
A Non-Intrusive Motor Load
Identification Method Based on Load
Transient Features
Yongqiang Liu1*, Zhaowen Liang1 and Jiajie Huang2

1School of Electric Power, South China University of Technology, Guangzhou, China, 2Maintenance and Test Center of EHV
Power Transmission Company, China Southern Power Grid Company Limited, Guangzhou, China

Motor load accounts for more than 50% of the total electric power load in China. Identifying
the load of induction motors non-intrusively is of great importance for the design of energy-
saving schemes and formulation of demand-side response strategies in industrial
enterprises. Based on the transient mechanism of the induction motor, the present
work first defines some motor load start-up transient feature parameters with clear
physical meanings and proposes a set of non-intrusive motor load identification
methods applicable to industrial settings. In addition, a case study that applied the
proposed method to the industrial setting was performed to verify its effectiveness.
The results showed that the proposed method can overcome the problem of
misidentification caused by the fact that the start-up transient process is affected by
its mechanical load characteristics and hence can identify motors with similar running
power and has good anti-interference capacity despite power quality disturbances.

Keywords: energy conservation, electrical load classification, industrial electric power monitoring, motor load
identification, start-up transient process of induction motor

INTRODUCTION

Industrial load identification can identify the start time and stop time of each device in the workshop
by a small amount of electrical information in the distribution system. Industrial load identification
methods boast many advantages, including low installation and maintenance cost, and little impact
from user intervention. Based on the load information from industrial load identification methods,
energy service providers, governments, and energy policymakers can develop demand response
policies and energy efficiency strategies and can plan the use of new energy sources (Hart, 1992;
Adabi et al., 2015; Holmegaard and BaunKjaergaard, 2016; Zhang et al., 2021).

In China, load identification methods for industrial sites see wider adoption and a higher market
value than non-intrusive load monitoring (NILM) for residential and commercial buildings. As
reported by the National Bureau of Statistics of China (National Bureau of Statistics of China, 2021),
the annual consumption of electricity in China is greater than six trillion kWh from 2017 to 2019.
Notably, the electricity consumption of industrial induction motors is greater than three trillion kWh
per year (more than 50% of the total electricity consumption nationwide) (National Bureau of
Statistics of China, 2021). Moreover, in industries that feature high energy consumption like
chemical, steel, cement, and textile, the induction motor load accounts for 75%–90% of the total
industrial power load. Therefore, if a set of load identification methods for induction motors is
proposed and installed in industrial sites, it means that more than 75% of the industrial load is
monitored at the equipment level, and more than 50% of the electric load of the whole Chinese
society is monitored at the equipment level. However, in reality, since the power consumption data of
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each motor are related to a company’s production and involves
commercial secrets, and many motors are integrated into
complete industrial machines (Kien Nguyen Trung et al.,
2012), energy service providers often do not have access to the
power consumption data of the motors. Nevertheless, to achieve
the goal of energy conservation, we still have to rely on industrial
load identification methods to obtain such data as the actual
running time (turn-on/off time), running power, and power
consumption of each motor.

Many studies have implemented residential load identification
(Dash et al., 2021; Kong et al., 2016; D’Incecco et al., 2020; Chen
et al., 2020; Zhou et al., 2021) based on two characteristics of
residential electricity consumption, namely, high regularity and a
limited number of household appliances. These studies mainly
adopt the non-mechanistic methods based on publicly available
datasets (Kolter and Johnson, 2011; Anderson et al., 2012; Kahl
et al., 2016; Parson et al., 2016; Monacchi et al., 2014; Kelly and
Knottenbelt, 20152015), which means that the identification
features do not come from the electric principle of equipment
but from the information provided by public datasets. However,
for the identification of induction motors in the industrial sector,
which accounts for the highest proportion of industrial loads, we
can make full use of the well-known principles of induction
motors to deduce the identification features and carry out
induction motor load identification (as the publicly available
datasets are not relied on in this type of method, there is no
need to verify the results by datasets). Therefore, the load features
of induction motors should be found not from the datasets but
from the fundamental principle of induction motors.
Furthermore, the power consumption in factories depends on
their production plans. Induction motors with different but
similar rated power may have the same steady-state running
power, so it is difficult to identify induction motors simply by
using steady-state power. Instead, it is an effective method to
identify the load of induction motors by using the start-up
transient characteristics from the motor principle.

