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Bad data is required to be detected and removed from the microgrid data stream because
it misleads the decision-making of the Energy Management Systems (EMS) and puts the
microgrid at risk of instability. In this paper, the authors propose a sequential detection
method that combines three data mining algorithms, that is the Online Sequential Extreme
Learning Machine (OSELM), statistical analysis within a sliding time window, and the
Density-Based Spatial Clustering of Applications with Noise (DBSCAN). After sequential
data training, OSELM is used to construct an online updated error-filtering map to extract
the electrical feature of themicrogrid data sequence. Meanwhile, the statistical features, i.e.
the surge of the variance and the corresponding correlation coefficients under a sliding
time window are first proposed as another two complementary feature dimensions. The
three-dimensional features are finally analyzed by DBSCAN to discriminate the bad data.
The detection performance of this approach is verified by the data sequence collected from
a four-terminal ring-shaped DC microgrid prototype. Compared with bad data detection
using a single electrical feature or only statistical features, this approach shows the best
performance. Moreover, it can be further applied to the online detection of microgrid bad
data in the future.
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1 INTRODUCTION

In the concept of the future smart grid, the information and communication system should be
highly integrated with the energy distribution infrastructure in the microgrid. Data is the key
element between these two layers of the infrastructure. The reliability of the microgrid electrical
data is the premise of many energy dispatching and system control functions of the EMS, such as
real-time operation plan adjustment, operating mode switching, and emergency response to
large disturbances. With the application of big data in the smart grid, data quality becomes much
more important in improving both the economy and sustainability of the energy utilization in
the microgrid (Rana et al., 2015; Rana and Li., 2015). However, due to the uncertainties of the
microgrid data acquisition system, such as sensor failure, asynchronous measurement,
communication interruption, error coding, storage exception, the abnormal shutdown of the
data acquisition program, data injection attack from the external network, etc. (Zhao et al., 2014;
Anwar et al., 2017; Wu et al., 2017), normal data is mixed with a small amount of outliers, known
as bad data. Bad data misleads the EMS in decision-making on economic operation when the
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microgrid is in a steady state. It also impacts the emergency
decision on system security when the microgrid is under large
disturbances. These factors further affect the economy of
microgrid operation, even causes disastrous consequences
such as system collapse (Shahnia et al., 2010). Therefore, it
is particularly necessary to detect and eliminate these bad data.
With the future integration of the information system and the
physical infrastructure as well as the high penetration of power
electronic devices, the 4V (volume, velocity, variety, and
veracity) features of the microgrid data are becoming more
and more obvious. As a result, the types and contents of bad
data in the microgrid are more complicated than that of the
utility grid (Qiu et al., 2017), which calls for a more rapid and
effective bad data detection method.

Power system bad data detection has been researched for
over 40 years. Most of the research aims at the utility grid.
Through the survey of much-related literature, bad data
detection is divided into two steps, features extraction, and
features analysis. The first task is to obtain the quantitative
features containing the differences between the normal data and
the bad data from single or multiple dimensions. The next step is
to analyze the features and approximate the dividing boundary
between normal data and bad data. Traditional bad data
detection methods use electrical features to identify bad data,
based on the idea that bad data stems from various uncertainties
and does not comply with the electrical mechanism of the power
system. The electrical features can be obtained from either the
power system model or the vast historical data. According to
these two feature-acquiring means, the research methods of bad
data detection are divided into the traditional method based on
the power system analytical model and the modern method
based on the data-driven model.

The traditional power system analytical model based on the
bad data detection method relies on either the estimation or
prediction of the operating state of the power system. According
to the features differences, it is mainly divided into the residual
method and surge method. The residual method uses the state
estimator to estimate the real-time power flow of the power
system and extracts the residual (the difference between the
measured value and the estimation of the true value) as the
feature. Next, based on the probability distribution of the
residuals, the outliers located outside of certain confidence
intervals are detected as bad data (Bretas and Bretas, 2015;
Zhao et al., 2017). This method is limited by the huge
computational cost because the state estimation process should
be repeated many times to avoid the residual pollution and
residual flooding effect (Liu et al., 2011). The surge method
(Huang and Lin, 2004; Do Coutto Filho and de Souza, 2009)
treats the power system as a dynamic model and takes the surge
(difference between the present measured value and the predicted
value at the previous sampling time) as the feature. Next, the bad
data is detected based on the statistical hypothesis test of the
surge. This method overcomes the formerly mentioned
disadvantage of huge computational cost. But it assumes that
the topology and the parameters of the utility grid are not
changed during the adjacent sampling time, which restricts its
application.

Traditional bad data detection methods have a long way to go
before being applied in themicrogrid. Due to the high penetration
of Distributed Energy Resources (DERs) in the microgrid, the
operating modes and operating states are more complicated than
that of the utility grid (Hu et al., 2011). At the same time, as a
hybrid AC-DC multi-converter system, the static operating point
of the microgrid often migrates. It is difficult to establish a
dynamic analytical model for the microgrid (Xia et al., 2016),
while the analytical model is the basis of the traditional bad data
detection methods. Reference (Gu et al., 2017) proposed a state
estimation method based on a dynamic large-signal model of the
microgrid to realize the distributed control of microgrid voltage.
However, the influence of the inter-converter coordinated control
scheme on the model parameters is not considered. Authors in
(Beg et al., 2017) proposed a bad data detection method based on
the hybrid numeral and physical simulation model of the
microgrid. The main idea is the use of a microgrid dynamic
simulation model to verify whether the data conforms with the
electrical laws. This method is very instructive, but the traditional
power system analytical model is not used.

