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With the increasing penetration of wind power into power systems and the random
fluctuation of the wind farm (WF) output, system flexibility must be considered in the
optimal generation dispatch. Based on the extreme scenarios of the WF output, we
proposed a flexibility risk index to evaluate the system flexibility of each time interval. We
established a five-objective security-constrained unit commitment (SCUC) model of a
power system with WFs, thermal generation plants, battery energy storage stations, and
pumped storage hydro stations. The objectives were to minimize the system flexibility risk,
total network loss, operation cost, power purchase cost, and pollutant gas emissions. To
obtain the Pareto optimal solutions of the model, based on the objective selection and ε-
constraint methods, we proposed twomethods to reduce the dimension of objectives and
transformed the five-objective optimization model into a series of three-objective
optimization models. Then, we used the normalized normal constraint method to solve
the Pareto frontier surface of each three-objective optimization model. We used a color
column to represent the value change of the two upper layer objectives and visualized the
Pareto frontier of the five-objective SCUC model in the three-dimensional ordinate space.
Case studies on the modified IEEE-9 bus system and an actual power grid demonstrated
the effectiveness and high computational efficiency of the proposed method.

Keywords: flexibility, many-objective optimization, mixed integer convex programming, normalized normal
constraint method, security-constrained unit commitment, ε-constraint method

1 INTRODUCTION

With the increasing penetration of intermittent renewable energy into power systems, flexibility
is becoming more and more important to the secure operation of power systems. The
International Energy Agency (IEA) suggests that a flexible power system can respond
reliably and rapidly to violent fluctuations in both supply and demand (Agency, 2009). The
North American Electric Reliability Corporation (NERC) proposes that a flexible power system
can provide a real-time balance of supply and demand (North American Electric Reliability
Corporation, 2010), (Adams et al., 2010), that is, it can accommodate uncertainties within an
acceptable time range under different constraints (Zhao et al., 2016). Because of the high
penetration of wind power, power systems need to reserve sufficient flexible resources to balance
the random fluctuations of the wind farm (WF) output. Thus, the optimal generation dispatch
method needs to ensure that flexibility supply resources can satisfy the flexibility demands of the
power system.
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Many scholars have studied the optimal generation dispatch of
power systems with renewable energy considering flexibility. For
example, Zhao et al. (2015) proposed a dispatch framework for
variable energy resources (VERs) using the “do not exceed”
(DNE) limit, which is the largest VER output that the system
can accommodate under the worst-case scenario. They also
propose three approaches to solve the DNE limit problem. In
the study by Pourahmadi et al. (2019), Farzaneh et al. proposed a
novel robust-based framework to quantify the economically
optimal uncertainty set such that both feasibility and
optimality robustness are guaranteed. To improve the
flexibility of the power grid, Yun et al. (2019) proposed an
electricity–heat–hydrogen multi-energy storage system (EHH-
MESS) and its coordinated optimal operation model. The
simulation results showed that the EHH-MESS has better
regulation flexibility and economy of the power grid. Tang
et al. (2019) proposed an operational flexibility metric based
on the ramping capacity for a combined heat and power
microgrid and an intraday rolling dispatch model including
the operation flexibility constraints. Chen et al. (2016)
proposed an economic dispatch model for power systems with
wind-storage combined systems and battery energy storage
(BES). The calculation results showed that the integration of
energy storage effectively improved the wind power utilization
and operation efficiency. These studies focused on how to use
flexibility resources to improve system flexibility, but none
included quantitative evaluations of system flexibility
considering the extreme power output scenario of renewable
energy. In addition to flexibility, other objectives, such as
lowering costs, saving energy, and reducing emissions, must be
considered for optimal generation dispatch. Hence, the
formulation of optimal generation dispatch must consider
multiple optimization objectives while ensuring the secure
operation of the system. However, conflicts always exist
among multiple optimization objectives, meaning they cannot
all be optimized simultaneously. Thus, the result of the multi-
objective optimization problem (MOP) is a set of solutions, which
are called the Pareto optimal solutions. Methods for obtaining the
Pareto optimal solutions of MOPs include heuristic algorithms
and traditional optimization algorithms. Heuristic algorithms
include particle swarm optimization (Reyes and Coello, 2006),
the differential evolution algorithm (Storn and Price, 1997), and
the non-dominated sorting genetic algorithm (NSGA) (Deb et al.,
2002). Heuristic algorithms can obtain multiple Pareto optimal
solutions at the same time and are suitable for non-convex and
discontinuous problems. However, they have low computational
efficiency for solving large-scale MOPs, such as the multi-
objective optimal generation dispatch problem of an actual
large-scale power system. Traditional optimization algorithms
include the linear weighted sum method (Milano et al., 2003),
ideal point method (Bryson and Mobolurin, 1996), ε-constraint
method (Nezhad et al., 2014), normal boundary intersection
(NBI) method (Das and Dennis, 1998), (Roman and Rosehart,
2006), and normalized normal constraint (NNC) method (Lin
et al., 2017), (Li et al., 2015). These algorithms can transform an
MOP into a series of single-objective optimization problems to
obtain their optimal solutions. Traditional algorithms can obtain

a series of evenly distributed Pareto optimal solutions and have
high computational efficiency for solving large-scale MOPs.
Traditional algorithms are mainly used to solve MOPs with
few objectives, that is, only two or three objectives. Thus,
understanding how to extend traditional optimization
algorithms to solve many-objective optimization problems
(MaOPs) is important.

In most of the existing literature studies, MaOPs are solved by
heuristic algorithms, among which the elitist NSGA (NSGA-II)
(Deb and Jain, 2014), (Jain and Deb, 2014) and the multi-
objective evolutionary algorithm based on decomposition
(Zhang and Li, 2007) have good computational performance.
However, when the number of objectives is large, the size of the
solution space of heuristic algorithms increases exponentially,
resulting in a long computation time. Thus, most approaches
reduce the dimension of the objectives first and then solve the
optimization model. To simplify MaOPs, non-linear correlation
information entropy with the covariance method was proposed in
the study by Wang and Yao. (2016) to analyze the conflicts
among the objectives. In the studies by Kou et al. (2017) and
Zheng et al. (2019), a conflicting objective-selection method and
an objective reduction algorithm were proposed, in which the
most conflicting objective subset can be selected, and the
dimension of the MaOP can be reduced. In these studies, the
MaOPs are solved by first analyzing the relationship among the
objectives and then aggregating or eliminating some of the
objectives to reduce the dimension of the problem. However,
the information of the objectives will be inevitably lost during the
process of aggregation or eliminating the objectives, resulting in
incomplete Pareto optimal solutions of MaOPs. At present, few
studies have adopted the traditional algorithms to solve the
Pareto optimal solutions of MaOPs. Therefore, it is important
to propose an efficient algorithm based on the traditional
optimization algorithms to solve the Pareto optimal solutions
of MaOPs while also retaining the information integrity of all the
objectives.

