlinear system; wk−1 is the process noise sequence at k-1, the
mean value is 0, and the variance is Gaussian white noise of Qk−1;
and vk is the observation noise sequence at k-1, with mean 0 and
Gaussian white noise with variance Rk, and the two are
uncorrelated. The UKF algorithm can be obtained by
combining the unscented transform with the Kalman filter
algorithm. The specific steps are as follows:

Step 1: Initialization. Given an initial state x0, initial covariance
P0, process noise variance Q0, and observation noise
variance R0.

Step 2: According to the estimated mean x̂k−1 and covariance
Pk−1 of the state quantity at time k-1, use Eqs 11 and 12 to
obtain a set of Sigma points χ0k−1, χ

1
k−1,/, χ2nk−1, and

corresponding weight values w0, w1,/, w2n.
Step 3: Calculate the next prediction for the Sigma point set:

χik|k−1 � f(χik−1), i � 0,/, 2n. (18)

Step 4: Calculate the predicted mean and covariance matrix of
the system state quantities:

X̂|k|k−1 � ∑2n
i�0

wi
mχ

i
k|k−1, (19)

Pk|k−1 � ∑2n
i�0

wi
c(χik|k−1 − X̂||k−1)(χik|k−1 − X̂||k−1)

T

+ Qk−1. (20)

Step 5: Calculate the predicted mean X̂zk−1 and covariance
matrix Pk|k−1 according to Eqs. 19 and 20. Use

Frontiers in Energy Research | www.frontiersin.org June 2022 | Volume 10 | Article 8632854

Wu et al. Prediction of Remaining Useful Life

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


unscented transformation again to generate new Sigma
points χ0k−1, χ

1
k−1/, χ2nk−1 and corresponding weights

w0, w1,/, w2n.
Step 6: Perform nonlinear transformation on the Sigma points

according to the observation model, and calculate the
predicted sampling points of the observation quantity:

Zi
k|k−1 � h(χik|k−1), i � 0,/, 2n, (21)

Step 7: Calculate the predicted mean of the system’s observations:

ẑk|k−1 � ∑2n
i�0

wi
mZ

i
k|k−1. (22)

Step 8: Calculate the information covariance matrix and the
cross-covariance matrix between the state quantity and
the observation quantity:

Pz,k̂|k−1 � ∑2n
i�0

wi
c(Zi

k|k−1 − ẑk|k−1)(Zi
k|k−1 − ẑk|k−1)T + Rk, (23)

Pxz,k|k−1 � ∑2n
i�0

wi
c(χik|k̂−1 − X̂k|k−1)(Zi

k|k−1 − ẑk|k−1)T. (24)

Step 9: Calculate the filter gain matrix:

Kk � Pxzk|k−1P−1
zz , ktk − 1. (25)

Step 10: Status quantity update. Compute the posterior state
estimate mean and covariance matrix at time k:

X̂k � X̂k|k−1 + Kk(zk − ẑk|k−1), (26)
Pk � Pk|k−1 − KkPzz,k|k−1KT

k . (27)

Step 11: k = k+1, repeat step 2 to step 10, and perform the next
filtering calculation. Since the UKF algorithm was
proposed, it has a wide range of application prospects
in practical engineering. However, the UKF algorithm
also has disadvantages: 1) when dealing with high-
dimensional number problems, the auxiliary scaling
parameter k < 0 in the traceless transform at this
time may make the weights of some Sigma points
obtained w < 0. This situation will lead to non-
positive definite covariance in the calculation process,
making the filtered values unstable and even possible
divergence. 2) The problem of parameter selection in the
UKF algorithm has not been solved, and the filtering
effect will also be affected by the initial values.

3 ESTABLISHMENT OF THE RUL
PREDICTION MODEL BASED ON
IMPROVED PARTICLE FILTER
3.1 The Implementation Process of the
Improved Particle Filter Algorithm
Considering that the particle filter algorithm is also affected by
particle degradation and singular values, this article proposes a

particle filter and an improved unscented Kalman particle filter
algorithm. The basic idea of the improved particle filter algorithm
is as follows: First, the particle filter algorithm is used to initially
estimate the state quantity. In this process, it will not be restricted
by the nonlinear system. Second, in order to reduce the influence of
particle degradation and singular value on the estimation result, the
estimation result obtained in the previous step is subjected to a
UKF to improve the estimation accuracy. Compared with the UKF
algorithm or PF algorithm alone, the UKF and PF improved the
particle filtering algorithm proposed in this article. It can not only
overcome the constraints of nonlinear systems but also reduce the
effects caused by particle degradation and singular values on the
estimation results, improve the prediction accuracy, and have
wider application prospects.

