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Anomaly detection for hydraulic turbine unit has an important role in hydropower system. In
hydropower systems, different components will produce n-dimensional heterogeneous
time series with different characteristics at all times. Due to the characteristic evolution and
time dependence, vibration-based anomaly detection for hydraulic turbine unit is extremely
challenging. In this paper, we propose a conditional quantile regression based recurrent
neural network (QRNN), which models the time dependence and probability distribution
between random variables. The proposed method aims to extract the actual
representation patterns from the fitted models and it can effectively detect anomalies in
the non-uniform time series of feature evolution. The experimental results show that the
proposed method has better accuracy in anomaly detection (error reduction by 34%) than
the traditional method, and saves at least 25.6% of execution time.

Keywords: anomaly detection, hydropower system, n-dimensional heterogeneous time series, quantile regression
based recurrent neural network (QRNN), characteristic evolution

1 INTRODUCTION

In order to control the stability and security, data analysis and detection methods play an important
role in power systems (Liu et al., 2017; Xiong et al., 2019; Xiong et al., 2021). Different from the wind
power system (Liu et al., 2020), the operation process of a hydropower unit is complex. According to
the statistics, the vibration signal of the unit can reflect more than 80% of the fault characteristics.
Therefore, we propose to detect the fault of hydropower turbine unit based on mining the vibration
signal data in this paper. Due to highly nonlinear, instability and time-varying characteristics of the
vibration signal data of the hydraulic turbine unit, it is difficult to be modeled precisely. At present,
the non-stationary vibration signal processing methods include short-time Fourier transform, Mode
Decomposition and so on. In order to solve the problems of empirical mode decomposition on
mathematical theory, Konstantin et al. (Iyer et al., 2016) proposed variational mode decomposition
method. Assuming that the signal is composed of modal functions with different center frequencies,
it is decomposed by self-adaptive and quasi-orthogonal methods in the variational framework.
Breiman et al. (Breiman, 2001) proposed the random forest theory. Based on decision tree, this
method generates several decision trees by randomly feature selection and samples. After each
decision tree is trained separately, the final sample category is voted on. However, they are not
suitable for processing the multivariate vibration time series data of hydraulic turbine unit.

Extreme value theory (EVT) (Xu et al., 2018), Peak over-threshold (POT) (Hundman et al., 2018),
and distance-based (Dragomiretskiy and Zosso, 2013) can be used for time series anomaly detection
(Wu et al., 2014). All these methods may involve a large number of distribution assumptions,
parameter adjustments, and heavy calculations in the conversion process. This may increase the
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calculation cost. Although there are many studies on anomaly
detection (Mehrotra et al., 2017), they either focus on
deterministic methods (Filonov et al., 2016) or random
methods (Dasgupta and Osogami, 2017; Lai et al., 2018), and
ignore time dependence of the time series (Guha et al., 2016). In
(Manzoor et al., 2018), the goal is to identify independent
anomalous objects rather than identifying anomalous time
series patterns based on their time dependence. In time series
modeling, historical observations are very important for
understanding current data. Therefore, it is better to use a
sequence of observations: X_(t-T), X_(t-T+1), . . ., X_t rather
than X_t to calculate the anomaly score in time series.