On the contrary, the modern bad data detection methods
based on data-driven models do not need to analyze the power
system model (Wu et al., 2013; Huang et al., 2016). They use the
machine learning method to extract the electrical features out of
the vast historical data, which are used for the prediction of the
measurement error. Next, clustering analysis is used to
automatically assort normal data and bad data in different
clusters (Shyh-Jier and Jeu-Min, 2002; Cramer et al., 2015;
Yang et al., 2017). In our previous work (Huang et al., 2018),
the machine learning algorithm ELM is used to extract the
electrical feature, and the feature is analyzed by the clustering
algorithm DBSCAN to realize the fast and effective detection of
the bad data in the microgrid. To the best of our knowledge, this
method is the first application of bad data detection in microgrids
based on the data-driven model. The combining of ELM and
DBSCAN can achieve faster and more accurate detection than the
previous methods (Shyh-Jier and Jeu-Min, 2002; Cramer et al.,
2015; Yang et al., 2017). However, there are still some drawbacks.
The research adopts the idea of offline training, the prediction
model is only trained once, and its accuracy depends on the
completeness of the information contained in the historical data.
Inspired by the sequential detection idea in reference (Li et al.,
2015), we introduce the OSELM algorithm to improve our
previous work. Using the method of online training to update
the prediction model sequentially is more conducive to the
realization of the online detection of bad data in the future.
However, there is still a problem in the sequential learning of
OSELM. The accuracy and generalization ability of such
supervised machine learning models still heavily depend on
prior knowledge. They are not sensitive enough to some
unfamiliar operating modes or states. Therefore, it is necessary
to introduce some other dimensions of features together with a
new unsupervised detection method to complement the
shortcomings of the single electrical feature extracted by the
supervised OSELM algorithm.

Recently, bad data detection methods based on statistical
analysis have been widely used in the field of network security
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(Bosman et al., 2017; Ren et al., 2017). Its main idea is to use the
statistical property of the continuous data stream to determine
whether an observation value is beyond the statistical range of
normal data (Almalawi et al., 2014; Mohammadpourfard et al.,
2017). The external appearance of bad data is an outlier that is too
large or too small. So, it has a statistically significant surge feature,
and lower correlation with other normal data. Therefore, the
surge of variance and the correlation coefficient of the
measurement data sequence within a sliding time window
[inspired by (Araya et al., 2017)] can be used as two feature
dimensions to distinguish the bad data. As mentioned earlier, the
operating conditions of the microgrid are more complex than that
of the utility grid. Due to the lack of prior knowledge of the
intrinsic electrical relationship between the data, the statistical
features of microgrid measurement data can be flooded by the
noise of the data itself. Therefore, a single statistical method is not
sufficient for the microgrid bad data detection. On the contrary,
the electrical features of microgrid measurement data use prior
knowledge of the microgrid electrical laws. The combining of the
above two supervised and unsupervised methods, i.e. the use of
both electrical features and statistical features, can achieve a better
detection performance of bad data.

Guided by the above idea, this paper presents a sequential
detection method of microgrid bad data based on machine
learning and statistical analysis. Based on our previous
research work, this paper takes the microgrid simulation
data as the prior knowledge and builds the error-filtering
map in the training process of the OSELM algorithm which
has the sequential learning ability. The online updated error-
filtering map is used to obtain the electrical feature of the
microgrid measurement. Meanwhile, the statistical analysis
method is used to obtain the surge of the variance and the
correlation coefficient of the microgrid measurement data
sequence in a sliding time window. Finally, we use the
clustering algorithm DBSCAN to analyze the features in the
above three dimensions and identify the bad data. The
contribution of this paper is as follows.

1) On the basis of our previous bad data detection method ELM
+ DBSCAN, an online training and sequential detection
method for microgrid bad data via the combination of
OSELM and DBSCAN is proposed for the first time.

2) A statistical method that uses the surge of the variance and the
correlation coefficient of the data sequence in a sliding time
window is first proposed and applied in microgrids for bad
data detection.

3) The above two types of methods are combined by using
electrical features and statistical features at the same time.
This hybrid method can not only avoid being flooded by
system noise but also recognize the sudden change of the
microgrid operating states. The detection performance is
better than that of the OSELM + DBSCAN method using
the single electrical feature or the statistical method using only
statistical features. More importantly, it can realize the
sequential detection of bad data (both point anomaly and
contextual anomaly), while the existing methods can only
achieve the detection of point anomaly.