The state model and observation model of the system can be
expressed in the form of Equations 28 and 29, respectively:

xk � Fxk−1 + wk−1, (28)
zk � h(xk) + vk, (29)

where F is the state transition matrix of the dynamic model and h
(·) represents the nonlinear or linear observational model
function; wk−1 is the process noise with mean 0 and variance
Qk−1, vk is the over-observation noise with mean 0 and variance
Rk, and the two are uncorrelated. Combining the PF algorithm
with the UKF algorithm, the specific steps of the improved
particle filter algorithm are as follows: First, use the PF
algorithm to sample the particles {x(i)0 }Ni�1 according to the
known prior probability distribution p(x0), Then update the
particles in the particle set according to the selected importance
density function q(xk | x(i)

k−1, zk) � p(xk | x(i)
k−1), and according

to Equation 28, if wk−1 ~ N(0, Qk−1), then:
p(xk | x(i)k−1) � N(Fx(i)k−1,Qk−1). (30)

Furthermore, calculate the weight w(i)
k � w(i)

k−1p(zk | x(i)
k ) of

each particle in the particle set, and according to Equation 29, if
vk ~ N(0, Rk) is known, then:

p(zk | x(i)k ) � N(h(xk), Rk). (31)
Then, the weights are normalized ~w(i)

k � w(i)
k /∑N

i�1w
(i)
k . When

the estimated number of valid samples N̂eff <Nth, importance
sampling needs to be performed to generate new particles and re-
weight the particles w(i)

k � ŵ(i)
k � 1/N.

Then, calculate the next prediction for the Sigma point set:

χik|k−1 � f(χik−1), i � 0,/, 2n. (32)
Then, calculate the predicted mean and covariance matrix of

the system state quantity:

X̂k|k−1 � ∑2n
i�0

wi
mχ

i
k|k−1, (33)

Pk|k−1 � ∑2n
i�0

wi
c(χik|k−1 − x̂k|k−1)(χik|k−1 − x̂k|k−1)T

+Qk−1 (34)

The nonlinear transformation of the Sigma point is performed
according to the observation model, and the predicted sampling
points of the observation are calculated:
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Zi
k|k−1 � h(χik|k−1), i � 0,/, 2n. (35)

Get the filter gain matrix:

Kk � Pxz,k|k−1P−1
zz . (36)

Last update on status. Calculate the posterior state estimate
mean and covariance matrix at time k:

x̂k � x̂k|k−1 + Kk(zk − ẑk|k−1), (37)
Pk � Pk|k−1 − KkPzz,k|k−1KT

k . (38)
When the estimated value x̂k and the covariance matrix Pk at

time k are obtained, the particles at the next time can be updated
by substituting into Equation 30, and then the fusion filter
calculation at time k+1 is performed. After the importance
sampling of the particle set, the UKF is used to re-weight the
selected particles, which ensures the diversity of particles and
reduces the influence of singular values on subsequent
calculations. The process is shown in Figure 1.

3.2 RUL Prediction Model Establishment
When a Li-ion battery undergoes continuous charge and
discharge cycles, the actual capacity of the battery decreases
exponentially with the number of cycles. Taking the lithium-
ion battery cycle life empirical decay model as the state equation
in the particle filter algorithm, it uses its excellent state tracking
ability to determine the unknown parameters in the empirical
model and finally realizes the prediction of the remaining
battery life.

Assuming that the remaining life prediction cycle of the
battery is k, the specific steps of the particle filter algorithm to
predict the remaining life of the battery are as follows.