This study makes three contributions:

1) Based on the extreme scenarios of uncertain WF output, a
flexibility risk index (i.e., the risk cost of the unsecure
operation of the system due to the lack of flexibility) is
proposed to evaluate the system flexibility. Then, a five-
objective SCUC model of a power system with WFs,
thermal generation (TG) plants, BES stations, and pumped
storage hydro (PSH) stations is established to minimize the
system flexibility risk, network loss, operation cost, power
purchase cost, and pollutant emissions.

2) A convex hull relaxation optimization method is used to relax
the power balance equation with quadratic terms of power loss
into convex inequalities in the SCUC model, and the SCUC
model is then transformed into a mixed integer convex
programming (MICP) model.

3) According to the objective selection and ε-constraint methods,
two-objective dimension reduction methods are proposed to
transform the five-objective SCUC model into a series of
three-objective optimization models. Then, the Pareto
frontier surface of each three-objective optimization model
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is solved by the NNC method. A color column is used to
represent the value change of two upper layer objectives, and
the Pareto frontier of the five-objective SCUC model is
visualized in the three-dimensional coordinate space.

The rest of this article is organized as follows: the Flexibility
Risk Index section proposes a flexibility risk index. The Five-
Objective SCUC Model section proposes a five-objective SCUC
model considering the aforementioned flexibility risk index. The
Solution Methods section proposes an algorithm for solving the
Pareto frontier of the five-objective SCUC model. The Case
Studies section presents case studies and analyzes the obtained
results. The Conclusion section offers the conclusions.

2 FLEXIBILITY RISK INDEX

In the SCUC model considering the uncertain WF output, the
uncertain WF output is always modeled by sampling numerous
scenarios or establishing an uncertainty set, which refer to the
stochastic SCUC model (Zhao and Guan, 2013) and the robust
SCUCmodel (Chen et al., 2020), (Chen et al., 2019). In this study,
the uncertain WF output is simulated by sampling numerous
scenarios. In the scenario-based stochastic SCUC model (Zhao
and Guan, 2013), the on/off states of normal units are the same in
different scenarios, but their power outputs are different to
balance the random fluctuation of the WF output. To reduce
the scale of the scenario-based stochastic SCUCmodel and reflect
the worst case of the random WF output, many sampling
scenarios are replaced with extreme scenarios (Xu et al., 2019).
It is assumed that there are Nw WFs in the system, and 2Nw

extreme scenarios will be generated. It is also assumed that the
WF outputs obey a normal distribution N (μ,σ2) with the
predicted value as the expected value. The confidence level can
reach 95.45% when the confidence interval of theWF output is [μ
− 2σ, μ + 2σ]. Thus, 2Nw extreme scenarios can be obtained by
making the lower and upper bounds of the WF output equal to μ
− 2σ and μ + 2σ.

The flexibility risk index Rt at time interval t is defined in Eq. 1,
which considers the occurrence probability of each extreme
scenario of the WF output and the regulating cost of unsecure
operation of the system under this scenario:

Rt � ∑Nw

w�1λw(P̂0

w,t − P0
w,t) + Q0

lack,t +∑2Nw

sc�1p
sc[∑Nw

w�1λw(P̂sc

w,t

− Psc
w,t) +∑N1

i�1D
sc
i,t +∑N2

b�1D
sc
b,t],

(1)
where λw is the penalty cost coefficient of the wind curtailment of
WF w. sc is the index of the scenario, where sc = 0 indicates the
forecast scenario, and other values of sc indicate the extreme
scenarios. In the following part of this article, superscript 0
represents the variables under the forecast scenario, and
superscript sc represents the variables under the extreme
scenario sc. P0

w,t and Psc
w,t are the dispatch power output of

WF w at time interval t, P̂
0
w,t is the predicted power, and P̂

sc
w,t

is themaximum power under the extreme scenario sc.Q0
lack,t is the

penalty cost of the system flexibility shortage, which is expressed
as Eq. 2. psc is the occurrence probability of the extreme scenario
sc, and it is assumed that psc = 1/2Nw ;N1 is the total number of TG
units, that is, the total number of coal-fired units and gas-fired
units; N2 is the total number of BES stations. Dsc

i,t/D
sc
b,t is the

flexible dispatch cost of the TG unit i/BES station b at time t,
which includes the dispatch cost caused by regulating their power
output of the extreme scenario from the power output of the
forecast scenario, as shown in Eq. 3. Here, the flexible dispatch
cost includes only the dispatch cost of TG units and BES stations.
This is because only the startup/shutdown costs of PSH units are
considered, and their power output regulation costs are not
considered. The on/off states of PSH units under the extreme
scenarios are the same as those of the forecast scenario, but the
power outputs are different; hence, the flexible dispatch cost of
PSH units is 0.

Q0
lack,t � λlack(ΔP0

lku,t + ΔP0
lkd,t), (2)

where λlack is the penalty cost coefficient of the system flexibility
shortage, and ΔP0

lku,t/ΔP
0
lkd,t is the up/down system flexibility

shortage at time t.

{ Dsc
i,t ≥F

sc
i,t − F0

i,t, Dsc
i,t ≥ 0

Dsc
b,t ≥F

sc
b,t − F0

b,t, Dsc
b,t ≥ 0

sc � 1, ..., Nsc, (3)

where Fsc
i,t and F0

i,t are the fuel costs of the TG unit i at time t,
which can be expressed as Eq. 4 and approximated by the
piecewise linear inequality as Eq. 5. Fsc

b,t and F0
b,t are the

operation costs of the BES station b at time t, which can be
expressed as Eq. 6.

Fsc
i,t � Ai,2(Psc

i,t)2 + Ai,1P
sc
i,t + Ai,0Ii,t, (4)

Fsc
i,t ≥ αi,kP

sc
i,t + βi,kIi,t, k � 1, 2, . . . ,M, (5)

where Psc
i,t is the output of the TG unit i at time t; Ai,2, Ai,1, and

Ai,0 are the fuel cost coefficients of the TG unit i; and Ii,t is the
on/off state of the TG unit i at time t, where 1/0 represents the
on/off state. αi,k/βi,k is the slope/intercept of segment k of the
fuel cost of the TG unit t; and M is the total number of
segments.

Fsc
b,t � Cdis,bP

sc
dis,b,t + Cch,bP

sc
ch,b,t, (6)

where Psc
dis,b,t/P

sc
ch,b,t is the discharging/charging power of the BES

station b at time t, and Cdis,b/Cch,b is the discharging/charging cost
coefficient of the BES station b.

3 FIVE-OBJECTIVE SCUC MODEL

3.1 Objectives
In the actual operation and dispatch of a power system,
security, economy, efficiency, and environment friendliness
are required to be considered. In addition, the system
flexibility is also required to be considered to balance the
random fluctuations of the WF output. Thus, we established
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a five-objective SCUC model to minimize the total flexibility
risk, network loss, operation cost, power purchase cost, and
pollutant emissions.