There have been few works on industrial load identification
(Leeb and Kirtley, 1993; Leeb et al., 1995; Khan et al., 1997;
Chang et al., 2007; Shaw et al., 2008; Chang et al., 2011; Kien
Nguyen Trung et al., 2012; Adabi et al., 2015; Holmegaard and
BaunKjaergaard, 2016; Renaux et al., 2018; Yi et al., 2019 Yuan
et al., 2019; Yu et al., 2020; Faustine et al., 2021; Yang et al.,
2021), and fewer on the circuit mechanism of three-phase
induction motors (Leeb and Kirtley, 1993; Leeb et al., 1995;
Khan et al., 1997; Chang et al., 2007; Shaw et al., 2008; Chang
et al., 2011; Yi et al., 2019). Leeb et al. (Leeb and Kirtley, 1993;
Leeb et al., 1995; Khan et al., 1997; Shaw et al., 2008) used the
spectral envelope of instantaneous power in the induction
motor starting the transient process as the identification
feature but did not clarify that the shape and duration of the
envelope are related to the size of the mechanical torque; for
instance, the duration and the shape of the envelope may be
different for each start of the mixer. Chang et al. (Chang et al.,
2007; Chang et al., 2011) used the energy of the start-up
transient process to identify a single-phase 0.2-HP induction
motor and a three-phase 1-HP induction motor, but the
transient energy is also related to the mechanical torque. For

example, in some water supply systems, when the water flow
speed in the pipeline is large, the starting torque is small, and the
required start-up transient energy is also small; when the water
flow is reverse or static, the starting torque is large, and the
required start-up transient energy is large, which is likely to
cause identification errors.

In order to solve this problem, it is necessary to define and
extract more detailed, stable, and reliable transient features, to
deal with the more extreme but crucial cases of load
identification: several motors with the same rated power or the
same pole pairs (very likely to have similar starting energy, the
same maximum of start-up instantaneous power, and similar
spectral envelope and duration) exist in a distribution system at
the same time.

The aim of this paper is to propose a non-intrusive motor load
identification method for industrial sites using the known start-
up transient process mechanism of induction motors (Chen,
1982) so as to solve the induction motor identification
problem in industrial sites. Figure 1 presents a diagram of the
proposed method. This method uses the turn-on and turn-off
transient waveform recorded by smart meters in the distribution
system, extracts motor transient quantities from the transient
waveforms and builds a feature library, and then uses the feature
library to identify the start time, stop time, and running power of
a motor.

The main contributions of this work are as follows:

1) The motor transient mechanism is, for the first time, used to
implement load identification in industrial sites.

2) The motor load features defined in this paper depend on the
equivalent circuit parameters of motors. Compared with
existing data-based methods (Renaux et al., 2018; Yuan
et al., 2019; Yu et al., 2020; Faustine et al., 2021; Yang
et al., 2021), these features have a clearer physical meaning
and are of higher generalization capacity.

FIGURE 1 | Load identification method of induction motors.
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3) The proposed transient features are not related to the
mechanical torque, and compared with previously reported
features, they are more short-term and detailed, which can
help resolve the challenge in identifying different equipment
with similar starting power and similar running power.

The remaining sections are arranged as follows:Methods proposes
the method of distinguishing the motor devices from other devices,
defines the motor feature parameters and proposes the method of
solving the feature parameters, defines the feature-hood, and proposes
amethod of obtaining the feature-hoods.Results andDiscussion proves
the discriminative performance of the proposed feature parameters by
simulating the distribution of parameters and analyzing the
distribution concentration under different power quality
disturbances and proves the effectiveness of the proposed method
through a study case in the industrial sites, and themethod is compared
with methods in existing works. Conclusion presents the conclusions.

METHODS

Basis for Identifying Motor Loads From
Instantaneous Power
Motor load identification is important, as motor load takes up a
huge proportion in the industrial sites, and the primary problem
of motor load identification is to identify whether a new device
connected to the power supply network at a certain moment is a
motor or some other device.