Vector auto regression (VAR) and support vector regression
(SVR) can be applied to multivariate time series (Lai et al., 2018).
However, many of these models are difficult to scale up and
include exogenous variables (Liu et al., 2020). Supervised
methods (Laptev et al., 2015; Shipmon et al., 2017) require
labeled data for model training, and can only identify known
types of anomalies. The unsupervised method does not need to
label the data, which can be divided into two categories: the
deterministic model and randommodel. For deterministic model.
In order to capture both the long-term dynamics and short-term
effects simultaneously, the non-linear dynamics modeling, long
short term memory (LSTM) methods (Hochreiter and
Schmidhuber, 1997; Gers et al., 2000; Borovykh et al., 2017;
Grob et al., 2018) have been proposed for forecasting events
based on sequence models. For deterministic model, (Filonov
et al., 2016) proposed a LSTM-based predictive models to detect
spacecraft anomalies. Although LSTMs are deterministic and
have no random variables, they can handle the time
dependence of heterogeneous time series. For random model,
recurrent neural network (Dasgupta and Osogami, 2017; Lai
et al., 2018) is used for time series anomaly detection. Auto-
encoder-based methods are used for time series anomaly
detection in (Boudiaf et al., 2016; Xu et al., 2018). Variants of
convolution and recurrent neural networks are used for modeling
temporal patterns (Calvo-Bascones et al., 2021). Deep
convolutional neural networks (Kim, 2014; Yang et al., 2015)
have been used for time series human activity recognition.
Memory guided normality for anomaly detection is proposed
in (Park et al., 2020). Deep learning based anomaly detection
methods for video and industrial control system are proposed in
Wang et al. (2020) and Nayak et al. (2021), respectively. The deep
neural network (Sen et al., 2019), (Salinas et al., 2017) has been
proposed to high dimensional time series forecasting, however, it
is limited to training on entire time series and then perform
multi-step ahead forecast which is practically computational
resource demanding in feature evolving heterogeneous time
series. Recently, (Pang et al., 2021) give a survey of deep
learning methods for anomaly detection. However, in the
hydraulic turbine system, different subsystems and parts will
produce n-dimensional heterogeneous time series with different
characteristics at all times. This will form a heterogeneous time
series of feature evolution.

In this paper, we propose a quantile regression (Geraci and
Bottai, 2007) based recurrent neural network (QRNN) for
anomaly detection of hydropower units. The proposed method

can explicitly model the temporal dependence among stochastic
variables with properly estimated probability distributions.
Considering the feature evolution of heterogeneous time series,
the most difficult part in this method is still how to detect
anomalies. The most intuitive way to verify the reliability of
the detection model is to find the correct estimated distribution
probability. The higher the probability, the higher the confidence.
But this does not mean higher accuracy. The proposed method
aims to extract the actual representational patterns from the fitted
models, thereby studying their reconstruction error probability
distribution by using a conditional quantile regression method to
limit mistakes when it is forced to make decision on normality by
guidance of principled uncertainty estimates. Inspired by the
distribution assumptions-free QR (Koenker and Bassett Jr, 1978;
Koenker and Machado, 1999; Koenker and Hallock, 2001) build
on asymmetric laplace distribution (Kotz et al., 2001), we
proposed QRNN to model the conditional distribution
P(ŷt|Xt−T, Xt−T+1, . . . , Xt), where ŷt is the predicted value.
The contributions of this paper can be summarized as follows:

• According to the characteristics of hydraulic turbine data,
we propose a quantile regression based recurrent neural
network for anomaly detection, which can model temporal
dependencies and stochasticity explicitly in vibration time
series data. And it can study the reconstruction error
probability distribution by using a conditional quantile
regression method.

• We propose an incremental online method to update the co-
evolving heterogeneous for multiple streaming data.

• We propose to apply stochastic methods to detect anomalies
in heterogeneous time series with feature evolution, which is
proved robust and powerful in the experiment.

The rest of this paper is organized as follows. In Section 2, we
introduce the problem and the related model used in this paper.
In Section 3, we describe the proposed method in detail. In
Section 4, we conduct several experiments to evaluate the
advantage of the proposed method. At the end, we conclude
the paper in Section 5.

2 PROBLEM AND MODEL

2.1 Formal Description of the Problem
Formalize the anomaly detection problem in the feature evolution
time series, [T0, T) represents the observation window of the
observed event. In general, it can be assumed that T0 = 0. Each
feature F uses a continuous time stamp sequence Tu = t1, . . ., tn.
Xt−T:t ∈ RM×(T+1) represents the observation sequence Xt−T,
Xt−T+1, . . ., Xt. ŷ and y represents the predicted value and the
true value. L represents the loss function. In the problem of time
series anomaly detection, past historical observations are very
important for understanding and capturing the dynamic patterns
in the current data stream.We use the observation sequenceXt−T:t

to calculate the anomaly score ofXt. GivenX = x1, . . ., xN, whereN
is the length of the vector x. The observation xt is the N-
dimensional vector xt � [x1

t , . . . , x
N
t ] and X ∈ RM×N at time
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t(t ≤ N). According to the past historical observation data Xt−T:t,
the problem of anomaly detection in vibration time series data of
hydraulic turbine unit is formally defined as follows.