The rest of this paper is organized as follows. The basic theory
and our new idea of microgrid bad data detection are introduced
in section 2. In section 3, the sequential detection method
combining the OSELM, statistical analysis, and DBSCAN
algorithm is proposed. And the detection performance of the
method is verified by the data sequence from a real microgrid
prototype in section 4. Section 5 concludes the full text.

2 BASIC THEORY AND NEW IDEA

Figure 1 shows the entire path of data from measuring to
transmission to processing in the microgrid which adopts the
commonly used hierarchical control structure. Data in the
microgrid are mainly divided into two categories, the upward
system status information, and downward control commands.
The status information includes voltage, current, active and
reactive power, switch status, port status, protection action
instructions, etc. Among them, the electrical measurements,
i.e. the voltage, current, and power are the objects for bad data
detection in this paper.

The electrical data on each Distributed Energy Resource
(DER) port, grid port, and load port of the microgrid are
collected by the sensors and finally enter the local controller
and the host computer via the communication network. These
electrical data are used to guide the host computer to issue
control commands including the operating mode of each port,
input control command value of the converter, and switch on/
off command, to realize energy dispatching and system
control of the microgrid. However, due to the uncertainties
of the data acquisition and communication systems, this
electrical data is inevitably mixed with noise and even
gross error. In order to improve the reliability of the data,
state estimation is needed to reduce noise. At the same time,
the bad data detection method is required to clear out the
gross error.

2.1 Bad Data in Microgrid
“ An outlier is an observation that deviates so much from other
observations as to arouse suspicion that it was generated by a
different mechanism” By Douglas M. Hawkins in 1980. The
appearance of abnormal data can be seen as a random,
sporadic phenomenon relative to the large amount of normal
data present, which is largely deviated from normal data and
comes from different mechanisms. Therefore, abnormal data
often does not have a strong correlation with normal data.
This correlation is reflected in two aspects, one is the
relevance of the data attribute, the other is the correlation of
the data structure. The normal data generally comes from the
same mechanism, and the structure is relatively compact, often
showing a spherical or band-like structure. The abnormal data
does not conform to the intrinsic structure of normal data, and
the structural correlation is weak.

According to these characteristics of bad data and normal
data, there are two premises in detecting bad data.

Premise 1: Normal data instances occur in dense neighborhoods,
while anomalies occur far from their closest neighbors.
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Premise 2: Normal data is the majority and is relevant because
it arises from the expected mechanism. While abnormal data is
generated by sporadic mechanisms and is therefore partially or
completely uncorrelated.

Based on the above two premises, the data attributes in the
microgrid are shown in Figure 2.

We can see from Figure 2 that there are four kinds of
attributes of microgrid data, i.e. spatial attribute, graph
attribute, sequential attribute, and profile attribute.

1) Spatial attribute refers to different electrical features of the
discrete electrical data points formed by the readings of the
sensors. As a single data point in the network topology, the
data itself contains noise.

2) Graph attribute refers to the neighbor relationship of the sensor
in space. At each time interval, the electrical measurements in
each column conform to the microgrid measurement equation z
= h (x)+v. The electrical data is spatially correlated.

3) Sequential attribute refers to the neighbor relationship of the
data sequence in time series. When the topology and
parameters of the microgrid keep unchanged, the microgrid
is a dynamic time-invariant system. The electrical data
sequence z conforms to the state transition equation zk+1 =
f (xk)+qk, and the data is also time-dependent.

4) Profile attribute is the scene feature of anomaly defined at the
system level in the dimensions of time, space, etc. In the space-
time dimension, because different operating scenarios often
change periodically, there is a similarity between data sequences.

Based on these four kinds of attributes, three kinds of the
anomaly are classified.

1) Point anomaly refers to bad data points in the spatial
dimension.

2) Contextual anomaly refers to bad data points or sequences in
the time dimension.

3) Collective anomaly refers to abnormal states or patterns in the
space-time dimension.

The microgrid bad data discussed in this paper belong to both
point anomaly and contextual anomaly, as a result, both spatial
correlation and timing correlation can be used to distinguish
good data and bad data.

1) bad data in spatial correlation.

The electrical measurements in the microgrid can be expressed
as a linear combination of the true values and the measurement

FIGURE 1 | Data measuring, transmission, and processing in microgrid.
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errors, as shown in Eq. 1. Note that all the variables are in matrix
form.

z � h(x) + v (1)
where z is the measurement, h(x) is the true value, x is the state
variable which ensures the observability of the microgrid, h (·) is
the equation expression of the microgrid model, v is the
measurement error.

Rewrite Eq. 1 into the time series form.

z(t) � h[x(t)] + v (2)
where, t is the time stamp, z(t), x(t), and v are all in vector form.

When z(t) only contains normal data, the corresponding v
stands for the Gaussian white noise.

v ~ N(0, σ) (3)
where σ is the standard deviation of the measurement error v.

When z(t) contains bad data zb(t),

z(t) � [ zg(t)
zb(t) ] � h[x(t)] + [ vg

vb
] (4)

where vb is the gross error, which deviates beyond a certain
statistical confidence interval of the normal measurement errors.
The confidence interval is usually determined as ±(6–7) σ in
industrial applications (Clewer Bernard, 1986).