In China, the electrical equipment and machinery in industrial
production can be divided into the following four categories: 1)
equipment that converts electrical energy into mechanical energy,
which is mainly motor-driven equipment; 2) equipment that converts
electrical energy into thermal energy, which mainly refers to electric
heating equipment (this type of equipment is generally powered by
switching power supply and can be equivalent to resistance); 3)
equipment that converts electrical energy into chemical energy,
which is mainly electrolytic plating equipment (this type of
equipment is generally powered by switching power supply); and
4) lighting equipment (this type of equipment is generally powered by
switching power supply and can be equivalent to resistance).

Except for the first category, the rest of the categories of
equipment mentioned above are either powered by switching
power supplies or equivalent to resistors, and their start-up
process is often over within a few power cycles (Chen, 1982)
(generally all less than 0.5 s), as illustrated in Figure 2. Figure 2A
gives the start-up power curve of an electrolytic plant with a start-
up duration of less than 0.02 s; and Figure 2B gives the start-up
power curve of a 200-kW centrifugal fan with a wide range of
duration of 1.5 s.

In summary, from the above analysis, the duration of the start-
up process can be used to judge whether the newly turned-on
device is a motor load or another piece of equipment.

Feature Parameter Extraction and Motor
Load Identification
The previous Basis for Identifying Motor Loads From
Instantaneous Power solved the problem of whether the newly
turned-on equipment at a certain moment is an electric motor;
this subsection distinguishes and marks every newly turned-on
motor. At the initial stage of the start-up process of a motor,
i.e., before its rotor rotates and after its power switch is closed, the
motor can be regarded as a linear circuit, and this process is
defined as the rotor-locked process in the present work. The
three-phase instantaneous power of the motor is not related to the
closing phase-angle of the supply voltage, as described Eq. 8 in
Supplementary Appendix SA. Based on the three-phase
instantaneous power during the rotor-locked process, the load
feature parameters of the motor can be defined and extracted.
These parameters can be used to identify and differentiate motors
with similar running power and similar numbers of poles.

Rotor-Locked Instantaneous Power and Definition of
Feature Parameters
As indicated in Chen (1982), when an induction motor is
connected to the power network, the angular frequency of its
rotor equals 0 (ω � 0) at the initial stage. The instantaneous

FIGURE 2 | Instantaneous power during equipment starting.

FIGURE 3 | plocked(t) and its components (DC, AC).
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power plocked(t) in the rotor-locked process within several power
cycles after the switch-closing is (see Supplementary Appendix
SA for the derivation)

plocked(t) � U2
mC + U2

ma1e
−ωnt
Γ cos(ωnt + ϕ1), (1)

where

plocked(t)—instantaneous power of the motor during the
rotor-locked period, which can be called rotor-
locked power;

Um—root-mean-square (RMS) voltage;
ωn—angular frequency of the power system;
C—coefficient of DC component of plocked(t);
a1—amplitude of AC component of plocked(t);
Γ—time constant of AC component of plocked(t);
ϕ1—phase of the AC component of plocked(t).

Eq. 1 and its DC component and AC component are shown in
Figure 3. From Eq. 1, we can see that:

1) When a motor is connected to the power network, the angular
velocity of the rotor equals zero (ω = 0). The plocked(t) reaches
the maximum earlier than the current of each phase reaches the
maximum value. plocked(t) is independent of the mechanical
load and the closing angle λ; the coefficientsC, Γ, a1, and ϕ1 are
only determined by the equivalent circuit parameters of the
induction motor (see Supplementary Appendix SA for
details); i.e., these parameters reflect the electrical features of
a motor, which means that there exists only one rotor-locked
power curve plocked(t) for a certain motor.

2) C is the DC component coefficient of plocked(t) , which
indicates the steady value that plocked(t) can reach. a1 is
the amplitude coefficient of the AC component; a1 is close
in size but opposite in sign to C because plocked(0) � 0 , as
shown in Figure 3.

3) Γ is the decay time constant of the AC component of
plocked(t), which is mainly determined by the equivalent
impedance.

In summary, Γ and C reflect the features of the AC and DC
components, respectively, in plocked(t), so in the present work, (Γ,
C) is defined as the feature parameters of an electric motor.