Problem: Given the historical observation sequence
represented by the time series in the order given as Xt−T:t,
where t is the current time point, report an anomaly score for
a given current data point Xt instantly at any time.

2.2 Long Short-Term Memory
LSTM is a kind of deep recurrent neural network. It is widely used
in time series. LSTM realizes the memory function in time
through the opening and closing of the door. It can effectively
solve the problem of gradient disappearance and gradient
explosion in general situations. The key is to introduce a
gating unit system. The system stores historical information
through the internal memory unit-cell state unit. Different
gates can make the network know when to forget historical
information, when to update cells status dynamically. Cells are
cyclically connected to each other, instead of hidden units in the
general cyclic network. If the input gate sigmoid allows new
information input, its value can be added to the state. The state
unit has linear self-circulation. Its weight is controlled by the
forget gate. The output of the cell can be closed by the output gate.
The status unit can also be used as an additional input for the
gating unit.

ft � σ wfp Ct−1, Zt, ht−1[ ] + bf( ) (1)
it � σ wip Ct−1, Zt, ht−1[ ] + bi( ) (2)

Ct � ftpCt−1 + itpRELU wcp Zt, ht−1[ ] + bc( ) (3)
ot � σ wop Ct, Zt, ht−1[ ] + bo( ) (4)

ht � otpRELU Ct( ) (5)
Here f, i, o, h, C, c, w, Z, b, σ() respectively represents forget

gate, input gate, output gate, hidden state vector, unit state vector,
weight matrix, feature vector, bias vector and sigmoid function. In
this paper, we select to use LSTM due to the following features: 1)
it is able to support end to end modeling; 2) it is easy to
incorporate exogenous; 3) it is powerful in feature extraction
for vibration time series data of hydraulic turbine unit.

3 THE PROPOSED METHOD

3.1 The Architecture of QRNN
This paper propose to combine LSTM and conditional quantile
regression to model explicitly temporal dependencies and
stochasticity in vibration time series data of hydraulic turbine
unit. The overall structure of QRNN consists of two parts: 1)
offline training 2) online anomaly detection. As shown in
Figure 2, the proposed neural network is composed of two
recurrent neural networks, such as the LSTM encoder and
predictor-detector network. It can be considered as f = pd(e(ht,
(x,y)t)) where f is the predicted scores, xt and yt are the input
variables, ht is the encoder state, e(.) is an encoder and pd(.) is the
predictor-detector network. The LSTM encoder is trained to
extract useful temporal and non-linear patterns contained in
vibration time series data, which can be used to guide the
predictor-detector network of anomaly detection. If exogenous
variables are available, they can get concatenated with extracted
feature vectors from the LSTM encoder and used as input to the
predictor-detector network. The predictor-detector network
consists of an LSTM and dense layers for output prediction.
The training process can be carried out daily training according to
business needs, such as once a week or once a month. The offline
part is composed of preprocessing sub-module (shared by online
and offline modules) and start-up sub-module. The online part
consists of real-time detection and update sub-modules. The data
is preprocessed in the preprocessing module. The data is divided
into sequences through a sliding window of length T. The startup
module builds the model and deploys it to memory after training,
testing, and verification. The fitted model can now perform real-
time anomaly detection. In streaming or online settings, new
observations after preprocessing (such as Xt at time t) can be sent
to the detection module and provide anomaly scores. If the
abnormal score of Xt is lower or higher than the abnormal
threshold, Xt is marked as abnormal. The update of sub-
module will update the parameters of each operation in
QRNN db. The overall structure is shown in Figure 1.

QRNN is composed of LSTM encoder and prediction-detector
network. The network can essentially be regarded as a large
neural network, expressed as f = pd(e(ht, (x,y)t)), where f is the

FIGURE 1 | The proposed neural network model with LSTM encoder and predictor-detector network.
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prediction score, xt and yt are input variables, ht is the state of the
encoder, e(.) is the ana encoder, and pd(.) is the prediction-
detection network. The trained LSTM encoder can extract useful
time and nonlinear dynamic patterns contained in the
heterogeneous time series of feature evolution. These patterns
can be used to guide the prediction-detection network to perform
anomaly detection.