2) bad data in timing correlation.

The microgrid electrical data sequence in time series can also
be expressed as

zk+1 � f(xk) + qk (5)

where k is the time stamp, f (·) is the equation expression of the
microgrid model mapping in time series, and qk is the surge of
electrical measurement.

When qk, i.e. the difference between the present measured
value and the predicted value at the previous sampling time, is
very big, there comes an outlier. This outlier may represent bad
data. It can also be caused by the sudden change of the microgrid
operating state. A further timing correlation method is needed to
distinguish the two situations, which will be described later in
section 3.

The key to bad data detection lies in the processing of data
features. The process is divided into two main steps.

1) Features extraction: the procedure of estimating or predicting
the features of bad data. The features include both electrical
features and statistical features. The electrical features
represent the distance between the measurement z and the
true value h(x). The statistical features represent the distance
between the measurement zk+1 in sampling time k+1 and the
true value f(xk) in sampling time k.

2) Features analysis: using mathematical statistics, data
clustering, or other unsupervised methods to approach the
interface between normal data and bad data in certain feature
dimensions.

The traditional bad data detection method is based on State
Estimation.

The diagram of bad data detection based on State Estimation is
shown in Figure 3.

When the model of the power system can be analytically
resolved as expression h (·), the estimated values X̂ of x can be
obtained through a State Estimator according to the
measurement vector z and the prior knowledge σ from the

FIGURE 2 | Data attribute in microgrid.
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data acquisition system. The electrical features, i.e., residuals r �
z − h(X̂) are obtained.

Then, the probability distribution f (rrT) of the residuals r is
used as a hypothesis test to detect bad data. The existence of
bad data zb can affect the results of the State Estimation,
i.e., residuals r, leading f (rrT) to change. Therefore, in the
vicinity of the boundary where the threshold γ is located, a
false or miss detection may occur.

2.2 Bad Data Detection Based on Online
Sequential Machine Learning
The electrical features of microgrid measurements have the most
abundant prior knowledge for bad data detection. The analytical
model h(·) of the microgrid can be approximately fitted as ĥ(·) by
supervised online sequential machine learning, as long as plenty of
microgrid historical measurements and simulation data (e.g. data
from the SIMULINKmodel of themicrogrid in (Beg et al., 2017)) are
given. The schematic of the online sequential machine learning
based bad data detection is shown in Figure 4.

Learning from historical data, the online sequential machine
learning based bad data detection method constructs an online
updating error-filtering map between the historical electrical data
sequence and the historical power flow first and then the updated
map predicts the true value ĥ(x) out of the present measurement
z. Subsequently, the electrical feature z − ĥ(x) can be obtained.

Since it is hard to discover the statistical properties of the
prediction of the machine learning method, the analysis of the
feature z − ĥ(x) cannot be carried out by statistical hypothesis
testing. Thus, the unsupervised machine learning method,
clustering is used to do the job. Based on the similarity of the
data itself, clustering analysis can automatically sort normal data and
bad data in different clusters without any prior knowledge. Due to
the uncertainty of the boundary between normal data and bad data, a
false or missed detection will occur in the vicinity of the interface.

2.3 Bad Data Detection Based on Statistical
Analysis in Time Series
Micro-grid is a strong nonlinear time-varying system. Every
measurement of the microgrid is not independent but restricted
to the electrical mechanism. Therefore, the statistical features of the
data in time series indirectly reflect the electrical features and can be
used for bad data detection. The schematic of the bad data detection
based on the statistical analysis in time series is illustrated in
Figure 5.

When an outlier (data point p+1) occurs in themicrogrid electrical
data series, the variance and correlation coefficient of the data
sequence in a sliding window with enough width N shows
different degrees of the surge. Note that the surge of the variance
is ΔD(p + 1) and the surge of the correlation coefficient is
Δρ(p + 1). The ΔD(p + 1) reflects the continuity of a single-
dimensional data sequence, which can be used to recognize
outliers. But the outliers can not only be caused by the bad data,
but also by the sudden change of themicrogrid operating state.When
there exists a sudden change of the microgrid operating state, the
ΔD(p + 1) is also significant. Under such a situation, the Δρ(p + 1),

reflecting the correlation between the multi-dimensional data
sequences, can be used to further distinguish the bad data based
on the correlation between different electrical measurements.

Since the operating state of the microgrid changes very often,
the threshold of ΔD(p + 1) and Δρ(p + 1) cannot be determined
by a fixed statistical hypothesis testing. So, clustering is used to
analyze the two statistical features and sort normal data, outliers,
and bad data in different clusters. A false or missed detection can
also happen near the boundary of different clusters.

2.4 OSELM Algorithm
A combination of two machine learning algorithms, the
supervised ELM and unsupervised DBSCAN, is used for bad
data detection in our previous work. Compared to other
machine learning algorithms, ELM is well known for its
unmatched training speed and great potential for algorithm
evolution. Detailed information on ELM and DBSCAN can be
referred to (Huang et al., 2018). The OSELM (Liu et al., 2015)
which is used in this paper is briefly introduced on the basis of
ELM. The network structure and parameters of ELM are
shown in Figure A1 in the appendix. Through sequential
learning, OSELM can update the machine learning model
online, which makes the model more adaptive in the
application of time-series data.