The Rotor-Locked Power With Relaxation Term and
Feature Extraction Model
To take into account the power grid disturbances and
accommodate more complex scenarios, we define the equation
with relaxation terms, as follows:

~plocked � U2
m[C + a1e

−ωn(t−td)
Γ cos(ωnt − ϕ1) +∑

N

k�2
ak cos(kωnt − ϕk)], (2)

where

td—the time offset;

ak—the kth relaxation factor, and the term with k ≥ 2 is the
relaxation term;
ϕk—phase of the relaxation term.

For the identification problem in a distribution network
powering multiple motors, both the sum power psum during a
start-up process and the background power pbackground before a
start-up process can be measured. Under this premise, the
following approach can be taken to obtain the feature
parameters (Γ, C).

We assume that the power switch is closed at the timepoint t =
0, and X � [Γ, C, td, a1,/, ak, ϕ1,/, ϕk] is taken as the decision
variable, and a least squares-based feature extraction model can
be developed:

min :
�����psum − pbackground − ~plocked

�����2

� ∫
t0+3T

t0

(psum − pbackground − ~plocked)2dt.
(3)

By iteratively solving the optimization model (3), the feature
parameters (Γ, C) of the rotor-locked process of a motor can be
extracted.

For the model, the following aspects should be noted.
First, the approximation of ~plocked only requires taking the

measured data within three power cycles. For event-based NILM,
short-duration feature parameters are very helpful to solve the
problem of overlapping turn-on processes of multiple devices,
and (Γ, C) is a pair of parameters within a short duration.

Second, given the possible phase delay of data obtained from
the sampling device, the delay parameter td is added to Eq. 2.

Third, relaxation terms are added to Eq. 2, which further corrects
Eq. 1. Without the relaxation term, the power quantity disturbances,
and measurement errors can lead the optimization model (3) to an
incorrect solution. The power quality disturbances and measurement
errors include the following: 1) voltage deviation, frequency deviation,
voltage distortion, voltage asymmetry, etc., and 2) phase deviation of
voltage and current. The tolerable frequency deviation of the grid
voltage is generally at −0.4% to 0.4%, the tolerable voltage deviation is
generally at −7% to 7%, the asymmetry is generally allowed within the
range of 0%–4%, and the voltage distortion rate is generally allowed at
0%–2%. In order to improve the efficiency of the model solution and
reduce the requirement for computing power on the embedded device,
the orders of the relaxation terms inEq. 2 are taken as 2, 5, and7,which
are considered as the universal harmonic components in power
systems.

Definition and Acquisition of Feature-Hood for Motor
Identification
Due to the power quality disturbances, deviations in the value of
feature parameter (Γ, C) are often observed in an industrial motor.
However, even if there are deviations, the distribution of (Γ, C) will be
relatively concentrated (as to be proved in Performance Verification of
Feature Parameters via Y-Series Induction Motors). This relative
concentration can be described by a circular hood defined by 2-
parametric numbers in the plane where (Γ, C) is located.
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Definition of Feature-Hood
The feature-hood of motor i is defined as follows:

Di � {x∣∣∣∣ ‖x − xci‖2 <Ri}, x � (Γ, C), (4)
where

Di—the feature-hood of motor i (i = 1, 2, . . . , N);
xci—cluster center (Γci, Cci);
Ri—cluster radius.
As Figure 4 shows, the feature parameters under the combined

power grid disturbance j are (Γij, Cij). The feature cluster consisting
of parameters (Γij, Cij) is contained in the feature-hood Di.

xci and Ri Acquisition Method
Because the number and type of motors in a factory are often not
precisely known, it is necessary to obtain the feature clusters of

each motor by unsupervised clustering. The center (xci, Ri) and
the steady running power (Pisteady) of motor i should be recorded,
and then the feature-hoods (Di) and the feature library can be
determined.

In real-world applications, if the number of motors is known,
K-means clustering or tree branch clustering can be used; or
otherwise, Density-Based Spatial Clustering of Applications with
Noise (DBSCAN) clustering can be used. If the maximum distance
R from themidpoint of the cluster is used as the radius, the feature-
hood of each cluster is obtained. The center of Motor i (Γci, Cci) Ri
and the steady running power Pi (Figure 4) are recorded to form
themotor feature-hoods {Di}. If the distance between the centers of
the two clusters is greater than the sum of their radii (Figure 5), a
classification of 100% accuracy can be achieved.