If exogenous variables are available, they can be connected
with the feature vector extracted from the LSTM encoder and
used as input to the predictor-detector network. This is because in
reality, it is not necessary to observe all the content needed to
predict the output through the input. After the LSTM encoder
network is trained, the output from the last cell state is sent to the
prediction-detection network. This is also the training prediction
score evolution data stream ŷt+M: t � pd(ht−T, Xt+M: t), where
h(.) is the hidden coding state, as shown in Figure 3. The
proposed QRNN prediction-detection network consists of an
LSTM layer and a fully connected output prediction layer. The
last dense layer is modeled as three outputs and three loss
functions. One for the desired fitting model. The other two are

used to guide the upper and lower bounds of forecast uncertainty
estimates. It is worth noting that the total loss is calculated as the
sum of individual quantile losses. And the output is all quantile
predictions of different quantile values defined by τ ∈ [0, 1].

3.2 Fault Detection and Loss Function
QRNN is an anomaly detector based on prediction. The anomaly
detection depends on the quality of the predicted value. When
predicting normal data, the probability distribution of the error
can be calculated, and then used to find the maximum posterior
probability estimate of the normal behavior of the test data. In
order to predict more accurately, it is necessary to set thresholds
for the upper and lower bounds. Beyond this threshold, data
points can be marked as abnormal, as shown in Figure 4. In the
deep learning regression task setting, the mean square error
function is the most commonly used loss function.

ξt � yt − ŷt (6)
Intuitively speaking, taking the negative power of the mean

square error function approximates the Gaussian process whose

FIGURE 2 | The overall structure of QRNN.

FIGURE 3 | QRNN architecture diagram.
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mode corresponds to the mean parameter. Non-parametric
distributions like conditional quantiles are very useful in
quantifying uncertainty estimation in decision-making and
minimizing risk.

The goal of Quantile regression (QR) is to estimate the
conditional median or any other quantile of the distribution.
It can be done by solving the following formula.

min
ξ∈R

∑ ρr yi − ξ( ) (7)

Where the function ρr(.) is the tilted absolute value function that
yields the τth sample quantiles. To obtain an estimate of the
conditional median function, we replace the scalar ξ by the
parametric function ξ(xi, β), which can be formulated as a
linear function of parameters.

min
β∈R

∑ ρr yi − ξ xi, β( )( ) (8)

Quantile regression learns to predict the conditional quantiles
ŷτt+1: M|(Xt−T: t, τ) for the given target distribution via formula
(9), in which ŷτ(.) is the predicted value at the given quantile.

P ŷt+1: M ≤ ŷτt+1: M( ) � τ (9)
We focus on putting weights to the distances between points

on the distribution function and the fitted regression line based
on the selected quantile. We select to use QR due to it has the
following key features: 1) It does not make any distribution
assumption on the error; 2) QR can describe the outcome
variable of the entire conditional distribution; 3) QR is more
robust to outliers and setting errors of the error distribution; 4)
QR can expand the flexibility of parametric and non-parametric
regression methods.

We set τ ∈ [0, 1] to generate the predicted value yt+1:M with the
smallest reconstruction error ξ, as shown in the formula (6) in the
predictive detector network. And calculate the quantile loss of a
single data point by formula (10). Because we needed a complete
conditional distribution rather than a point estimate of
uncertainty estimation, the average loss function L(.) on a

given data distribution can be defined by formula (11), where
fW(xt) is the fitting model under the given quantile τ, yt and xt are
true values.

L ξt|τ( ) � τξt if ξt ≥ 0
τ − 1( )ξt if ξt < 0

{ (10)

L yt, f
W xt( )τ( ) � 1

L
∑L
t�1

L yt, f
W xt( )|τ( ) (11)

In the case of a loss function, the prediction-detector network
is modeled as three outputs and three loss functions, with the
lower quantile, the median (fitting model) and the upper quantile.
At τ = 0.5, the loss function will estimate the median value instead
of the average value. With the upper quantile and the lower
quantile, a reliable uncertainty estimate can be provided for
forecasting.

