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The Echo State Network (ESN) is a unique type of recurrent neural network. It is built atop a
reservoir, which is a sparse, random, and enormous hidden infrastructure. ESN has been
successful in dealing with a variety of non-linear issues, including prediction and
classification. ESN is utilized in a variety of architectures, including the recently
proposed Multi-Layer (ML) architecture. Furthermore, Deep Echo State Network
(DeepESN) models, which are multi-layer ESN models, have recently been proved to
be successful at predicting high-dimensional complicated non-linear processes. The
proper configuration of DeepESN architectures and training parameters is a time-
consuming and difficult undertaking. To achieve the lowest learning error, a variety of
parameters (hidden neurons, input scaling, the number of layers, and spectral radius) are
carefully adjusted. However, the optimum training results may not be guaranteed by this
haphazardly created work. The grey wolf optimization (GWO) algorithm is introduced in this
study to address these concerns. The DeepESN based on GWO (GWODESN) is utilized in
trials to forecast time series, and therefore the results are compared with the regular ESN,
LSTM, and ELMmodels. The findings indicate that the planned model performs the best in
terms of prediction.

Keywords: time series prediction, deep echo state network, grey wolf optimization, network structure optimization,
combined cycle power plant

1 INTRODUCTION

Time series appear in every facet of life, and one of the current research topics is time series
forecasting. Time series predictionmay be aided by the development of newmethodologies. The time
series, on the other hand, is frequently created by a chaotic system and is untidy or non-linear. As a
result, time-series forecasting research is extremely difficult. Furthermore, time series prediction
requires models with high prediction accuracy.

Over the two past decades, several researchers proposed various models for time series forecasting
that involve scientific prediction based on historical time-stamped data. Among these researchers,
Liu (2017) presented a time-series prediction approach based on an online sequential extreme
learning machine (OS-ELM). This approach was later updated to include an adaptive forgetting
factor and a bootstrap to improve the prediction accuracy and stability. Guo et al. (2016) used
differential evolution (DE) to optimize the model parameters in an efficient extreme learning
machine (EELM) that is utilized to anticipate chaotic time series. Lukoseviciute et al. (2018) used
evolutionary algorithms and Bernstein polynomials to develop a short-term time-series prediction
model. For chaotic time series, Ma et al. (2004) suggested a mixed model based on neural networks
and wavelets. Milad et al. (2017) proposed a model of adaptive decayed brain emotional learning
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(ADBEL) to better handle online forecasting of time series
through a neuro-fuzzy network architecture. Miranian and
Abdollahzade (2013) proposed a local neuro-fuzzy (LNF)
scheme combined with least-square support vector machines
(LSSVMs) for non-linear and chaotic modeling and
forecasting. Tang et al. (2020) proposed a LSSVM model to
model NOx emissions. Chai and Lim (2016) constructed a
discriminative model of a neural network architecture
equipped with weighted fuzzy membership functions
(NEWFM) for identifying patterns of economic time series. Li
et al. (2016) proposed an adaptive Volterra-type predictionmodel
with matrix factorization for chaotic time-series analysis. Su and
Yang (2021) proposed a brain emotional network in conjunction
with an adaptive genetic algorithm (BEN-AGA) model for
predicting time series of chaotic behavior. Nevertheless, the
aforementioned methods have several limitations. First, an
adequate structure must be pre-specified for the conventional
neural networks, and the convergence rate of these networks is
slow. Also, the ELM method exhibits weak generalization and
robustness. Also, the LSSVM method is greatly affected by time
delays.