Application of Feature-Hoods
After a feature-hood set {Di} for an industrial site is established, a
transient power pv, generated when unknown equipment v is
started, is collected at time t0–t1, and a set of (Γv, Cv) is extracted if

‖(Γv, Cv) − (Γci, Cci)‖2 <Ri, (5)
Then, the unknown equipment v is considered as the motor i.

RESULTS AND DISCUSSION

Performance Verification of Feature
Parameters via Y-Series Induction Motors
Devices with similar power are not easy to distinguish, which is
considered a major challenge in NILM research. In this
subsection, the start-up process of some Y-series motors with
a similar number of poles and similar rated power [more details
are available in Supplementary Appendix SB and previous works
(Jin, 1997; Xin, 2010)] was simulated under different power
quality disturbances to verify the discrimination performance
of the proposed feature parameters and feature-hoods in

FIGURE 4 | Schematic diagram of the cluster and feature-hood.

FIGURE 5 | Distribution of feature parameters of motors with the same rated power but a different number of poles.
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Definition and Acquisition of Feature-Hood for Motor
Identification. The distribution of the feature parameters
shows that the proposed feature parameters have good
discriminative performance.

Simulation of Discriminative Performance Under
Different Power Quality Disturbances
Similar Motors
Similar motors refer to motors with similar rated power but a
different number of poles, or motors with the same number of
poles but different rated power.

1) Themotors with similar rated power but a different number of
poles discussed in this subsection are Y160L-2 (18.5 kW),
Y180M-4 (18.5 kW), Y200L1-6 (18.5 kW), and Y225S-8
(18.5 kW) made in China, and their specific parameters are
available in Supplementary Appendix SB.

2) The motors with the same number of poles but different
rated power discussed in this subsection are Y225S-8
(18.5 kW), Y225M-8 (22 kW), Y250M-8 (30 kW), and
Y280S-8 (37 kW) made in China, and their detailed
parameters are shown in Supplementary Appendix SB.

TABLE 1 | Electricity quality disturbances.

No. Frequency deviation (%) Voltage deviation (%) 5th, 7th voltage
distortion (%)

Negative voltage unbalance
(%)

1 0 0 0 0

2–5 −0.4 0 0 0
−0.2
+0.2
+0.4

6–9 0 −7.0 0 0
−3.5
+3.5
+7.0

10–13 0 0 1 0
2
3
4

14–17 0 0 0 1
2
3
4

FIGURE 6 | Distribution of feature parameters of motors with the same number of poles but different rated power.
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Power Quality Disturbances
Within the permissible range for the daily operation of power
grids, as specified by the Chinese National Standards, the power
quality disturbances are divided into 17 kinds of power quality
conditions for simulation here, as shown in Table 1.

Analysis of Discriminative Performance
This subsection simulates a similar start-up process of multiple
motors in MATLAB using common induction motor models
under each of the 17 kinds of power quality conditions listed in
Table 1.

First, the motors are started at full voltage with a rated
mechanical load, and the instantaneous power sequence of

each motor is obtained. Then, the sequence within three
power cycles after the switch is turned off can be
approximated by the optimization model (3) specified in The
Rotor-Locked Power With Relaxation Term and Feature
Extraction Model. Finally, the feature parameters (Γ, C) of
each motor can be obtained.

• Figure 5 shows the simulation results for Scenario a)
specified in Similar Motors.

Figure 5 shows that the feature clusters of multiple motors
with the same rated power are distributed along a straight line. It
can be observed that Γ increases and C decreases as the number of

FIGURE 7 | Feature cluster distribution of induction motors under different power quality disturbances. (A) Feature distribution of each motor under different
frequency deviation. (B) Feature distribution of each motor under different voltage deviation. (C) Feature distribution of each motor under different voltage distortion. (D)
Feature distribution of each motor under different voltage negative sequence unbalance. (E) Summary and superposition of (A-D).
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poles increases, and the minimum longitudinal and transverse
distances between clusters are about 0.15 and 0.1, respectively.