3.3 Time Series Evolution
It needs to be considered that during the operation of the turbine,
the data update of each subsystem arrives in the form of a stream
over time. This may include updates to existing features, or new
features, as shown in Figure 1. Generally, a time series may have
endogenous variables (for example, the output is a function of the
previous output), or may not have exogenous variables that are
not affected by other variables in the system. But the output
depends on it. Most work ignores exogenous variables. But in
order to improve quality and improve anomaly detection, this
article introduces exogenous variables. When performing
anomaly detection on the time series of various hydraulic
turbines, sometimes there may be patterns that were not
previously available. It deviates greatly from the training
model. This may be a training data set observed in a specific
mode. In general, it requires that each time a new data set is
reached, the entire process of training the model must start from
the beginning. For hydraulic turbine time series fault detection
models, training the entire model requires a large amount of data
sets and a large amount of time. In actual situations, it is
impractical to keep training the model with the arrival of new

FIGURE 4 | Schematic diagram of anomaly detection.
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data. In order to solve this problem, an online incremental update
scheme is needed to provide threshold and model updates.
QRNN can receive previously unavailable characteristics or
evolved data points for learning, without starting from scratch,
so as to mark abnormal data points and update model parameters
in real time, as shown in formula (12) and (13), where thup and
thlo are the upper and lower thresholds of the abnormal score
calculated by the selected quantile, α1 and α2 are the higher and
lower bounds, respectively, and f̂(.) is the fitted model at the
corresponding quantile (τ = 0.5 corresponds to the median).

thup � f̂ xt( )τ�α2 (12)
thlo � f̂ xt( )τ�α1 (13)

Based on the conditional quantile regression, with the
emergence of a new data set, the confidence of the model
parameter distribution will be automatically updated. The
threshold value will be incrementally updated, as described in
the loss function above. With this setting, QRNN can perform
anomaly detection in vibration time series data of hydraulic
turbine unit.

Figure 5 shows the overall algorithm of QRNN. For
preprocessing, offline training, evaluation, testing and
detection is performed. The fitted model f̂(.) is loaded into
memory ready for anomaly detection which is performed in
formula (12) and (13). After the traversal is completed, the
fitted model is saved to QRNNdb. QRNN is design to operate
with multiple settings depending on whether exogenous features
are present. During fitting, different processing needs to be
performed according to whether the exogenous feature (XF) is
existed. During this procedure, LSTM encoder can be used as
feature extractor. Upon the arrival of vibration time series data of
hydraulic turbine unit, the proposed QRNN will predict its value
and seamlessly flag its anomaly score. At the same time, themodel

parameters will be updated. The prediction, model updates and
abnormal scoring can be completed in a single pass at O(1) time
complexity.

4 EVALUATION

In order to verify the efficiency of the proposed method, we
adopted the hydraulic turbine working simulation data set
provided by Case Western Reserve University (CWRU) to
perform the experiment and evaluation. The test bench
consists of a two-horsepower motor, a torque sensor/encoder,
and an electronic device for power measurement and control. The
vibration data is collected by an accelerometer. The accelerometer
is placed at the 12 o’clock position of the drive end and the fan
end of the motor housing, which using a 16-channel DAT
recorder (Smith and Randall, 2015). Experimental data of the
drive end is collected at 12,000 sampling points per second and
48,000 sampling points per second. The fan data is collected at
12,000 sample per second (Boudiaf et al., 2016). The detailed
attributes of the data set used in the experiment are shown in
Table 1. We use python and Keras framework to build neural
network. The experimental setting is CPU 2.30 GHz, 8G DDR4
3200 MHZ, and GeForce GTX 1050Ti GPU.

Adam optimizer is used in this method, which is an extension
of SGD. In this algorithm, an adaptive gradient algorithm is
introduced to adjust the learning rate. The errors of different
methods on different load data sets are shown in Table 2. “1HP”
in the table represents that there is a load in the device. In the
QRNN method, the ability of anomaly detection largely depends
on trend prediction, so the accuracy of trend prediction is very
important. It can be seen from the table that the QRNN method
has a greater improvement in the accuracy of trend prediction
compared to other methods. Compared with the errors of CNN,
GRU and BiLSTM, the QRNN method has reduced 41, 44, and
65% respectively.

One-dimensional CNN can be well applied to the time series
analysis of sensor data (Roska and Chua, 1993) (such as

FIGURE 5 | The overall algorithm of QRNN.

TABLE 1 | Data set attributes.