3 SEQUENTIAL DETECTION VIA
DATA-DRIVEN APPROACH

According to section 2, OSELM is a brand-new online
sequential machine learning algorithm that can quickly
approximate and update the error-filtering map between the
measurements and the true values by recursive linear
regression. DBSCAN is very suitable for distinguishing
outliers with non-Gaussian distributions, e.g. bad data.

FIGURE 3 | Bad data detection based on state estimation.
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Therefore, the combination of OSELM and DBSCAN can
quickly realize the sequential detection of the micro-grid
bad data. But such a supervised machine learning method,
relying on data training, is not sensitive enough to some
unfamiliar operating modes or states.

The unsupervised statistical analysis in the time series
method, which uses the statistical features (the surge of the
variance and the correlation coefficient) in a sliding time

window, is proposed to recognize the sudden change of the
microgrid operating states.

On this basis, a sequential bad data detection method is
proposed by using both the electrical features and the
statistical features. The proposed sequential bad data detection
method is described as follows. The application details of the
proposed statistical analysis in the time series method are
explained later.

FIGURE 4 | Bad data detection based on online sequential machine learning.

FIGURE 5 | Bad data detection based on statistical analysis in time series.
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3.1 Sequential Bad Data Detection
Guided by the previously mentioned two detection ideas, a
sequential detection method using a data-driven approach is
proposed. It combines the OSELM, the statistical analysis in
time series, and the DBSCAN. The flow chart of this method
is illustrated in Figure 6.

The process of the method is mainly divided into the following
steps.

1) Data acquisition and preprocessing.

Collect, screen, and normalize the measurement data of the
microgrid prototype and the simulation data of the
corresponding microgrid simulation model to form an electrical
data series. Next, this processed data series is split into the sequential
training data chunks Xi and Ti, (i = 1, 2, . . . ) and the testing data
series z. The sequential training data chunks, input matrix Xi come
from the old measurement data, and the other sequential training
data chunks, target matrix Ti is from the simulation data
corresponding to Xi. Meanwhile, the testing data series z is
acquired from the current measurement data.

2) Features extraction.

Based on the recursive training method of the OSELM
algorithm, the OSELM model is trained by Xi and Ti, (i = 1,
2, . . . ) to build an online updating error-filtering map. Using the
updated error-filtering map to predict the testing data series z,
the output matrix ĥ(x) is obtained, and then |z − ĥ(x)| is
extracted as the electrical feature, i.e. the error (including the
gross error) in z.

At the same time, the statistical analysis method is developed
to calculate the variance surge matrix ΔQ (p+1) of the testing data
series z in a sliding time window, where p+1 is the time stamp.
The surge of the variance Δq(p + 1) and the surge of the pseudo-
correlation coefficient Δρ̂(p + 1) are extracted as the statistical
features sequentially.

3) Features analysis.

The aforementioned three features are clustered by DBSCAN
to obtain normal clusters and outliers. Outliers with large
|z − ĥ(x)|, large Δq(p + 1) , and small Δρ̂(p + 1) are identified

FIGURE 6 | Flow chart of the proposed method.
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FIGURE 7 | Topology of the DC microgrid prototype.

FIGURE 8 | Control structure of the DC microgrid prototype.

Frontiers in Energy Research | www.frontiersin.org May 2022 | Volume 10 | Article 8615639

Huang et al. Micro-Grid Sequential Bad Data Detection

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


as bad data. The other outliers are recognized as the change of the
microgrid operating state.

3.2 Statistical Analysis in Time Series
1) Statistical property of data sequence.

Take the data sequence zM×N(p) out of the microgrid
measurement matrix z within the fixed time window width N
at the pth sampling time. According to Eq. 2, we can see

zM×N(p) � h[x(t)] + v(t), t � p −N + 1, p −N + 2, ..., p (6)
where t is the time stamp, M is the dimension of the electrical
measurements in z.

Calculate the covariance matrix Q(p) of the data
sequence zM×N(p).

Q(p) � Cov(zM×N(p)) � E{[zM×N(p)][zM × N(p)]T} (7)
where E is the expectation function.

The entries of matrix Q(p) are

{ qii(p) � E[zi(p) − �zi(p)]2
qij(p) � E{[zi(t) − �zi(p)][zj(t) − �zj(p)]}

i, j � 1, 2, ...,M; i ≠ j; t � p −N + 1, p −N + 2, ..., p
(8)

where zi(t) is the ith electrical measurement at sampling time t,
�zi(p) is the average of the ith electrical measurement sequence
over the time window of width N, the diagonal entry qii(p) is the
variance of the ith electrical measurement in the data sequence at
the sampling time p, qij(p) is the covariance of the ith electrical
measurement and the jth electrical measurement,
and qij(p) � qji(p).

2) Statistical features in sliding time window.