As the zoom-in plot of clusters (the right part of Figure 5)
shows, the longitudinal span of points within the cluster
Experiment 1 and Experiment 5 is 0.005, and the transverse
span is 0.02. Since

������������
0.022 + 0.0052

√
< <

����������
0.12 + 0.152

√
, it indicates

that the proposed parameters (Γ, C) have a good discriminative
performance for different motors with the same power.

• Figure 6 shows the simulation results for Scenario b)
specified in Similar Motors.

Figure 6 shows that the feature clusters of multiple motors
with the same number of poles but different rated power are
distributed along a straight line; and as the rated power increases,
Γ and C increase, and the minimum longitudinal and transverse
distances between clusters are about 0.2 and 0, respectively. As the
zoom-in plot of each cluster (the right part of Figure 6) shows,
the longitudinal span of points within the cluster in Experiment 1
and Experiment 5 is 0.007, and the transverse span is 0.03. Since������������
0.0072 + 0.032

√
< <

���������
0.02 + 0.22

√
, it indicates that the proposed

parameters (Γ, C) also have a good discriminative performance
for motors with the same number of poles but different
rated power.

Discriminative Performance of Y-Series 18.5–37 kW
Motors
Figure 7 shows a cluster of points consisting of (Γ, C) for motors
of Y-series with a rated power 18.5–37 kW under various power
quality disturbances: Figure 7A is for frequency deviation,
Figure 7B is for voltage deviation, Figure 7C is for voltage
distortion (fifth, seventh harmonic), Figure 7D is for voltage
unbalance (negative sequence), and Figure 7E is a general graph
containing all disturbances.

Figure 7 reveals the following findings:

1) As shown in Figures 7B,D, the clusters under frequency
deviations and voltage distortions are concentrated. As
shown in Figures 7A,C, the clusters under voltage
deviations and voltage negative sequence unbalance are not
as concentrated as those shown in Figures 7B,D but are still
relatively concentrated.

2) As shown in Figure 7E, the clusters are still relatively
concentrated as the power disturbances increase, such as
the case with a frequency deviation of 0.4%, a voltage
deviation of 7%, the fifth, seventh harmonic content of 4%,
and voltage negative sequence unbalance of 4%.

It means that the clustering method can be used to obtain the
feature clusters of each motor, and the cluster–hoods of different
motors can be used to achieve the goal of distinguishing different
motors.

Experiment of Motor Load Identification for
a Small Machining Factory
This subsection verifies the effectiveness of the method described
in Feature Parameter Extraction and Motor Load Identification,
with a case study made in a small machining factory.

Monitoring Devices and Data
Equipment in a small factory: The small machining factory
studied here has one 0.4 kV power incoming line and three
outlet lines, and there is a set of reactive power compensation
equipment with automatic switching on the busbar, as shown in
Figure 8. The main loads include 10 induction motors, which are
axial fans, centrifugal fans, and high-power pumps. And the
background loads include some lower-rated power devices,
which are fluorescent lamps, control equipment, computer
server, and air conditioner, as shown in Table 2. The total
rated power of the factory is about 500 kW. The daily working
hours of the workshop are 08:00~12:00, 13:30~16:30, and 17:
00~20:30, and the equipment start/stop is controlled as per the
actual needs of production.

Monitoring device and data acquisition: The monitoring
devices were deployed in the power incoming cabinet

FIGURE 8 | Low-voltage power distribution system and equipment in a
workshop.

TABLE 2 | List of equipment in the workshop.

No. Equipment Rated power (kW)

1 Ventilating Fan 1 11
2 Ventilating Fan 2 11
3 Ventilating Fan 3 15
4 Ventilating Fan 4 15
5 SAND BLAST 1 55
6 SAND BLAST 2 75
7 Paint Conveyer Pump 45
8 Centrifugal Exhaust Fan 45
9 Dust-clearing Fan 1 110
10 Dust-clearing Fan 2 132
11 Fluorescent lamp 1 0.1 × 40
12 Fluorescent lamp 2 0.1 × 40
13 Industrial control equipment 0.4 × 2
14 Server and related devices 0.75 + 0.1
15 Air conditioner 1.47 × 2
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FIGURE 9 | Data of the study case: (A) voltage root-mean-square (RMS) curve; (B) instantaneous power for 1 month; (C) instantaneous power for 1 day; (D)
instantaneous power of one device in its start-up process.