3.1.1 Total Flexibility Risk z1

z1 � ∑T

t�1Rt, (7)
where T is the total number of time intervals in the dispatch
period. Taking 1 day as the dispatch period and each time interval
as 15 min, then T = 96.

3.1.2 Total Network Loss z2

z2 � ∑T

t�1∑NL

l�1P
0
Los,l,t, (8)

where NL is the total number of branches in the system; and
P0
Los,l,t is the network loss of the branch l at time t, which can be

expressed as follows (Lin et al., 2017):

P0
Los,l,t � gkm[∑

i ∈ ψ

(Xki −Xmi)P0
i,t − ∑

r ∈ L

(Xkr −Xmr)Pldr,t]2, (9)

where k and m are the buses at both ends of the branch l; gkm
is the conductance of the branch l; Xki, Xmi, Xkr, and Xmr are
the elements of the node impedance matrix in the DC power
flow model; ψ is the set of generator buses and injected
power buses connecting external power grids; L is the set of
load buses; and Pldr,t is the active power of the load bus r at
time t.

3.1.3 Total Operating Cost z3

z3 � ∑T

t�1[∑N1

i�1(F0
i,t + CiU,t + CiD,t) +∑N2

b�1F
0
b,t +∑N3

s�1(CsU,t

+ CsD,t)],
(10)

where N3 is the total number of PSH units. CiU,t/CiD,t and CsU,t/
CsD,t are the startup/shutdown cost of the TG unit i and PSH unit
s at time t, which can be expressed as follows:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
CiU,t ≥Ki(Ii,t − Ii,t−1), CiU,t ≥ 0
CsU,t ≥Ks(Zs,t − Zs,t−1), CsU,t ≥ 0
CiD,t ≥ Ji(Ii,t−1 − Ii,t), CiD,t ≥ 0
CsD,t ≥ Js(Zs,t−1 − Zs,t), CsD,t ≥ 0

, (11)

where Ki/Ji and Ks/Js are the startup/shutdown cost of the TG unit
i and PSH unit s. Zs,t is the on/off state of the PSH unit s at time t,
where 1/0 represents the on/off state.

3.1.4 Total Power Purchase Cost z4

z4 � ∑T

t�1(∑N1

i�1Ci,tP
0
i,t +∑Nw

w�1Cw,tP
0
w,t), (12)

where Ci,t and Cw,t are the power purchase prices of the TG unit i
and the WF w at time t.

3.1.5 Total Pollutant Emissions z5

z5 � ∑T

t�1∑N1

i�1(Bi,1P
0
i,t + Bi,0Ii,t), (13)

where Bi,1 and Bi,0 are the polluted gas emission coefficients of the
TG unit i. Because of the small amount of polluted gas emissions
of gas-fired units, their coefficients are Bi,1 = Bi,0 = 0.

3.2 Constraints
3.2.1 Fundamental Constraints
The power balance constraint is expressed as Eq. 14:

∑N1

i�1P
sc
i,t +∑N2

b�1(Psc
dis,b,t + Psc

ch,b,t) +∑N3

s�1(Psc
pg,s,t + Psc

pp,s,t)
� Psc

nld,t +∑NL

l�1P
sc
Los,l,t, (14)

where Psc
pg,s,t/P

sc
pp,s,t is the generating/pumping power of the PSH

unit s at time t; Psc
Los,l,t can be calculated similar to P0

Los,l,t as in Eq.
9; and Psc

nld,t is the system net load at time t, which is equal to the
difference between the total load forecast value and the total WF
output value, expressed as Eq. 15:

Psc
nld,t � ∑NLD

r�1 Pldr,t −∑Nw

w�1P
sc
w,t. (15)

The constraints of generators’ output are expressed as follows:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Ii,tPi,min ≤Psc

i,t ≤ Ii,tPi,max

0≤Psc
w,t ≤ P̂

sc

w,t

Psc
i,t − Psc

i,t−1 ≤ ruiT15Ii,t−1 + Pi,min(Ii,t − Ii,t−1)
Psc
i,t−1 − Psc

i,t ≤ rⅆiT15Ii,t + Pi,min(Ii,t−1 − Ii,t)
, (16)

{P0
i,t − Psc

i,t ≤ ruiT10Ii,t
Psc
i,t − P0

i,t ≤ rⅆiT10Ii,t
sc � 1, ..., Nsc, (17)

where Pi,min/Pi,max is the minimum/maximum output of the TG
unit i, and rui/rdi is its ramp up/down rate. T15 is the length of each
time interval, which is 15 min. In Eq. 16, the unit maintains the
minimum output in the first time interval after starting up and
the last time interval before shutting down. T10 is the response
time of the regulating power of the TG units, which is 10 min.

The constraints of minimum continual on/off time of TG units
can be expressed as follows (Carrion and Arroyo, 2006):

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ii,t � 1, t ∈ [1, Ui], Ui � min{T, (Toni −Xoni,0)Ii,0}∑t+Toni−1
n�t Ii,n ≥Toni(Ii,t − Ii,t−1), t ∈ [Ui + 1, T − Toni + 1]

∑T

n�t[Ii,n − (Ii,t − Ii,t−1)]≥ 0, t ∈ [T − Toni + 2, T]
Ii,t � 0, t ∈ [1, Di], Di � min{T, (Toff i −Xoff i,0)(1 − Ii,0)}∑t+Toff i−1

n�t (1 − Ii,n)≥Toff i(Ii,t−1 − Ii,t), t ∈ [Di + 1, T − Toff i + 1]
∑T

n�t[1 − Ii,n − (Ii,t−1 − Ii,t)]≥ 0, t ∈ [T − Toff i + 2, T]

,

(18)
whereUi/Di is the number of time intervals during which the unit
i must stay on/stay off at the beginning of the dispatch period,
which is related to the unit states at the end of the last dispatch
period; Toni/Toffi is the minimum number of continual on/off
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time intervals of the unit i; and Xoni,0/Xoffi,0 is the number of
continual on/off time intervals of the unit i at the beginning of the
dispatch period.

3.2.2 Constraints of Network Security
The network security constraints represented by the DC power
flow model are as follows:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Psc
l,km,t � ∑

i∈ψ
(Xki −Xmi

xkm
)Psc

i,t −∑
r∈L
(Xkr −Xmr

xkm
)Pldr,t

−�Pl,km ≤Psc
l,km,t ≤ �Pl,km

, (19)

where Psc
l,km,t is the transmission power of the branch l at time

interval t; xkm is the reactance of the branch l; and �Pl,km is the
maximum transmission power of the branch l.

3.2.3 Operation Constraints of PSH Stations
The constraints of the power output are as follows:

{ 0≤Psc
pg,s,t ≤Ppg,s,max · Zpg,s,t

Ppp,s,max · Zpp,s,t ≤Psc
pp,s,t ≤ 0

, (20)

where Ppg,s,max/Ppp,s,max is the maximum generating/pumping
power of the PSH unit s, and Zpg,s,t/Zpp,s,t is the generating/
pumping state of the PSH unit s at time interval t.