① Read battery SOH data during aging cycle;
② Use the recursive least-squares algorithm to fit the data
from the initial cycle to the Kth cycle to determine the initial
parameters a, b, and c of the single-exponential empirical
model of life decay;
③Use the initial parameters of the empirical model and the
battery SOH data from the initial cycle to the Kth cycle to
perform the particle filter algorithm, update the adjusted
particle set {xi

k � (aik, bik, cik)T}, ~wi
k in real time, and output

the filtered battery SOH data value CSOH(i),
where i � 1, 2,/, K;
④Predict the value CSOH(i) � aiK exp{biK(K +Ki

eccl)} + ciK of
the (K + 1) th battery SOH from the particle set {xi

k �(aiK, biK, ciK)T} of the Kth cycle, where i � 1, 2,/, K and
CSOH(K + 1), while updating the particle set
{xi

k+1 � (aiK+1, biK+1, ciK+1)T}, where i � 1, 2,/, K,K + 1;
⑤Continue to calculate until the battery SOH valueCSOH ≤ 80%,
anf output the corresponding Kcycle, end; the probability density
distribution of remaining cycle life is obtained (39).

Then, the estimated remaining cycle life predicted at the Kth
cycle is:

Kcycle,end ≈ ∑N
i�1
wi

kK
i
cycle . (39)

FIGURE 1 | Flowchart of the fusion particle filter algorithm.

TABLE 1 | Parameters of domestic 18650 battery.

Project Parameter Project Parameter

Positive and negative materials Ternary lithium/graphite Standard charging rate 0.5C
Nominal capacity 2600 mAh Maximum charge rate 0.5C
Nominal voltage 3.7 V Standard discharge rate 0.5C
Charge cut-off voltage 4.2 V Maximum discharge rate 2C
Discharge cut-off voltage 3 V Operating temperature (charging) (0–40)°C
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4 LITHIUM-ION BATTERY CYCLE LIFE
PREDICTIONEXPERIMENTANDANALYSIS

4.1 Test Objects
In this article, the battery of type 18650 was selected as the
research object, and the battery parameters are shown in Table 1.
Also, the same batch of batteries was selected for cyclic aging
experiments. Considering that the batteries mostly work in the
vicinity of 0–30°C under actual conditions, the cyclic aging test
was performed at two temperatures (20°C and 30°C, respectively).
In the cyclic aging experiment, the discharge rate was 1C and 2C
for constant current discharge, respectively, and the charge rate of
0.5C was uniformly used for constant current charging during
charging, and there was no constant voltage stage. The battery

charging and discharging equipment used was ARBIN 2000, and
the temperature of the battery during the experiment was
controlled using an incubator.

Considering the influence of charge–discharge rate and
ambient temperature on the aging rate of the battery in the
cyclic aging experiment, in order to obtain the real maximum
usable capacity of the battery, the capacity of the No. 1 to No. 4
batteries was tested after a certain number of cycles during the
experiment. Among them, No. 1 and No. 2 batteries were tested
for capacity once every 20 charge–discharge cycles, No. 3 battery
was tested once every 15 cycles, and No. 4 battery was tested once
every 10 cycles. The capacity test was to let the battery stand for
1 h after charging, then discharge at a constant current with a
discharge rate of 0.1C until the discharge cut-off voltage was
2.4 V, and finally the battery capacity at this point was recorded.

FIGURE 2 | Prediction results of the particle filter algorithm for No. 1
battery.

FIGURE 3 | Prediction results of the particle filter algorithm for No. 2
battery.

FIGURE 4 | Prediction results of the particle filter algorithm for No. 3
battery.

FIGURE 5 | Prediction results of the particle filter algorithm for No. 4
battery.
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4.2 Experimental Comparison and Result
Analysis
The particle filter algorithm is used to predict the remaining service
life of the lithium-ion battery, and the simulation results are shown
in Figures 2–5. As can be seen from Table 2, there were different
starting points for prediction, the more data that can be used as a
reference battery capacity decay sample, the more accurately the
particle filter algorithm can track the decay trend and optimize the
parameters in the capacity decay empirical model. The accuracy of
predicting remaining useful life also improved. It can be seen that
the remaining service life of the battery is predicted at different
prediction starting points, and the prediction error would gradually
decrease with the increase of the known capacity data.

Analysis of the relative error of more than 10% in the table
shows that the SOH decline process of the battery did not always
decrease with the increase of the number of cycles. In the process
of SOH decay of No. 2–4 batteries, the SOH of the battery would
rise or not change for a period of time. This also means that the
more complete the data that can be used as a reference battery
capacity degradation sample, the more accurately the particle
filter algorithm can predict the remaining life of the battery.