Recently, recurrent neural networks (RNNs) have been
introduced to handle problems with temporal dynamics. The
RNN architectures have been successfully utilized for time-series
detection (Li et al., 2021a) and forecasting (Li et al., 2021b).
However, the overall RNN weights should be learned through
backpropagation, and this imposes a significant computational
burden. To enhance the operational efficiency, Echo State
Networks (ESNs) were proposed by Jaeger and Haas (2004) as
a novel RNN variant that can be efficiently utilized for time series
forecasting. For example, Han et al. (2021) proposed an optimized
ESN model with adaptive error compensation for network traffic
prediction. Liu et al. (2020) proposed a hybrid time-series
prediction approach with the binary grey wolf algorithm and
echo state networks (BGWO-ESN). Beyond time series
forecasting, the echo state networks have also been applied in
other problems, including mainly classification (Stefenon et al.,
2022), detection (Steiner et al., 2021), and image segmentation
(Abdelkerim et al., 2020). However, the conventional ESN
architectures still lack the ability to handle complicated tasks.
To address this limitation, a DeepESN model is introduced in
this paper, where a grey wolf optimization (GWO) algorithm is

used to optimize the DeepESN model parameters. Our proposed
DeepESN architecture is evaluated on the Lorenz system, the
Mackey–Glass (MG) model, and the non-linear autoregressive
moving average (NARMA) model. The proposed method was
evaluated with a real-time series representing full-load electrical
power outputs. The simulations demonstrate promising
performance of the proposed forecasting strategy.

The main contributions of this paper are highlighted as
follows: first, the effort made in the paper represents one of
the first few attempts to construct DeepESN to forecast times
series. Then, compared with ESN, LSTM, and ELM models, the
proposed GWODESN outperforms in terms of forecast
accuracy.

The remainder of this work is arranged as follows. A
detailed overview of the DeepESN and GWO algorithms is
presented in Section 2, while Section 3 provides the details of
the proposed GWODESN model. The simulation outcomes
are analyzed in Section 4. Then, Section 5 gives final
conclusions.

2 METHODOLOGY

2.1 Deep Echo State Networks
Following the conventional ESN model, the DeepESN model is
made up of multiple dynamical reservoir components.
Specifically, the DeepESN reservoir is organized into stacked
repetitive layers. For each layer, the output is the input of the
next layer, as outlined in Figure 1 (Gallicchio and Micheli, 2017).
In our work, NU indicates the number of the input
measurements, NL indicates the reservoir layer count, NR
denotes the number of the recurrent units, and t indicates
time. Moreover, u(t) denotes the model input at time t,
whereas x(i)(t) represents the state for the ith reservoir layer at
time t. The DeepESN reservoir dynamics are mathematically
modeled as follows. The dynamics of the primary DeepESN layer
can be expressed as

x(1)(t) � (1 − a(1)) x(1)(t − 1) + a(1) f (W(1) u(t)
+ Ŵ

(1)
x(1)(t − 1)) (1)

When i > 1, the DeepESN state is computed as

FIGURE 1 | Architecture of a DeepESN.
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x(i)(t) � (1 − a(i)) x(i)(t − 1) + a(i) f (W(i) x(i)(t)
+ Ŵ

(i)
x(i)(t − 1)) (2)

where W(1) indicates the input weight matrix, W(i) indicates the
weights of the connections between the (i − 1)th and ith layers,

Ŵ
(i)

indicates the recurrent weights of the ith layer, a (i) ∈ [0, 1]
indicates the leakage rate of the ith layer, and f represents the
employed activation function (regularly chosen as the tanh
function).

2.2 Grey Wolf Optimizer
GWO could be a nature-inspired algorithm that imitates the
chain of command of administration and daily routine (Mirjalili
et al., 2014). The wolves have four conceivable sorts: alpha, beta,
delta, or omega. The pioneers of the pack (called alphas), which
may be recognized by the leading administration abilities instead
of the most grounded body, make choices almost every day

exercises for the whole pack. The beta wolf helps alpha to
make a choice. The omega wolf position is most reduced
among wolves, but it plays a key part in keeping up a
prevailing structure. The delta wolf is auxiliary to the alpha
and beta, but it has the upper hand over the omega within the
previously mentioned chain of command. The GWO algorithm
can be mathematically represented as follows:

D
→ �

∣∣∣∣∣∣C · Xp
�→(t) − X

→ (t)
∣∣∣∣∣∣ (3)

X
→ (t + 1) � Xp

�→(t) − A · D→ (4)
where t is utilized to mean the current iteration, Xp

��→
to mean the

prey position vector, and X
→
to represent the wolf position vector.