Slide the time window with fixed width N forward by one data
point. During this process, the surge of the variance matrix Q is

ΔQ(p + 1) � Q(p + 1) − Q(p) (9)
The entries of ΔQ (p+1), i.e. the surge of the variance

Δqii(p + 1) and covariance Δqij(p + 1) at the (p+1)th
sampling time is derived as Eq. 10 under the approximation
that �zi(p + 1) ≈ �zi(p) (marked as �zi) when N is large enough. At
the same time, we assume that the surges before the sampling
time (p+1) have been already detected and eliminated. That is to
say, zi(p −N + 1) ≈ �zi. Under such conditions, the following
equation can be deprived.

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Δqii(p + 1) � qii(p + 1) − qii(p) ≈ 1

N
[zi(p + 1) − �zi]2

Δqij(p + 1) � qij(p + 1) − qij(p) ≈ 1
N

{[zi(p + 1) − �zi][zj(p + 1) − �zj]}
i, j � 1, 2, ...,M; i ≠ j

(10)
According to Eq. 10, if the new arrived electrical

measurement zi(p + 1) is a normal data, it is in the vicinity
of �zi, and then Δqii(p + 1)will be quite small. On the contrary,
if zi(p + 1) is an outlier, Δqii(p + 1) is large enough to be
defined as a surge. So, Δqii(p + 1) can be used for outlier
detection. The outlier may be caused by the bad data. But, it
can also be caused by the sudden change of the microgrid
operating state. Therefore, the single statistical feature
Δqii(p + 1) is not enough for bad data detection.

When the outlier zi(p + 1) is bad data, the other statistical
feature Δqij(p + 1) is also obvious to be defined as a surge. And
it is quite smaller than Δqii(p + 1), because zj(p + 1) is very
close to �zj. But, when the outlier zi(p + 1) is caused by the
sudden change of the microgrid operating state, the change of
zi(p + 1) will result in the change of other electrical
measurements zj(p + 1) because they have strong electrical
relationships with each other. Thus, some of zj(p + 1) are

FIGURE 9 | Partial components display of the DC microgrid prototype.

TABLE 1 | Operation modes of the DC microgrid prototype.

Mode Grid-Connected Converter Battery Energy Storage
Terminal

Photovoltaic Terminal

1 Voltage control Droop control Lockout
2 Lockout Voltage control MPPT
3 Voltage control Droop control MPPT
4 Constant power control Voltage control MPPT
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much larger than �zj, which makes these Δqij(p + 1) very close
to Δqii(p + 1).

Concerning the concept of the correlation coefficient
ρij(p + 1) � qij(p+1)�����

qii(p+1)
√ ������

qjj(p+1)
√ , we define Δρ̂ij(p + 1) the surge

of the pseudo-correlation coefficient as Eq. 11.

Δρ̂ij(p + 1) � Δqij(p + 1)
Δqii(p + 1) �

zj(p + 1) − �zj
zi(p + 1) − �zi

, i ≠ j (11)

If the outlier zi(p + 1) is caused by the bad data,
Δρ̂ij(p + 1) → 0. If it is caused by the sudden change of the
microgrid operating state, zj(p + 1) has an electrical relationship
with zi(p + 1), |Δρ̂ij(p + 1)| ∈[0, 1].

For the application of |Δρ̂ij(p + 1)|, we average it in the
dimension j as follows.

∣∣∣∣Δρ̂i(p + 1)∣∣∣∣ � 1
M − 1

∑M
j�1,i ≠ j

∣∣∣∣∣Δρ̂ij(p + 1)∣∣∣∣∣ (12)

So, |Δρ̂ij(p + 1)| can be used as another statistical feature to
further distinguish bad data from outliers caused by the sudden
change of microgrid operating states.

4 CASES STUDY

4.1 Acquisition and Preprocessing of Data
The data sequence of the microgrid is obtained from a four-
terminal ring-shaped DC microgrid prototype and its
simulation model. The topology, control structure, and
partial components of the prototype are illustrated
respectively in Figures 7–9.

According to its control strategy, the microgrid has four
operation modes, which are shown in Table 1.

There are 24 kinds of electrical measurements collected from
the microgrid prototype, namely: terminal voltage and terminal
current of the four terminals [Up1,Up2,Up3,Up4, Ip1, Ip2, Ip3, Ip4],
four DC buses voltage [Udc1, Udc2, Udc3, Udc4], the current
flowing through the four positive DC bus [Idc1, Idc2, Idc3,
Idc4], the power output of the four terminals [P1, P2, P3, P4],
the active power and reactive power of the grid side [Pgrid,Qgrid],
the active power and reactive power of the load side [Pload,
Qload].

The microgrid prototype can be switched between the four
operating modes in Table 1 by issuing control commands from
the host computer. The data sequence is obtained from the
microgrid prototype and its SIMULINK simulation program in
the above four control models in a month’s operation. Six sets
of testing data were randomly selected. The sampling
frequency was 10 Hz, and the sampling time was 13 min
20 s. The Transient processes between different operating
modes are removed. The reasons are as follows. First, the
physical mechanism of the transient process is clear, rather
than caused by uncertainty or unfamiliar mechanisms. Second,
the transient process can be detected by the microgrid
operation mode switching control signal to know the time
of its occurrence, and according to the end of the wide
fluctuation of the data to know the time of its end.
Therefore, it is not the target of point anomaly detection
and contextual anomaly detection in this paper. Each row
of the testing data matrix is sorted by electrical quantities order
[P1, P2, P3, P4, Pgrid, Pload, Qgrid, Qload, Udc1, Udc2, Udc3, Udc4,
Uline1, Uline2, Uline3, Uline4, Idc1, Idc2, Idc3, Idc4, Iline1, Iline2, Iline3,
Iline4].