FIGURE 10 | Motor feature-hoods of the factory.
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(Figure 8). Collecting Electric Information Unit (CEIU) and
Smart Information Management Unit (SIMU) provided by
Guangzhou Guanxing Electric Technology Co., Ltd., were
adopted. The CEIU can acquire and record the turn-on and
turn-off transient waveforms with a sampling frequency of 8 kHz,
according to a set of thresholds. And SIMU can support the
deployment of intelligent algorithms implemented by high-level
programming languages, such as C++, java, or Python.

The proposed method of this paper can be deployed on the
SIMU, and the identification results can be sent to users through a

webpage or a smart phone application. The users can define the
names of the unnamed feature-hoods according to their
requirements and send the names of that feature-hoods back
to SIMU to form a local feature library.

Data for clustering and testing: The training data and testing
data are shown in Figure 9. Figure 9A shows the RMS voltage
curve for a month, which affects the accuracy of the parameter C,
as defined in Eqs 1, 2. Figures 9B,C show the instantaneous
power curve for 1 month and 1 day. Figure 9D shows the
instantaneous power curve of Ventilating Fan 2.

Each main piece of equipment was started up and shut down
about 2–3 times per day. During this period, the frequency, voltage
deviation, voltage harmonics, and voltage unbalance of the power
network were within the allowable range of IEC standards.

The clustering data were selected from the instantaneous
power in the first 18 days. The testing data were selected from
the instantaneous power in the last 3 days. Each turn-on or turn-
off transient event was labeled with timestamp and
equipment name.

Experimental Results and Discussions
Model training result: By the optimization model 3) specified in
The Rotor-Locked Power With Relaxation Term and Feature
Extraction Model, all the start-up transient processes of
1 month were extracted, and adopting the DBSCAN cluster,
the feature-hoods defined in Eq. 4 in Definition and
Acquisition of Feature-Hood for Motor Identification were
obtained using epsilon = 0.1 and min-points = 5 as the
parameter to finish DBSCAN. The results are shown in
Figure 10, where clusters 1 to 10 in Figure 10 represent the
valid clusters, and the equipment corresponding to each cluster
was associated by the user (workers) according to the steady
running power of each cluster/hood.

According to the cluster/hood results, as shown in Figure 10,
the mean position of each cluster was taken as the hood center

TABLE 3 | Feature library.

Cluster Equipment hoods Related equipment

Center (Γ, C) Radius Psteady (kW)

1 (0.573, 0.525) 0.035 12.60 Ventilating fan 1
2 (0.797, 0.438) 0.015 12.71 Ventilating fan 2
3 (0.587, 0.712) 0.026 17.61 Ventilating fan 3
4 (0.930, 0.542) 0.019 17.94 Ventilating fan 4
5 (0.939, 1.929) 0.055 61.96 SAND BLAST 1
6 (0.979, 1.533) 0.069 49.55 SAND BLAST 2
7 (1.298, 2.167) 0.088 74.53 Paint conveyer pump
8 (1.391, 1.191) 0.067 46.38 Centrifugal exhaust fan
9 (1.060, 3.752) 0.132 113.56 Dust-clearing fan 1
10 (1.106, 4.326) 0.180 137.21 Dust-clearing fan 2

TABLE 4 | The results of load identification.

Feature parameter Psteady, Qsteady

Transient-energy
Γ, C, Psteady

Training Test Training Test

Turn-on event number 539 90 539 90
Recognizable number 519 72 533 87
Recognition accuracy (%) 96.29 81.11 98.89 93.33

FIGURE 11 | Motor load identification result.
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and the distance from the hood center to the farthest point within
the cluster as the hood radius. The center and radius of each
cluster/hood and the steady running power at the end of the
transient process were recorded; then, the local feature library of
the factory was established, as shown in Table 3. In practical
application, the equipment name in the last column of Table 3
should be determined by the users (workers) based on the steady
running power. The steady running power Psteady can be used to
identify which equipment causes the turn-off transient event.