Meanwhile, A and C can be represented as

A � 2a · r1 − a (5)
C � 2 · r2 (6)

FIGURE 2 | A flowchart of the proposed modeling approach.
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where a is diminished in a straight design from 2 to 0. r1, r2 are
haphazardly created from the unit interval [0,1]. Thewolf pack chasing
design is driven by the alpha wolves and frequently by the beta and
delta ones. This design may be scientifically sculptural as takes after

Dα
�→ �

∣∣∣∣∣∣C1 · Xα

�→− X
→∣∣∣∣∣∣

Dβ

�→ �
∣∣∣∣∣∣C2 · Xβ

�→− X
→∣∣∣∣∣∣

Dδ

�→ �
∣∣∣∣∣∣C3 · Xδ

�→− X
→∣∣∣∣∣∣ (7)

X1
�→ � Xα

�→− A1 · Dα

�→
X2
�→ � Xβ

�→− A2 · Dβ

�→
X3
�→ � Xδ

�→− A3 · Dδ

�→
(8)

X
→ (t + 1) � (X1

�→+ X2
�→+ X3

�→)/3 (9)

3 GREY WOLF OPTIMIZER–BASED DEEP
ECHO STATE NETWORK

As the same as simple ESN model, we must appropriately indicate
network parameters of DeepESN for getting palatable comes about.
We might rehash the tests trusting to secure great plan scenarios. Be
that as it may, we can never be sure that the best solution has been
achieved. To address it, the GWO algorithm ought to be utilized to

FIGURE 3 | The real value and the anticipated value for Lorenz x(t).

TABLE 1 | The performance comparison of GWODESN, ESN, ELM, and the
LSTM for Lorenz x(t)

Model MAPE MAE RMSE R2

GWODESN 0.00010737 0.008402 0.012598 1
ESN 0.0018053 0.099649 0.22953 0.99923
LSTM 0.028958 0.36154 0.55374 0.99758
ELM 0.17571 1.0301 1.3047 0.977

FIGURE 4 | The absolute error box diagram for Lorenz x(t).

FIGURE 5 | Relative error distribution for Lorenz x(t).
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optimize a couple of parameters including NR, NL, ρ, and IR. The
spectral radius ρ is one in all the foremost central parameters
characterizing the reservoir’s weight matrix W. And to take care
of the echo state property (ESP), ρ should be scaled to equal or less
than one. Figure 2 shows a flowchart of the proposed GWODESN.
The taking after steps depict the particular modeling strategy:

Step 1. Read time series file as the input data.

Step 2. Initialize the GWO algorithm containing the a, A, and C.

Step 3. Set initial population representing NR, NL, ρ, and IR.

Step 4. Use initial population to establish the DeepESN model.

Step 5.Calculate the mean absolute error of various population as
the corresponding fitness value.

Step 6.Obtain initial optimum value having least fitness values in
population.

Step 7. If the fitness value obtained meets the accuracy
requirements of the model, skip to Step 9. Something else,
proceed.

Step 8. Update the population applying Eq. 9, the number of
iterations t = t+1, and then return to Step 4.

Step 9. Output the best NR, NL, ρ, and IR.

4 EXPERIMENTAL SETUP, RESULTS, AND
DISCUSSION

In this pondering, three benchmark datasets and one real-world
illustration are embraced to confirm the execution of diverse
models. One-step ahead expectation is examined in this segment.
To assess the created demonstration, 4 standard records (Tang
et al., 2020; Li et al., 2021a; Li et al., 2021b) including the mean
absolute error (MAE), the mean absolute percentage error
(MAPE), the root-mean-square error (RMSE), and the
coefficient of determination (R2) are characterized as takes after

MAE � 1
M

∑M
j�1

∣∣∣∣∣yj − ŷj

∣∣∣∣∣ (10)

MAPE � 1
M

∑M
j�1

∣∣∣∣∣yj − ŷj

∣∣∣∣∣
yj

(11)

FIGURE 6 | The real value and the anticipated value for NARMA.