The complementary constraint of operating states is as
follows:

Zs,t � Zpg,s,t + Zpp,s,t ≤ 1. (21)
The constraint of energy balance within a day is as follows:

∑T

t�1P
sc
pg,s,t + ξ ·∑T

t�1P
sc
pp,s,t � 0, (22)

where ξ is the conversion efficiency of PSH units, which is 75% in
this study.

The constraints of switching time of operating states are as
follows:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Zpg,s,t + Zpp,s,t+1 ≤ 1 t � 1, 2,/, (T − 1)
Zpg,s,t + Zpp,s,t+2 ≤ 1 t � 1, 2,/, (T − 2)
Zpp,s,t + Zpg,s,t+1 ≤ 1 t � 1, 2,/, (T − 1)
Zpp,s,t + Zpg,s,t+2 ≤ 1 t � 1, 2,/, (T − 2)

. (23)

3.2.4 Operation Constraints of BES Stations
The constraints of discharging/charging power are as follows:

{ 0≤Psc
dis,b,t ≤Pdis,b,max · Zdis,b,t

Pch,b,max · Zch,b,t ≤Psc
ch,b,t ≤ 0

, (24)

where Pdis,b,max/Pch,b,max is the maximum discharging/
charging power of the BES station b, and Zdis,s,t/Zch,s,t is the
discharging/charging state of the BES station b at time
interval t.

The complementary constraint of operating state is as follows:

Zb,t � Zdis,b,t + Zch,b,t ≤ 1. (25)
The constraints of the remaining energy are as follows:

{Esc
b,t � Esc

b,t−1 + ( − Psc
dis,b,t/ηdis,b − Psc

ch,b,tηch,b)T15

0≤Esc
b,t ≤Eb,max

, (26)

where ηdis,b/ηch,b is the discharging/charging efficiency of the BES
station b, and Esc

b,t is the stored remaining energy of the BES
station b at time interval t.

3.2.5 System Flexibility Constraints
The system flexibility demand needs to consider not only the
uncertainties of the load power and WF output in each time
interval but also the change of the net load power in adjacent time
intervals. Thus, the upward and downward system flexibility
demand constraints are expressed as follows:

⎧⎪⎨⎪⎩
P0
nld,t+1 − P0

nld,t + Lu%Pld,t+1 + wu%∑Nw

w�1P
0
w,t+1 ≤ΔP0

fu,t + ΔP0
lku,t

P0
nld,t − P0

nld,t+1 + Ld%Pld,t+1 + wd%∑Nw

w�1(P̂w,t+1 − P0
w,t+1)≤ΔP0

fd,t + ΔP0
lkd,t

,

(27)
where Lu%/Ld% is the percentage of the upward/downward
system flexibility demand due to the load forecast deviation;
wu%/wd% is the percentage of the upward/downward system
flexibility demand due to the wind power forecast deviation; and
ΔP0

fu,t/ΔP
0
fd,t is the upward/downward system flexibility supply

capacity at time interval t.
The system flexibility supply capacity is the sum of the

flexibility supply capacity provided by all units, as follows:

⎧⎪⎨⎪⎩
ΔP0

fu,t � ∑N1

i�1ΔP
0
u,i,t +∑N2

b�1ΔP
0
u,b,t +∑N3

s�1ΔP
0
u,s,t

ΔP0
fd,t � ∑N1

i�1ΔP
0
d,i,t +∑N2

b�1ΔP
0
d,b,t +∑N3

s�1ΔP
0
d,s,t

, (28)

where ΔP0
u,i,t/ΔP

0
u,s,t/ΔP

0
u,b,t is the upward flexibility supply

capacity provided by the TG unit i/PSH unit s/BES station b
at time interval t, and ΔP0

d,i,t/ΔP
0
d,s,t/ΔP

0
d,b,t is the corresponding

downward flexibility supply capacity.
The flexibility supply capacities provided by different units can

be expressed as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0≤ΔP0
u,i,t ≤min(Pi,maxIi,t − P0

i,t, ruiT10Ii,t)
0≤ΔP0

d,i,t ≤min(P0
i,t − Pi,minIi,t, rdiT10Ii,t)

0≤ΔP0
u,s,t ≤Ppg,s,maxZpg,s,t − P0

pg,s,t − P0
pp,s,t

0≤ΔP0
d,s,t ≤P

0
pg,s,t + P0

pp,s,t − Ppp,s,maxZpp,s,t

0≤ΔP0
u,b,t ≤Pdis,b,max − (P0

dis,b,t + P0
ch,b,t)

0≤ΔP0
d,b,t ≤P0

dis,b,t + P0
ch,b,t − Pch,b,max

. (29)

4 SOLUTION METHODS

4.1 Convex Relaxation of Network Loss
The SCUC model consists of objectives Eqs 7, 8, 10, 12, 13 and
constraints Eqs 1–3, 5, 6, 9, 11, 14–29. Because it includes the
discrete decision variable of on/off states of units and the
network loss term in Eq. 14 is represented by a quadratic
equation Eq. 9, the SCUC model is a mixed integer non-linear
non-convex programming (MINNP) model. The MINNP is
attributed to the NP-hard problem and is difficult to solve. For
the actual large-scale power grid, the SCUC model’s scale is
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very large. If solvers such as DICOPT or SBB in the commercial
optimization software GAMS are directly used to solve the
problem, the computational efficiency will be very low, and the
global optimal solution always cannot be obtained. Recent
studies have shown that the MINNP model can be transformed
into an MICP model by the convex relaxation technique to
reduce the computational complexity (Jabr et al., 2012). To
ensure that the solution of the optimization model after convex
relaxation has high accuracy compared with that of the
original optimization model, a convex hull relaxation
method that can obtain the tight convex relaxation of the
original optimization model is applied (Li and Vittal, 2016).
Thus, we used the convex hull relaxation method to
transform the quadratic equality constraint into convex
constraints.

Taking the quadratic equality (Eq. 30) as an example, it can be
expressed equivalently as Eqs. 31, 32, where Eq. 31 is convex and
Eq. 32 is non-convex.

y � ax2 + bx + c, a> 0, (30)
y≥ ax2 + bx + c, a> 0, (31)
y≤ ax2 + bx + c, a> 0. (32)

Generally, the minimum/maximum value of x (i.e., xmin/xmax)
is known, and the corresponding value of y is ymin/ymax. Then,
the equation of the straight line determined by two points
(xmin, ymin) and (xmax, ymax) is shown in Eq. 33.

y − ymin � ymax − ymin

xmax − xmin
· (x − xmin). (33)

The convex hull relaxation of Eq. 32 is a linear inequality
constraint as Eq. 34. Therefore, the quadratic equality
constraint Eq. 30 can be relaxed as Eq. 31 and Eq. 34.

y≤ymin + ymax − ymin

xmax − xmin
· (x − xmin). (34)

The network loss in Eq. 9 can be written as Eq. 35

⎧⎨⎩
Psc
Los,l,t � gkmθ

sc
km,t2

θsckm,t � ∑
i∈ψ
(Xki −Xmi)Psc

i,t −∑
r∈L
(Xkr −Xmr)Pldr,t , (35)

where θsckm,t is the voltage angle difference between buses k and m
at time interval t.