Model testing result: The test was performed with the start-up
instantaneous power curve of 3 days, and the (Γ, C) of each start-up
event was calculated, and the distance to each center inTable 3was
calculated to determine which feature-hood the recorded start-up
process belongs to. Figure 11 shows the motor load identification
results in a full working day. In Figure 11, the solid black line is the
objective, while the solid red line is the result of the proposed
method, and the dashed line is every recognized motor load.

Compared to other features: To evaluate the effectiveness of the
proposed method, an evaluation indicator, i.e., identification
accuracy, is used. Compared to the transient energy defined and
proposed by Chang et al. (2007; Chang et al., 2011), the (Γ, C)
achieves a higher identification accuracy, as shown in Table 4.

Among them, the start-up transient energy of similar motors,
Ventilating Fan 1 and Ventilating Fan 2, is affected by the wind
pressure in the pipeline during starting. As the wind pressure in the
ventilation pipeline changes, the values of the start-up transient
energy of these two motors will become closer, resulting in more
identification errors, and the accuracy on the test set is only 81.11%.
However, the feature (Γ, C), as defined in Rotor-Locked
Instantaneous Power and Definition of Feature Parameters,
relies only on the motor equivalent circuit parameters and
hence achieves a higher identification accuracy at 93.33%.

Application Effect Analysis
Energy-saving effects and suggestions: According to the motor
load identification result shown in Figure 11, we can know the
power consumption proportion of each piece of equipment, as
shown in the pie chart in Figure 12. It can be seen from the pie

graph and the orange dash line in Figure 11 that Centrifugal
Exhaust Fan, though not the equipment with the largest rated
power, has a long running time and consumes about 15.67% of
the total power. According to the relationship between the speed
and the running power of exhaust pump or exhaust fan, it is
advisable to install an extra inverter for the Centrifugal Exhaust
Fan, as this modification can reduce the motor speed by 10% and
save 30% energy; the factory will save about 4.7% of power
consumption, about 4,819 kWh/month.

Cost-saving effects and suggestions: Assume that the electricity
rate during peak period (14:00–17:00 and 19:00–22:00), plain
period (8:00–14:00, 17:00–19:00, and 22:00–24:00), and valley
period (0:00–8:00) is 1/kWh, 0.7/kWh, 0.3/kWh, respectively.
The motor load identification result (dashed line) in Figure 11
shows that the peak, plain, and valley electricity consumption of
the plant is 1,398.1, 2028.3, and 68.2 kWh, respectively, and the
peak, plain, and valley electricity cost of the plant is 1,398.1,
1,419.81, and 20.6, respectively. Figure 11 reveals that the
production periods of the factory are 8:00~12:00, 13:30~16:30,
and 17:00~20:30, which means that the current electricity
consumption pattern is overusing the peak rate and is missing
the valley rate. If the operation time of medium and large
equipment can be shifted by 20 min to 07:40~12:00 in the
morning and 13:00~16:10 in the afternoon, the factory will
save 2.75% of the electricity cost.

CONCLUSION

Industrial motor load identification provides more
comprehensive basic data for the formulation and
implementation of safety and power-saving policies. In the
present work, a set of motor load identification methods based
on the start-up transient mechanism of electric motors is given.
The following conclusions are obtained:

1) It is feasible and effective to use the transient mechanism and
extract relevant parameters for load identification.

FIGURE 12 | Proportion of electricity consumption.
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2) The proposed parameters have a clear physical meaning and
are universally applicable; they can also be applied to load
identification of synchronous motors with asynchronous
starting.

3) The proposed method solved the challenges in load
identification when multiple motors are started at the same
time because the transient information required by the
method is only 2~3 power cycles.

4) Simulations proved that the proposed parameters have
good tolerance to power quality disturbances and that
the proposed parameters have good discriminative
performance.

5) The case study in a real-world machining factory verified the
effectiveness of the proposed method, the problem of
identifying different motors with the same steady running
power is solved, and the effect of industrial motor load
identification methods in reducing energy consumption
and cost is analyzed.

However, it needs to be noted that the use of themethod in this
paper is temporarily limited to scenarios containing a large
number of directly starting motors and will not be applicable
to scenarios containing motors with other starting methods or
motors running at variable power. If the turn-on instantaneous
power provided by the recording program of the acquisition
device is incomplete or the deviation of switch closing moment t0
is too large, the application of this method will be affected.
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