The relative error of No. 4 battery exceeded 10%when K = 100,
but the relative error was only 3.5% when K = 150. At this time,
the difference between the reference samples was only 50 copies.
It can be observed from Figures 2–5 that the No. 4 battery has a
period of flat SOH near the 50th cycle, and the proportion of this
stage in the first 100 cycles must be greater than the proportion of
the first 150 cycles. This stage has a greater impact on the
prediction when K = 100, resulting in an inaccurate
prediction. But the same situation also happened with the No.

2 battery. When the No. 2 battery started prediction at K = 300,
the SOH of the battery first increased and then decreased between
200 and 250 cycles. However, in the end, the prediction error of
the No. 2 battery at K = 300 was only 24 times, and the relative
error was only 4.3%, so the prediction was more accurate.

In Table 3, as the number of reference samples increases, the
PDF width of the prediction results also decreases.When K = 100,
the width is 21, and when K = 300, the width drops to 11. From
this, it can also be shown that the more the reference samples, the
higher the accuracy of the prediction results. It can be seen from
Table 3 that the prediction result given by the particle filter
algorithm is a range, which realizes the quantitative expression of
the uncertainty of the RUL prediction result of the lithium-ion
battery. It provides more scientific and reasonable information by
giving the interval range and probability density distribution of
the prediction results.

It can be seen from the aforementioned analysis that in the
whole life of the battery, the SOH that characterizes the life of the
battery does not decrease with the increase of the number of
cycles, but also has a flat and rising stage, but this stage is
unpredictable and will eventually lead to fluctuations in the
prediction results. In the particle filter algorithm, this is called
singular value. At the same time, the particle filter algorithm also
has problems such as particle degradation. In order to solve these
problems, this article proposes an improved particle filter
algorithm for optimization to improve the prediction accuracy.

The remaining service life of the lithium-ion battery is
predicted by the improved particle filter algorithm, and the
simulation results are shown in Figures 6–9. It can be
observed in Table 4 that both prediction error and relative
error compared with Table 2 have decreased, especially for
battery 2 prediction starting point K = 200 and battery 4
prediction starting point K = 100; the relative error of these
two decreases more obviously, where battery 2 K = 200 prediction
relative error decreased from 13.2% to 1.6%, reduced by about
11%. Then we compared the prediction results of the improved
particle filtering algorithm prediction experiment for battery 2 K
= 300 with the prediction results of the particle filtering algorithm
experiment for battery 2 K = 300 and found that the prediction
error decreased from 24 cycles to 2 cycles and the relative error
decreased from 4.34% to 0.36%.

The particle filter algorithm obtained through the
aforementioned analysis will be affected by the singular value.
The analysis of the K = 300 prediction result of the No. 2 battery
shows that the influence of the singular value on the singular value

TABLE 2 | Prediction results of the particle filter algorithm for batteries 1–4.

Numbering Prediction starting point Forecast result Prediction error Relative error (%)

No. 1 battery K = 200 667 19 2.932
K = 300 631 −17 2.623

No. 2 battery K = 200 480 −73 13.201
K = 300 529 −24 4.340

No. 3 battery K = 100 245 −93 27.515
K = 200 274 −64 11.573

No. 4 battery K = 100 202 −26 11.404
K = 150 220 −8 3.509

TABLE 3 | Probability density distribution of predicted results of nos. 1–4
batteries.

Numbering Prediction starting point Range
of forecast results

PDF width

No. 1 battery K = 200 661–673 13
K = 300 625–635 11

No. 2 battery K = 200 473–485 13
K = 300 523–534 12

No. 3 battery K = 100 236–256 21
K = 200 268–280 13

No. 4 battery K = 100 192–212 21
K = 150 212–228 17
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is indeed reduced after the introduction of the UKF algorithm. The
same battery 4, which was affected by singular values in the particle
filtering algorithm experiments leading to inaccurate prediction
results, was improved in the improved particle filtering algorithm
prediction experiments in K = 100 prediction results in the relative
error decreased from 11.4% to 6.14%, and the prediction accuracy
was improved. In this experiment, the singular values in the SOH
decay curve of the No. 3 battery were not included in the reference
sample, and the predicted results and relative errors of the No. 3
battery basically did not change.

The interval range and probability density distribution of the
prediction results of the improved algorithm are shown in
Table 5. As can be seen in Table 5, as the number of
reference samples increases, the PDF width of the prediction
results decreases. Compared with Table 3, when the number of
reference samples is the same, the PDF width of the prediction
results of the improved particle filter algorithm is slightly smaller

than that of the particle filter algorithm, indicating that the
fluctuation of the prediction results is smaller and the results are
more accurate. In order to more intuitively discover the influence of
singular values on the prediction results, the following subsections
will conduct a separate experimental comparison.