Therefore, the first formula of Eq. 35 can be relaxed as follows:

⎧⎪⎪⎨⎪⎪⎩
Psc
Los,l,t ≥gkmθ

sc
km,t2

Psc
Los,l,t ≤PLos,l,min + PLos,l,max − PLos,l,min

θkm,max − θkm,min
(θsckm,t − θkm,min) , (36)

where θkm,min/θkm,max is the minimum/maximum value of
θkm,t, and the corresponding value of PLos,lt is PLos,lmin/
PLos,lmax.

By convex hull relaxation, the SCUC model can be
transformed from the original MINNP model into the MICP
model. Hence, the GUROBI solver in GAMS can be used to solve
the MICP model with higher computational efficiency and
reliability.

4.2 Objective Selection Method Based on
the Spearman Correlation Coefficient
To reduce the dimension of the objectives in theMaOP, an objective
selection method is required. Based on the objective selection
method (Kou et al., 2017), (Zheng et al., 2019), we proposed the
following objective dimension reduction method: the most
conflicting objectives were selected as the upper layer
optimization objectives, and the remaining objectives were taken
as the lower layer optimization objectives. Combined with the ε-
constraint method, the upper layer objectives are added into the
constraints of the lower layer optimizationmodel. Thus, the original
MaOP was transformed into a series of low-dimension MOPs. The
pseudocode of the objective selection method is as follows:

According to the Spearman correlation coefficient matrix
among different objectives, we selected the most conflicting
objective, that is, the objective with the largest absolute value
of the sum of negative correlation coefficients. This objective was
moved from St to Sc, and then, the next most conflicting objective
was selected from the remaining objectives. We repeated this
selection process until the terminal condition was satisfied. In the
pseudocode, St is the intermediate set, which is used to store the
unselected objectives; Sc is the most selected conflicting objective
set; and CM(i, j) is the Spearman correlation coefficient between
the ith and jth objectives.

By using the objective selection method, we selected the two
most conflicting objectives as the upper layer optimization
objectives and the other three objectives as the lower layer
optimization objectives. Thus, the dimension of the five-
objective SCUC model was reduced hierarchically.

4.3 Grid-Based Five-Objective ε-Constraint
Method
We used the objective selection method based on Spearman
correlation coefficients to select the most conflicting objective
as the first-level conflicting objective, and then, we selected the
most conflicting objective among the remaining objectives as the
second-level conflicting objective. The five-objective SCUC
model can be transformed into a series of three-objective
SCUC models by the ε-constraint method constraints. The
specific process is as follows.

The five-objective SCUC model in the Five-Objective
SCUCModel section can be written in a compact form as follows:

⎧⎪⎨⎪⎩
min{z1(x), z2(x), z3(x), z4(x), z5(x)}
s.t. h(x) � 0
g (x)≤ g(x)≤ �g(x)

, (37)
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where h(x) and g(x) are the equality and inequality constraints of
the five-objective SCUC model, respectively.

Assuming that z5 is the first-level conflicting objective, z4 is
the second-level conflicting objective, and the other three
objectives z1, z2, and z3 are the lower layer objectives, steps
for transforming the five-objective optimization model (Eq. 37)
into a series of three-objective optimization models are as
follows:
Step 1The two single-objective models max z5(x) and min z5(x)
are solved to determine the maximum and minimum values of z5,
that is, z5max and z5min, and then, the value range of z5, that is, Δz5
= z5max − z5min is calculated.
Step 2The value range Δz5 is divided into q1 equal segments to
obtain q1 + 1 points, and the value of the kth point is z5k = z5min +
k Δz5/q1, k = 0, 1, . . . , q1.
Step 3According to the ε-constraint method, the two single-
objective models (Eq. 38) and (Eq. 39) are solved to
determine the maximum and minimum values of z4 at the
point z5 = z5k, that is, z4,5kmax and z4,5kmin, and then, the value
range of z4, that is, Δz4,5k = z4,5kmax − z4,5kmin is calculated.

max z4(x) − l0v5b/Δz5
s.t. z5(x) � z5k + v5b, v5b ≥ 0

h(x) � 0
g (x)≤ g(x)≤ �g(x)

, (38)

min z4(x) + l0v5b/Δz5
s.t. z5(x) � z5k + v5b, v5b ≥ 0

h(x) � 0
g (x)≤ g(x)≤ �g(x)

, (39)

where l0 is a constant between 10–3 and 10–1; and v5b is an
auxiliary variable of the objective z5, which is introduced to find a
feasible solution between adjacent value points. To make the z5
value of the obtained solution equal to the selected point z5k, the
value of v5b should be as close to zero as possible. Thus, in the
objective function of the maximization problem (Eq. 38), the
term l0v5b/Δz5 is subtracted, and in the objective function of the
minimization problem (Eq. 39), the term l0v5b/Δz5 is added.

Step 4. The value range Δz4,5k is divided into q2 equal segments to
obtain q2 + 1 points. The value of the jth point is z4j,5k = z4,5kmin +
j Δz4,5k/q2, j = 0, 1, . . . , q2.

Step 5. According to the ε-constraint method, the Pareto frontier
surface of the lower layer three-objective optimization model is
solved corresponding to the grid points z5 = z5k and z4 = z4j,5k,
expressed as follows:

min {z1(x) + l1(v4b/Δz4,5k + v5b/Δz5), z2(x) + l1(v4b/Δz4,5k + v5b/Δz5)
z3(x) + l1(v4b/Δz4,5k + v5b/Δz5)}

s.t. z5(x) � z5k + v5b, v5b ≥ 0
z4(x) � z4j,5k + v4b, v4b ≥ 0
h(x) � 0
g (x)≤ g(x)≤ �g(x), (40)

where l1 is a constant between 10–3 and 10–1; and v4b is an
auxiliary variable of the objective z4, which is introduced to find a

feasible solution between adjacent value points. By gathering all
the Pareto optimal solutions of solving the lower layer three-
objective optimization model (Eq. 40) corresponding to each grid
point, the Pareto optimal solutions of the five-objective SCUC
model are obtained.

4.4 Curve-Based Five-Objective
ε-Constraint Method
We used the objective selection method based on Spearman
correlation coefficients to select the two most conflicting
objectives as the upper layer objectives and the remaining
three objectives as the lower layer objectives. The five-objective
SCUCmodel was decomposed into two low-dimension multiple-
objective optimization subproblems. Taking the five-objective
optimization model (Eq. 37) as an example, we assumed that
z4 and z5 are the upper layer objectives, and the other three
objectives (i.e., z1, z2, and z3) are the lower layer objectives. The
steps of transforming the five-objective optimization model (Eq.
37) into a series of three-objective optimization models are as
follows:
Step 1The Pareto frontier curve of the upper layer two-objective
optimization model (Eq. 41)is solved, which includes m Pareto
optimal solutions. The maximum and minimum values of z4 and
z5 are determined on the Pareto frontier curve (i.e., z4max, z4min,
z5max, and z5min).