All testing data input and output are scaled,
taking the reference value p = 6 kW, Q = 0.5 kVar, U = 550 V,
I = 10 A.

4.2 Simulation Cases Design
Parameters Design.

1) The number k of hidden layer nodes in OSELM is set to
80, and the excitation function g (·) is the sigmoid
function.

2) The neighborhood radius Eps and the density threshold
MinPts of the neighborhood in DBSCAN are set to 0.005
and 4, respectively.

TABLE 2 | Confusion matrix.

Observation Total

1 0

Classification 1 TP FP Positive
0 FN TN Negative

Total Positive Negative NN = TP + FP + TN + FN

TABLE 3 | Detection Performance Comparison between the Three Methods in case 1.

Testing Data Method A Method B Method C Performance Sorting

Rr (%) Time (s) Rr (%) Time (s) Rr (%) Time (s) Rr Time

Dataset 1 76.4 7.4 68.7 16.3 84.5 21.7 B < A < C A < B < C
Dataset 2 72.6 6.9 69.0 15.2 83.4 20.3 B < A < C A < B < C
Dataset 3 78.2 8.3 71.2 14.6 85.3 21.1 B < A < C A < B < C
Dataset 4 73.0 7.5 66.3 15.4 79.8 20.6 B < A < C A < B < C
Dataset 5 74.3 7.8 74.5 15.9 88.6 22.4 A < B < C A < B < C
Dataset 6 78.6 6.2 72.7 14.7 85.9 19.3 B < A < C A < B < C
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Simulation Environment.

1) The simulation software is MATLAB R2018b.

2) The computer configuration for simulation is core i5
processor with 2.4 GHz frequency plus DDRⅢ memory
bank with 8 Gbps memory

4.2.1 Simulation Cases
According to the normal distribution characteristics of the
measurement error, the bad data with a gross error of
7–10 times the standard deviation of the measurement
error were randomly preset in the six sets of testing data
with a content of 5%. The measurement accuracies of the
voltage Halls (Type: VSM500D) and the current Halls (Type:
LA150-P) used in the micro-grid prototype in the simulation
section of this paper are 0.008 and 0.01 respectively. The
formula for calculating the standard deviation of errors can
be found in reference (Huang et al., 2018).

The bad data preset in this paper includes cases of
amplitude jumps (point anomalies), amplitude deviations,
and amplitude shifts (contextual anomalies) (Xu et al., 2021).
The simulation cases verify the effectiveness of the proposed
method by comparing the detection performances of the
three algorithms, including the OSELM + DBSCAN
method, the ST (statistical analysis) + DBSCAN method,
and the OSELM + ST + DBSCAN method. For point
anomaly, the detection performance indicators include the
right detection rate and calculation time. The right detection
rate Rr is calculated by the correct detection times Nr, false
detection times Nf, and missed detection times Nm. Rr = Nr/
(Nr + Nf + Nm). Nr, Nf, and Nm are confirmed by contrasting
the detection results of bad data with the preset location of
bad data. For contextual anomaly, the detection performance
is quantified by the confusion matrix in Table 2 (Hu et al.,
2020; Li et al., 2021a; Li et al., 2021b; Hu et al., 2021; Jung,
2022).

In Table 2, TP (True Positive) represents true positive
events, FN (False Negative) represents false negative events,
FP (False Positive) represents false positive events, TN (True
Negative) represents true negative events, and NN represents
all events. Based on these events, indicators such as Recall (R),
Precision (P), Accuracy (Acc), and Error (Err) are chosen to
evaluate the detection performance. Their definitions are
shown below

⎧⎪⎪⎪⎨⎪⎪⎪⎩
R � card(TP)/card(TP + FN)
P � card(TP)/card(TP + FP)
Acc � card(TP + TN)/card(NN)
Err � 1 − Acc

(13)

where card (•) is the counting function. Large values of R, P, and
Acc with a small value of Err represent good detection
performance.

The OSELM +DBSCANmethod, ST + DBSCANmethod, and
OSELM + ST + DBSCAN method are denoted respectively as
methods A, B, and C. The bad data detection results are carried
out by using methods A, B, and C for simulation in each case.
Each simulation case repeats 10 times, and the average detection
performances are calculated.

FIGURE 10 | Amplitude jumps detection.
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4.3 Simulation Results and Analysis
1) Case 1: amplitude jumps (point anomaly).

The amplitude jumps are those discrete data points that
deviate far from normal data. The detection performances are
shown in Table 3.