TABLE 2 | Prediction performance comparison for NARMA

Model MAPE MAE RMSE R2

GWODESN 0.016684 0.006208 0.0078925 0.99487
ESN 0.067969 0.024812 0.031407 0.91423
LSTM 0.13112 0.052137 0.067306 0.66642
ELM 0.19488 0.072871 0.093292 0.24624

FIGURE 7 | The absolute error box diagram for NARMA.

FIGURE 8 | Relative error distribution for NARMA.
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RMSE �
�������������
1
M

∑M
j�1
(yj − ŷj)2

√√
(12)

R2 � 1 −
∑M
j�1
(yj − ŷj)2

∑M
j�1
(yj − �yj)2 (13)

Within the equations,M is utilized to represent sample size, yj to
represent the true value, �yj to represent mean true value, and ŷj
to represent the forecast value. All experiments were carried out
inMATLAB on aWindows 10 operating system, with a 2.50-GHz
Intel CPU, and a memory of 8.0 GB. The performance outcomes
of our approach were compared with those based on the
conventional ESN, ELM, and LSTM architectures.

FIGURE 9 | The real value and the anticipated value for MG.

TABLE 3 | Prediction performance comparison for MG

Model MAPE MAE RMSE R2

GWODESN 1.52E−06 1.34E−06 8.74E−06 1
ESN 0.0022983 0.0019566 0.0023502 0.99989
LSTM 0.049911 0.047476 0.059318 0.96962
ELM 0.035191 0.029265 0.03455 0.97677

FIGURE 10 | The absolute error box diagram for MG.

FIGURE 11 | Relative error distribution for MG.
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4.1 Lorenz System
The Lorenz dynamical system (Wu et al., 2021) is a key benchmark of
time series forecasting and is mathematically defined as

dx

dt
� a( − x + y)

dy

dt
� bx − y − xz

dz

dt
� xy − cz

(14)

where t expresses time, while the model coefficients a, b, and c
are respectively chosen as 10, 28, and 8/3. Model training and
testing were carried out with time series lengths of 4,000 and
1,000, respectively. For x-dimensional forecasting, past
information of x(t −1), y(t −1), and z(t −1) is utilized in the
prediction of the present x(t) values. In the arrangement to
assess the viability and preferences of this proposed
GWODESN, the conventional ESN, ELM, and the LSTM are
chosen as benchmarks. The real value and the anticipated value
of GWODESN, ESN, ELM, and the LSTM to begin with
appeared in Figure 3, and the expectation exactness is
recorded in Table 1. It is clear that GWODESN is superior
than others, showing the adequacy of this approach. In
expansion, the yield of ELM cannot coordinate the real
esteem, particularly at a few emphasis focuses. It moreover
outlines the justification of RNN. The expectation mistakes
of GWODESN, ESN, ELM, and the LSTM are advance
compared in Figure 4. Figure 4 shows the box graph of
absolute error recorded for 30 runs of diverse models. It can
be seen that the GWODESN shows superior forecast exactness
and solidness than other models. The absolute error box graph
of the ELM demonstration is long, and it is known that the
supreme mistake values are scattered, showing that the forecast
performance of the ELM model is not as steady as in other

models. The box chart of the GWODESN model is the most
brief. Most of the absolute error values are smaller than other
comparison models. Figure 5 gives the relative error
distribution of the testing information by the GWODESN.
Among the 1,000 testing cases, 93.3% of the relative errors
were less than 1%. In general, the prediction accuracy of the
GWODESN model is relatively high and relatively stable. In
common, the expectation precision of the GWODESN model is
moderately high and generally steady.

4.2 NARMA system
NARMA (Chouikhi et al., 2017), which is featured with a very
high rate of chaos in its behavior, could also be an accepted
studied benchmark. The flow of this benchmark is produced by
Eq. 15:

y(t + 1) � c1y(t) + c2y(t)∑k
i�1
y(t − i) + c3x(t − (k − 1))x(t) + c4

(15)
where y(t) and x(t) are the yield and input of the framework at time t,
separately. The consistent c is set as 0.3, 0.05, 1.5, and 0.1, separately.
The k, which decides the intricacy of NARMA, is set to 10. As the
same as the past simulation, the real value and the anticipated value
of GWODESN are shown in Figure 6, and the desired precision is
recorded in Table 2. It is evident that GWODESN can take after the

FIGURE 12 | Scatter diagram of the real value and the anticipated value
for CCPP.