⎧⎪⎨⎪⎩
min{z4(x), z5(x)}
s.t. h(x) � 0
g (x)≤ g(x)≤ �g(x)

. (41)

Step 2The value ranges of z4 and z5 are calculated on the upper
layer Pareto frontier curve, Δz4 = z4max − z4min and Δz5 = z5max −
z5min. The points are arranged on the curve with the endpoint
(z4min, z5max) as the first point and the endpoint (z4max, z5min) as
the last point. Thus, when the order of points increases, z4
increases and z5 decreases. The kth Pareto point is recorded as
(z4,k, z5,k).
Step 3According to the ε-constraint method, the Pareto frontier
surface of the lower layer three-objective optimization model is
solved corresponding to each point (z4,k, z5,k), which is expressed
as follows:

min {z1(x) + l2(u4a/Δz4 + u5a/Δz5), z2(x) + l2(u4a/Δz4+
u5a/Δz5), z3(x) + l2(u4a/Δz4 + u5a/Δz5)}s.t.
z4(x) � z4,k + u4a, u4a ≥ 0, 1≤ k≤mz5(x) � z5,k − u5a,

u5a ≥ 0, 1≤ k≤mh(x) � 0 g (x)≤ g(x)≤ �g(x),
(42)

where l2 is a constant between 10–3 and 10–1; and u4a and u5a
are auxiliary variables of the objectives z4 and z5, which are
introduced to obtain a feasible solution between the adjacent
points in the Pareto frontier curve of the upper layer
optimization model. With the increase of the point order k,
z4 increases and z5 decreases. Thus, a positive sign appears
before u4a, and a negative sign appears before u5a in the
constraints of Eq. 42.
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Obviously, compared with the method of obtaining the grid
points from the upper layer two objectives, the number of points
obtained from the Pareto frontier curve of the upper layer two-
objective optimization model is significantly reduced, and the
computational burden is also smaller. Thus, the calculation
efficiency was significantly improved.

4.5 NNCMethod for Solving the Lower Layer
Three-Objective Optimization Model
The NNC method is used to solve the Pareto frontier of each
lower layer three-objective optimization model (Lin et al., 2017).
With the NNCmethod, the three-objective optimization model is
transformed into a series of single-objective optimization models.
By solving each single-objective optimization model, the
complete Pareto frontier surface of the three-objective
optimization model can be obtained.

After obtaining the Pareto optimal solutions of the five-
objective SCUC problem, we used the entropy weight method
to determine a compromise optimal solution (COS) from Pareto
optimal solutions as the final optimal decision scheme (Tan et al.,
2013). The obtained COS has the maximum comprehensive
optimization degree λ value in the Pareto optimal solutions.

5 CASE STUDIES

We demonstrated the proposed many-objective optimization
method in case studies on a modified IEEE-9 bus system and
an actual power grid.We used a Dell workstation with a 3.50 GHz
Intel(R) Xeon(R) CPU E3-1270 v3 (8 cores) and 16 GB RAM in
these case studies. The software platform was GAMS 24.4.3.

5.1 The Modified IEEE-9 Bus System
The modified IEEE-9 bus system is shown in Figure 1, which
includes one PSH unit, one coal-fired TG unit, one gas-fired TG
unit, one BES station, and one WF. Parameters of the units are
given in Supplementary Table A1. The forecast power of the WF
output and total load are shown in Supplementary Figure A1.

According to the active power proportion of each load bus in the
BPA data of the IEEE-9 bus system, we obtained the forecast load
curve of each load bus from the forecast total load curve. The
power purchase prices of TG units 2 and 3 were 0.17 ¥/kWh and
0.21 ¥/kWh, respectively. The power purchase price of the WF
was 0.51 ¥/kWh, and the penalty cost coefficient of the wind
curtailment λw was set as 2.6 ¥/kWh. The rated power and energy
of the BES station were 5 MW and 10 MWh, the charge/discharge
efficiency was 96%, and the charge/discharge cost was 0.8 ¥/kWh.
The coefficients were set as Lu%= 3%, Ld% = 1%, wu% = 20%, and
wd% = 20%.

5.1.1 Comparative Results of Convex and Non-Convex
Models
Taking z1, z2, z3, z4, and z5 as the optimization objectives of the
SCUC model, we used the GUROBI solver to solve each single-
objective optimization problem (SOP) after convex relaxation of
quadratic terms of network loss. We compared the obtained
network loss after optimization with the real network loss
calculated by substituting the obtained optimal power outputs
of units into Eq. 9, and the results are given in Table 1. It is
evident that the difference between the network loss obtained by
the convex relaxation method and the real network loss was very
small, and the maximum relative error was only 0.224%, which
demonstrated that the proposed convex hull relaxation method
for the quadratic term of network loss had high computational
accuracy.

FIGURE 1 | Modified IEEE-9 bus system.

TABLE 1 | Comparison of the convex and real network loss of SOPs.

Objective Convex loss/MWh Real loss/MWh Relative error/%

z1 3.126 3.119 0.224
z2 2.406 2.406 0.000
z3 3.275 3.277 0.060
z4 3.569 3.574 0.140
z5 3.859 3.867 0.207

TABLE 2 | Comparison of CPU time of the MINNP and MICP models.

Objective MINNP/s MICP/s Time saved/%

z1 91.321 12.239 86.598
z2 108.511 25.702 76.314
z3 161.262 24.995 84.500
z4 — 13.136 —

z5 203.713 37.817 81.436

TABLE 3 | Objective function values of the SOP solutions.

Objective z1/10
4 ¥ z2/MWh z3/10

4 ¥ z4/10
4 ¥ z5/t

z1 0.000 3.126 96.154 19.020 354.327
z2 11.371 2.406 85.050 18.865 331.482
z3 5.676 3.275 43.517 17.702 395.077
z4 32.548 3.569 66.750 14.575 410.951
z5 6.365 3.859 97.249 19.074 211.448
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We used the SBB solver to solve the original MINNP of the
SCUCmodel. We compared the CPU time of solving the MINNP
model with that of solving the MICP model, as shown in Table 2.
We observed that the CPU time of the MICP model decreased
more than 75%. Moreover, for the SOP with z4 as the objective,
the optimal solution could not be obtained by solving theMINNP
model, but it could be obtained by solving theMICPmodel. Thus,
the proposed convex hull relaxation method could significantly
improve the computational efficiency, and the optimal solution of
the SCUC model could be obtained more reliably.