As can be seen from Table 3, for point anomalies, the three
methods have good detection results (Rr is between 66% and
89%). Except for Dataset 5, the detection accuracy of Method C is
better than that of Method A and Method B, but the calculation
time is sacrificed. Relatively speaking, Method B has the worst
detection performance.

Randomly select an electrical measurement Udc2 from Dataset
four in Case 1 to visually display the detection effects of the three
methods as shown in Figure 10.

Through Figure 10, it is seen that all three methods can detect
point anomaly quite well with a few false detections and missed
detections. Method C shows the best performance.

2) Case 2: amplitude deviations (contextual anomaly).

The amplitude deviations are those data sequences that deviate
far from normal data series in a stepwise way. The detection
performances are shown in Table 4.

In Table 4, the indicators corresponding to the best
detection performance in each dataset are bolded. It can be
seen that Method C shows the best performance when
detecting the amplitude deviations, except for R in Dataset
1 and Dataset 4.

Randomly select the electrical measurement P4 from Dataset 1
in Case 2 to visually display the detection effects of the three
methods as shown in Figure 11.

Through Figure 11, it is seen that all three methods can
detect the amplitude deviation quite well with a few false
detections and missed detections. Method C shows the best
performance.

3) Case 3: amplitude shifts (contextual anomaly).

The amplitude shifts are those data sequences that slowly shift
and continuously deviate from normal data series. The detection
performances are shown in Table 5.

Through Table 5, it can be seen that Method C shows the best
performance when detecting the amplitude shifts, except for R
and P in Dataset 4.

Randomly select the electrical measurement Iline1 fromDataset
5 in Case 3 to visually display the detection effects of the three
methods as shown in Figure 12.

Through Figure 12, it is seen that all three methods can
detect the amplitude shift quite well with a few false
detections and missed detections. Method C shows the best
performance.

TABLE 5 | Detection Performance Comparison between the Three
Methods in case 3. The bold values mean the best detection
performance among the three detection methods (Method A, Method B,
and Method C).

Testing Data Methods R P Acc Err

Dataset 1 Method A 0.952 0.738 0.717 0.283
Method B 0.954 0.769 0.746 0.254
Method C 0.957 0.819 0.793 0.207

Dataset 2 Method A 0.974 0.677 0.675 0.325
Method B 0.976 0.731 0.728 0.272
Method C 0.977 0.775 0.770 0.230

Dataset 3 Method A 0.961 0.695 0.684 0.316
Method B 0.964 0.764 0.749 0.251
Method C 0.967 0.823 0.805 0.195

Dataset 4 Method A 0.964 0.677 0.669 0.331
Method B 0.969 0.776 0.754 0.246
Method C 0.968 0.775 0.772 0.228

Dataset 5 Method A 0.993 0.723 0.733 0.267
Method B 0.993 0.801 0.807 0.193
Method C 0.994 0.856 0.859 0.141

Dataset 6 Method A 0.931 0.687 0.656 0.344
Method B 0.936 0.744 0.710 0.290
Method C 0.940 0.798 0.761 0.239

TABLE 4 | Detection Performance Comparison between the Three
Methods in case 2. The bold values mean the best detection
performance among the three detection methods (Method A, Method B,
and Method C).

Testing Data Methods R P Acc Err

Dataset 1 Method A 0.983 0.736 0.734 0.236
Method B 0.962 0.823 0.810 0.190
Method C 0.980 0.845 0.838 0.162

Dataset 2 Method A 0.959 0.701 0.692 0.308
Method B 0.958 0.768 0.747 0.253
Method C 0.982 0.808 0.803 0.197

Dataset 3 Method A 0.961 0.732 0.717 0.283
Method B 0.965 0.813 0.794 0.206
Method C 0.966 0.841 0.821 0.179

Dataset 4 Method A 0.959 0.694 0.687 0.313
Method B 0.971 0.770 0.759 0.241
Method C 0.966 0.804 0.792 0.208

Dataset 5 Method A 0.976 0.746 0.742 0.258
Method B 0.979 0.844 0.835 0.165
Method C 0.980 0.895 0.883 0.117

Dataset 6 Method A 0.949 0.692 0.673 0.327
Method B 0.954 0.767 0.744 0.256
Method C 0.957 0.812 0.787 0.213
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FIGURE 11 | Amplitude deviations detection.
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5 CONCLUSION

In this paper, the statistical surge feature (ST) is first used for
bad data detection, including point anomaly detection and

contextual anomaly detection. On this basis, a sequential
detection method that combines OSELM, ST, and DBSCAN
is proposed for micro-grid bad data detection. The performance
of this method is verified by a four-terminal ring-shaped DC

FIGURE 12 | Amplitude shifts detection.
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micro-grid prototype. By comparing with the existing OSELM +
DBSCAN method and the ST + DBSCAN method, it is
demonstrated that the proposed OSELM + ST + DBSCAN
method has the best detection performance. To be more
specific, 1) The OSELM + ST + DBSCAN can detect both
point anomaly and contextual anomaly, such as amplitude
jumps, amplitude deviations, and amplitude shifts. 2) The
OSELM + ST + DBSCAN method can realize the best bad
data detection accuracy at the cost of a small increase of
computation.
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