FIGURE 13 | Relative error distribution for CCPP.

TABLE 4 | Prediction performance comparison for CCPP

Model MAPE MAE RMSE R2

GWODESN 0.0071209 3.2268 4.1052 0.93981
ESN 0.0078012 3.5345 4.4278 0.93013
LSTM 0.0085425 3.8767 4.9317 0.91412
ELM 0.0079702 3.6098 4.4885 0.92832
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real esteem ideally. The desired botches of GWODESN, ESN, ELM,
and the LSTM are developed and compared in Figure 7. It can be
seen in Figure 7 that the GWODESN appears to have a more
predominant estimate precision and solidness than other models.
The absolute error box graph of the ELM is long, and it is known that
the incomparable botch values are scattered, appearing that the
figure execution of the ELM is not as steady as othermodels. The box
chart of the GWODESN show is the foremost brief. Most of the
absolute error values are more diminutive than other comparison
models. Figure 8 gives the relative error dispersion of the testing data
by the GWODESN. Among the 1,000 testing cases, 90.1% of the
relative error distribution were less than 3.5% as appeared in
Figure 8.

4.3 Mackey–Glass System
The MG (Mackey and Glass, 1977) may be a normal chaotic
framework, which is known by its non-linear behavior. Thus,
learning the designs appears to be a troublesome errand. It is
portrayed by Eq. 16.

dx(t)
dt

� 0.2x(t − τ)
1 + x10(t − τ) − 0.1x(t) (16)

where τ is a vital parameter of the MG system, which is regularly
set to 17. In total, 4,000 tests were utilized as training data sets and
1,000 tests were utilized for testing. The forecast that comes about
appears in Figure 9 and Table 3. The conventional utilized ESN
can be seen to have superior forecast execution than the ELM and
the LSTM and can fit the original data well. Be that as it may, the
execution of the GWODESN is superior than that of the
conventional ESN. Figure 10 appears that the GWODESN
show has superior forecast precision and soundness than other
models. Among the 1,000 testing cases, 99% of the relative
mistakes were less than 1% in Figure 11.

4.4 Combined Cycle Power Plants
CCPPs generally contain steam turbines (STs) and gas turbines
(GTs), as well as heat recovery steam generators (HRSGs). For a
CCPP, power generation is jointly performed by the steam and
gas turbines, and is exchanged between each turbine and the
others (Tüfekci, 2014). Here, we use CCPP data to evaluate the
single-step prediction performance. The utilized dataset includes

four input factors and one target variable, where this dataset was
collected from 2006 to 2011. Figure 12 outlines both the
GWODESN-predicted and measured electrical power outputs.
The specked reddish straight line represents the ideal relationship
of the predicted and measured values. The blue line demonstrates
the GWODESN predicted outcomes. Almost all of the
predictions are scattered around the ideal line. Figure 13 gives
the relative error distribution of the GWODESN model on the
test data. Among the 1,000 test samples, 90.3% of the relative
errors are less than 1.6%. Obviously, the GWODESN model
outperforms the other three competing models. The adequacy
of the proposed model is shown by the results in Table 4.

5 CONCLUSION

In this paper, the GWODESN is created for time series expectation.
The four primary parameters of the DESN were optimized by
utilizing the GWO algorithm. Four ordinary time series, counting
Lorenz, MG, NARMA, and CCPP, are chosen as the simulation
objects. Comparative test that comes about on four time-series
forecast assignments clearly illustrates that the proposed
GWODESN outflank the ELM, LSTM, and ESN benchmarks.
The expectation strategy is basic and effective, and has certain
hypothetical centrality and commonsense esteem. Hyper-
parameter optimization and the topology of the networks are all
the common optimization strategies. Within the future, we will
center on progressing the network topology and apply themodel in
other domains, such as wind energy prediction.
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