Loads Rotating speed (rpm) Sequence length

0HP 1,797 2,43,938
1HP 1,772 4,83,903
2HP 1,750 4,83,903
3HP 1,730 4,83,903

TABLE 2 | Mean square error of trend prediction of QRNN, CNN, GRU, and
BiLSTM methods on data sets under different loads.

CNN GRU BiLSTM QRNN

0HP 1.261 × 10–4 1.326 × 10–4 2.082 × 10–4 1.122 × 10–4

1HP 1.217 × 10–4 1.345 × 10–4 2.139, ×, 10–4 1.056 × 10–4

2HP 1.155 × 10–4 1.272 × 10–4 1.947 × 10–4 1.021 × 10–4

3HP 1.268 × 10–4 1.333 × 10–4 1.445 × 10–4 0.909 × 10–4
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FIGURE 6 | CNN for anomaly detection.

FIGURE 7 | GRU for anomaly detection.

FIGURE 8 | BiLSTM for anomaly detection.
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gyroscope or accelerometer data). It can also be used to analyze
signal data with a fixed length period (such as audio signals). It
can well identify simple patterns in the data, and then use these
patterns to generate more complex patterns in higher-level
layers. It is generally feasible to use one-dimensional
convolution to process time series. The results of CNN are
shown in Figure 6.

Long short-term memory network (LSTM) was born to solve
the problem of long-term dependence. As a variant of LSTM,
GRU combines the forget gate and input gate into a single update
gate. It mixes the cell state and the hidden state, and adds some
other changes. The final model is simpler than the standard
LSTM model. BiLSTM is also a variant of LSTM, which takes
context into account. The results of GRU and BiLSTM are shown
in Figures 7, 8, respectively.

The main body of the QRNN framework is composed of
LSTM encoders. LSTM network is used to solve the vanishing
gradient problem. It supports end-to-end modeling and
nonlinear feature extraction. In the process of training the
neural network, the error margin has a direct impact on the
accuracy of the model, especially the time. This is a hyper
parameter and needs to be specified before training. The
basis for the formulation is the convergence speed of the
model and the learning accuracy of the sample. When it is
too large, neither the training accuracy nor the test accuracy is
high enough to meet actual needs. If it is too small, although the
learning effect is more ideal, it takes a lot of time. The parameter
is set between 10–4 10–2 generally. When the training error is
lower than this value, the training is considered sufficient, and

the training should be stopped. The results of the QRNN are
shown in Figure 9.

We count TP (True Positive), FP (False Positive), FN
(False Negative), and TN (True Negative) based on the
experimental data. TP represents the number of abnormal
points marked by the neural network that are correctly
marked. FP means that it is actually a normal point but is
marked as an abnormal point. FN represents the number of
normal points marked as abnormal points. TN represents the
number of normal points that are marked correctly. We
calculate the precision and recall rate of each method
based on TP, FP, FN, and TN. The precision rate ( TP

TP+FP)
is used to measure the degree to which the method finds the
right way, and the recall rate ( TP

TP+FN) measures the degree to
which the method is found to be complete. As shown in
Table 3, it can be seen that the QRNN has the highest
accuracy and recall rates (95.9%, 94.3%). In addition,
although the structure of QRNN is relatively complex and
the training time is longer than CNN and GRU, the overall
running time (125.3 MS) is significantly shorter than them.

5 CONCLUSION

Anomaly detection of evolution time series is important for
hydraulic turbine systems. This paper introduces a vibration-
based anomaly detection method. It can deal with time-
dependent and non-linear complex dynamic sequences. As a
window-based anomaly detection method, it has scalability, high-

FIGURE 9 | QRNN for anomaly detection.

TABLE 3 | TP, FP, FN, TN value, precision, recall and running time of each method.

TP FP FN TN Precision (%) Recall (%) Time (ms)

CNN 323 53 102 9,522 85.9 76.0 154.7
GRU 367 37 58 9,538 90.8 86.4 164.3
BiLSTM 379 27 46 9,548 93.3 89.2 159.4
QRNN 398 17 27 9,558 95.9 93.6 125.3
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efficiency stream processing efficiency and can effectively deal
with the heterogeneity and randomness in the constantly
changing data stream. After experimental evaluation based on
real data sets, it indicates that the proposed method is fast, robust
and accurate compared to the traditional anomaly detection
methods.
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