5.1.2 Solution of the Pareto Frontier and the COS
We analyzed the correlation between the objective functions. We
solved each of the five SOPs, and the objective function values of
the five optimal solutions are shown in Table 3. We used these
five optimal solutions to calculate Spearman correlation
coefficients between the optimization objectives and the sum
of the negative correlation coefficients of each optimization
objective. The results are given in Supplementray Table A2.
From Supplementray Table A2, we selected the objective with
the largest absolute value of the sum of negative correlation
coefficients (i.e., z5) as the first-level conflicting objective and
selected the objective with the next largest absolute value of the
sum of negative correlation coefficients (i.e., z4) as the second-
level conflicting objective. Thus, we obtained the most conflicting
objective set Sc = [z4, z5] by the objective selection method, and z5
and z4 were the upper layer optimization objectives.

Then, we solved the Pareto frontier of the five-objective SCUC
model by the two proposed ε-constraint methods and the NSGA-
II algorithm. Considering the value differences of different
objectives, we defined the color column coordinates k* = z4*/
z5* = (z4/z4min)/(z5/z5min); thus, as k* increases, z4 increases and z5
decreases.

1) Grid-based five-objective ε-constraint method.

We calculated z5max and z5min and obtained the four points of
z5 by setting q1 = 3. Then, for each z5k, according to Eq. 38 and
Eq. 38, we obtained z4,5kmax and z4,5kmin and obtained the four
points of z4 by setting q2 = 3. Thus, the total number of grid points
of the upper layer two objectives was 16. The Pareto frontier
surface of the lower layer three-objective optimization model (Eq.
40) corresponding to each grid point was solved. After gathering
all the obtained optimal solutions and removing the dominated
solutions, we obtained the Pareto frontier composed of 427 non-
dominated solutions, as shown in Figure 2. The COS is also
obtained and is shown as the red-colored point in Figure 2.

2) Curve-based five-objective ε-constraint method.

We used the NNC method to solve the upper layer two-
objective optimization model (Eq. 41). Letting m = 11, the
obtained Pareto frontier curve is shown in Supplementary
Figure A2. We added the kth point (z4,k, z5,k) values to the
lower layer three-objective optimization model (Eq. 42) as
constraints and solved the Pareto frontier surface of the model
(Eq. 42) corresponding to each point (z4,k, z5,k). Finally, we
obtained the Pareto frontier composed of 595 non-dominated
points, as shown in Figure 3. We also obtained the COS, which is
shown as the red-colored point in Figure 3.

By comparing the computational process and results of the
aforementioned two methods, it can be seen that the curve-
based ε-constraint method obtained more non-dominated
solutions and more compact Pareto frontier surfaces. This is
because when the curve-based ε-constraint method was used
to solve the five-objective SCUC model, the selected points
were within the Pareto frontier curve of the upper layer two
objectives and had a good non-dominated relationship.
However, for the grid-based ε-constraint method, although
the hierarchical division of grid points seemed to be uniform, it
ignored the conflicting relationship between these two

FIGURE 2 | Pareto frontier obtained by the grid-based ε-constraint
method.

FIGURE 3 | Pareto frontier obtained by the curve-based ε-constraint
method.
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objectives, resulting in more dominated points being
computed in the lower layer three-objective optimization.
Thus, the curve-based ε-constraint method could obtain
better results because it could obtain more Pareto optimal
solutions and supply more trade-off relationship information
of different objectives for the final decision of the five-objective
SCUC problem.

3) NSGA-II algorithm.

We used the gamultiobj (.) function of the NSGA-II algorithm
in MATLAB to solve the Pareto frontier of the five-objective
SCUC model, which included 100 non-dominated solutions, as
shown in Figure 4. The obtained Pareto optimal solutions were
concentrated and supplied with little trade-off relationship
information for the final decision of the five-objective SCUC
problem.

We compared the CPU time and COSs of the three methods.
The CPU times of the grid-based ε-constraint method, curve-
based ε-constraint method, and NSGA-II algorithm were
56,703.958 s, 33,561.423 s, and 117,618.003 s, respectively. The
two proposed methods had higher computational efficiency,
among which the curve-based ε-constraint method had the
highest computational efficiency. Since different Pareto
optimal solutions can be calculated independently in the two
proposed methods, thus, the parallel calculation technique for
opening eight threads in the eight cores of the used computer was
used to improve the computational efficiency. By the parallel

calculation, the CPU times of the grid-based ε-constraint method
and the curve-based ε-constraint method were reduced to
7,260.439 s and 4570.952 s, and the acceleration ratios were
7.810 and 7.342. These demonstrated that the two proposed
methods had good computational performance for solving the
five-objective SCUC model, and they were more suitable for
solving MaOPs. The COSs of the three methods are shown in
Table 4. The λ value corresponding to the curve-based ε-
constraint method was the largest, which indicated that the
obtained COS was the best in the coordinate optimization of
the five objectives. Thus, this analysis showed that the curve based
ε-constraint method could obtain the Pareto frontier and the COS
more efficiently, and the obtained COS had a better optimization
degree.

The power output schedule of the units corresponding to the
COS obtained by the curve-based ε-constraint method is shown
in Figure 5. The PSH and BES stations pumped water and
charged energy, respectively, during the low-load time
intervals, and they generated electricity and discharged energy,
respectively, during the high-load time intervals, which has high
flexibility for regulating power rapidly.

5.2 An Actual Power Grid
The actual power grid includes 1,563 buses, 733 lines, and 1,675
transformers. The main network structure, including several
110 kV power plants and lines, is shown in Supplementary
Figure B1. The units included two PSH units, six coal-fired

FIGURE 4 | Pareto frontier obtained by the NSGA-II algorithm.

TABLE 4 | Comparisons of the COSs by different methods.

Method z1/10
4 ¥ z2/MWh z3/10

4 ¥ z4/10
4 ¥ z5/t λ

Grid method 19.130 3.488 67.391 17.139 367.603 0.711
Curve method 22.773 3.371 59.887 16.217 373.966 0.753
NSGA-II 26.825 3.392 71.801 16.916 359.184 0.686

FIGURE 5 | Power output schedule of the units.

TABLE 5 | Comparison of convex and real loss of the SOPs.

Objective Convex loss/MWh Real loss/MWh Relative error/%

z1 2324.816 2319.584 0.226
z2 2126.807 2126.265 0.025
z3 2191.674 2177.523 0.650
z4 2297.921 2298.959 0.045
z5 2346.977 2344.412 0.109
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TG units, 32 gas-fired TG units, four garbage-fired units, one BES
station, and one WF. The parameters of parts of the units are
given in Supplementary Table B1. There are five tie lines for
power exchange between the grid and outer grids. The power
transmission plan curve and total load forecast curve of each tie
line are shown in Supplementary Figure B2. The forecast load of
each node was determined according to the load percentage in
BPA operation data. The forecast output of the WF is shown in
Supplementary Figure B3. The values of Lu%, Ld%, wu%, wd%,
and λw are the same as those given in the Convex Relaxation of
Network Loss section. For the BES station, the rated power and
capacity were 5 MW and 10 MWh, Cdis,b/Cch,b = 0.8 ¥/kWh, and
ηdis,b/ηch,b = 96%.