4.3 Singular Value Comparison Experiment
In the aforementioned experiments, it was found that the singular
value will have an impact on the prediction results. By
introducing the UKF, it was found that the prediction results
of the No. 2 and No. 4 batteries affected by the singular value in
the experiment had been improved in the prediction experiment
of the improved particle filter algorithm. In order to verify the
suppression effect of the improved particle filter algorithm on
singular values, the No. 3 battery was selected as the experimental
target for comparative experiments.

FIGURE 6 | Prediction results of the improved particle filter algorithm for
No. 1 battery.

FIGURE 7 | Prediction results of the improved particle filter algorithm for
No. 2 battery.

FIGURE 8 | Prediction results of the improved particle filter algorithm for
No. 3 battery.

FIGURE 9 | Prediction results of the improved particle filter algorithm for
No. 4 battery.
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Observing Figure 10, it can be found that when the prediction
starting point is the 240th cycle, compared with the prediction
curve obtained by the standard PF algorithm, the prediction curve
obtained by the improved algorithm is closer to the capacity
decay curve of the No. 3 battery. Both the prediction error and the
relative error of the improved particle filter algorithm are lower
than those of the previous particle filter algorithm, especially in
the 310 to 360 cycles; the prediction results of the improved
particle filter algorithm almost coincide with the actual results. It
shows that the improved particle filter algorithm introduced with
UKF is less affected by singular values.

5 CONCLUSION

The RUL prediction of lithium-ion batteries plays an important
role in PHM. Accurately predicting the RUL of lithium-ion
batteries can improve the safety and reliability of the energy
storage system. In this article, an improved particle filter RUL
prediction method for lithium-ion batteries is proposed, which
improves the filtering accuracy while ensuring the diversity of
particles. Compared with the UKF algorithm or the PF algorithm
alone, the improved particle filter algorithm proposed in this
article can not only overcome the constraints of nonlinear
systems but also reduce the influence of particle degradation
and singular values on the estimation results, which has wider
application prospects. From the experimental results given in
Section 4.2, it can be seen that compared with the traditional PF
algorithm, the improved algorithm has high accuracy and
stability for battery RUL prediction. At the same time, as the
starting point of the experimental prediction is moved back,

better prediction results can be obtained by using more measured
data. However, the proposed method still has some limitations.
For example, the data used were obtained from an experimental
environment, which is different from the actual working
environment of the battery. How to accurately predict RUL in a
working environment with uncertain environmental factors such
as weather and road conditions remains to be further studied. In
addition, the aforementioned degradation model is a strictly
monotonic function, while the RUL degradation trend of some
lithium-ion batteries is actually non-monotonic and exhibits strong
volatility. Therefore, in the future PHM, a lot of research is needed
to establish a more robust degradation model that can describe
non-monotonic degradation trends, and more parameters will be
used as indicators for management decision-making. The method
for predicting the remaining service life proposed in this article
aims to help users estimate the maximum usable performance of
the battery and provide users with an accurate battery capacity
estimate in advance, so that the user can make a decision whether
or not to replace the battery.
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TABLE 4 | Prediction results of the improved particle filter algorithm for batteries 1–4.

Numbering Prediction starting point Forecast result Prediction error Relative error (%)

No. 1 battery K = 200 664 16 2.469
K = 300 640 −8 1.235

No. 2 battery K = 200 562 9 1.627
K = 300 555 2 0.362

No. 3 battery K = 100 246 −92 27.218
K = 200 279 −59 17.456

No. 4 battery K = 100 214 −14 6.14
K = 150 222 −6 2.632

TABLE 5 | Predicted probability distribution of batteries 1–4 by the improved
particle filter algorithm.

Numbering Prediction starting point Range
of forecast results

PDF width

No. 1 battery K = 200 658–671 14
K = 300 636–644 9

No. 2 battery K = 200 555–567 13
K = 300 550–559 10

No. 3 battery K = 100 239–252 14
K = 200 273–284 12

No. 4 battery K = 100 207–221 15
K = 150 215–228 14

FIGURE 10 | Singular value comparison experiment.
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