5.2.1 Comparison of Convex and Non-convex Models
Comparative results of the network loss of the five SOPs are
shown in Table 5, demonstrating the high computational
accuracy of the proposed convex hull relaxation method for
the quadratic term of network loss in large-scale SCUC
problems. Comparison of the CPU time of the original
MINNP model with the MICP model is shown in Table 6.
The CPU time of the MICP model decreased by more than
90%, and the convergence problem of theMINNPmodel was also
addressed, which demonstrated the high-computational
efficiency and convergence of the proposed convex hull
relaxation method.

5.2.2 Solution of the Pareto Frontier and the COS
We calculated Spearman correlation coefficients among the five
objective functions and the sum of the negative correlation
coefficients of each objective, which are shown in
Supplementary Table B2. The absolute sums of the negative
correlation coefficients of z4 and z5 were the largest. Thus, we
selected Sc = [z4, z5] as the first-level conflicting objective and z4 as
the second-level conflicting objective.

The NSGA-II algorithm cannot solve this large-scale five-
objective SCUC problem because of the huge size of the
optimization model. Thus, we compared only the results of
the two proposed ε-constraint methods. For the grid-based
five-objective ε-constraint method, by setting q1 = q2 = 2, the
total number of grid points of the upper layer two objectives was
nine. The Pareto frontier surface of the lower layer three-objective
optimization model corresponding to each grid point was
obtained by solving Eq. 40. The final Pareto frontier of the
five-objective SCUC model is shown in Figure 6. For the
curve-based ε-constraint method, the NNC method was used
to solve the Pareto frontier curve of the upper layer two-objective
optimization model (Eq. 41) by setting m = 6. Then, the Pareto
frontier surface of the lower layer three-objective optimization
model corresponding to each point (z4,k, z5,k) was obtained by
solving Eq. 42. The final Pareto frontier of the five-objective
SCUC model is shown in Figure 7. From Figures 6, 7, it can be
seen that more Pareto optimal solutions were obtained by the
curve-based ε-constraint method than by the grid-based ε-
constraint method. We compared the CPU time of the two
methods, the CPU times of the grid-based and curve-based ε-
constraint methods by the parallel calculation technique were
24765.4 and 16,792.8 s, respectively. This demonstrated that the
curve-based ε-constraint method had higher computational
efficiency than the grid-based ε-constraint method. Obviously,
if the used computer has more cores, the computational efficiency
of the proposed curve-based ε-constraint method will be further
increased to satisfy the requirement of actual application.

TABLE 6 | Comparison of the CPU time of the MINNP and MICP models.

Objective MINNP/s MICP/s Time saved/%

z1 10616.795 718.395 93.233
z2 — 1350.432 —

z3 9138.156 544.190 94.045
z4 6993.678 221.902 96.827
z5 33461.024 366.397 98.905

FIGURE 6 | Pareto frontier obtained by the grid-based ε-constraint
method.

FIGURE 7 | Pareto frontier obtained by the curve-based ε-constraint
method.
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Although the grid-based ε-constraint method solved a higher
number of lower layer three-objective optimization models and
consumed more CPU time, many dominated solutions in the
obtained results had to be deleted in the final Pareto frontier of
the five-objective SCUC model. Thus, the curve-based ε-
constraint method had better results and higher computational
efficiency than the grid-based ε-constraint method.

The objective functions of the COSs obtained by the two
proposed methods and the five single-objective optimal
solutions are shown in Table 7. The λ value of each
solution is also listed in the table. The COS obtained by the
curve-based ε-constraint method was the best because it had
the largest λ value. The results demonstrated that the proposed
curve-based ε-constraint method could obtain a COS with a
better comprehensive optimization degree in the coordinate
optimization of the five objectives.

The power output schedules of several units and the BES station
corresponding to the COS of the curve-based ε-constraint method
are shown in Figure 8. The schedules reflected the high flexibility
of PSH and BES stations to rapidly regulate their power output.

5.3 RESULTS ANALYSIS

From the aforementioned results, the proposed convex hull
relaxation method for the quadratic equality of network loss
had high computational accuracy, and it could obtain the

optimal solution of the SCUC model more efficiently and
reliably. For solving the Pareto optimal solutions of the
proposed five-objective SCUC model, the proposed curve-
based ε-constraint method had higher computational
efficiency than the proposed grid-based ε-constraint method
and the NSGA-II algorithm. Moreover, the obtained COS of
the proposed curve-based ε-constraint method had a better
optimization degree than the other two algorithms. By the
parallel computation technique, the computational efficiency
of the proposed curve-based ε-constraint method for solving
the Pareto optimal solutions of the five-objective SCUC model
can be greatly increased to satisfy the requirement of actual
application.

6 CONCLUSION

In this study, we proposed a system flexibility risk index to
quantify power system flexibility under the uncertain
fluctuation of wind power, including in extreme wind power
output scenarios. Then, we established a five-objective SCUC
model considering system flexibility. We used the convex hull
relaxation method to relax the quadratic equality constraints
of network loss in this model and transformed the original
MINNP model into the MICP model. According to objective
selection and ε-constraint methods, we proposed a two-
objective dimension reduction method to transform the

TABLE 7 | Comparison of the single-objective solutions and the COS.

Objective z1/10
4 ¥ z2/MWh z3/10

4 ¥ z4/10
4 ¥ z5/t λ

z1 0.000 2324.816 8682.374 5304.227 11.856 0.416
z2 1237.870 2126.807 7859.857 4788.636 10.278 0.498
z3 1008.185 2191.674 6305.338 4262.701 11.310 0.532
z4 2241.537 2297.921 7200.336 3961.590 12.281 0.383
z5 1854.669 2346.977 9629.219 5149.155 6.981 0.351
Grid method 545.263 2281.855 7346.926 4512.276 8.902 0.636
Curve method 627.635 2214.980 7221.109 4451.038 9.469 0.688

FIGURE 8 | Power output schedules of some units. (A) Several TG and PSH units. (B) BES station.
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five-objective SCUC model into a series of three-objective
SCUC models. We used the NNC method to obtain the
evenly distributed Pareto frontier surface of each three-
objective SCUC model. Results of case studies on the
modified IEEE-9 bus system and an actual power grid
demonstrated that the proposed curve-based five-objective
ε-constraint method could solve the five-objective SCUC
problem with higher computational efficiency and obtain a
better COS than the grid-based ε-constraint method. The
proposed method also was superior to the NSGA-II
algorithm, which was unable to solve the problem altogether.

In future work, we may explore how to extend the proposed
method to solve the Pareto frontier of the many-objective SCUC
model with more than five objectives and seek to visualize the
Pareto frontier in the three-dimensional ordinate space.
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