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The accuracy and reliability of solid oxide fuel cell (SOFC) modeling mainly depend on the
precise extraction and optimization of some unknown parameters. However, the SOFC
model is a multi-peak, nonlinear, multivariable, and strongly combined system. In the
previous decisive optimization methods, it is difficult to achieve satisfactory parameter
extraction. Therefore, this article proposes a SOFC parameter extractionmethod based on
the superhuman algorithm and extracts several important parameters of the SOFC model.
In addition, the electrochemical model (ECM), which is a typical SOFC model, has also
been studied to verify the extraction performance of the glass jump optimization algorithm
(GOA) under various working conditions. Simulation results based on MATLAB show that
GOA can greatly improve the accuracy, speed, and stability of inferring these unknown
parameters through a comprehensive comparison with the particle swarm optimization
(PSO) algorithm.

Keywords: parameter extraction, optimization methods, meta-heuristic algorithm, solid oxide fuel cell,
electrochemical mode

INTRODUCTION

Due to insufficient expectations for the adverse effects of highly developed industries, anti-
prevention has caused a series of worldwide crises, such as insufficient resources, environmental
pollution (Yang et al., 2020; Yang et al., 2021a), and the destruction of the ecosystem. According to
the increase in energy demand and the construction of an environmental society, it is important to
study alternative energy forms that are different from the previous energy forms. Therefore, the
effective use of clean and low-carbon energy such as solar and wind energy has attracted more and
more attention (Yang et al., 2021b). Fuel cell (FC) is the fourth-generation technology following
water power, fire power, and atomic power. It is being formalized in order to convert chemical energy
into electrical energy efficiently and without pollution.

In this context, the market of fuel cells is expanding, and the application of fuel cells in various
practical engineering fields is growing. In particular, as a promising member of the FC system, solid
oxide fuel cells (SOFCs) have been widely used inmilitary and ship (Yang et al., 2021c), motor vehicle
equipment, and other mobile equipment fields (Wei and Stanford, 2019; Buffo et al., 2020; Malfuzi
et al., 2020). In addition, as promising environment-friendly power conversion equipment, the
performance degradation of SOFC will reduce the life and performance of the battery. Therefore, to
establish a correct and reliable SOFC model, technical research related to SOFC modeling analysis
and parameter estimation is being carried out. Generally speaking, SOFC models can be divided into
three types: electrochemical model (ECM), steady-state model (SSM), and dynamic model. Among
them, the feasibility of the electrochemical model has been verified in many studies. Therefore, this
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article uses an electrochemical model to study the extraction of
SOFC parameters (Li et al., 2012). Based on this, some unknown
parameters such as air pressure, fuel flow, and battery
temperature are very important to ensure the accuracy of
modeling (Messaoud et al., 2020).

In addition, the parameter extraction of SOFC is a
multivariable and multi-peak nonlinear function optimization
problem. In addition, the estimation method based on the data
provided by the manufacturer is difficult to meet the engineering
requirements, and the impact of each parameter on the model
performance is different. Extracting them with traditional
methods is a challenging task (Fathy et al., 2020). Therefore, a
large number of parameter extraction and optimization methods
have been developed and adopted in various models (Zhao et al.,
2016). Specifically, the parameter extraction strategy based on the
meta-heuristic algorithm has attracted extensive attention
because of its superior characteristics. The meta-heuristic
algorithm is independent of the system model and has fast
convergence speed. Literature research shows various meta-
heuristic algorithms, such as chaotic binary shark odor
optimizer (CBSSO) algorithm (Isa et al., 2019), bone particle
swarm optimization (BPSO) algorithm (Ijaodola et al., 2019),
adaptive differential evolution (ADE) algorithm, lunar flame
optimization algorithm (MFO) (Wang et al., 2020), hybrid
artificial bee colony algorithm (ABC), improved beetle antenna
search (IBAS), vortex search algorithm (VSA) (Damo et al.,
2019), multivariate optimization (MVO) (Wu et al., 2019a),
flower pollination algorithm (FPA), ant optimization algorithm
(ALO) (Nassef et al., 2019), gray wolf optimization (GWO),
neural network optimization (NNO), and differential evolution
(DE) (Masadeh et al., 2017). The overall algorithm can sample all
areas of the search space at the same time, so the overall solution
can be found simply by using the superhuman algorithm. So far,
MHAS has made progress in improving search capabilities and
efficiency (Gong et al., 2018). People in the past have conducted a
lot of research to solve this problem, but it is worth noting that the
accuracy, stability, and robustness of the system still have several
shortcomings, which need to be improved (Yang et al., 2016).

Therefore, this article proposes a grasshopper optimization
algorithm (GOA), which is a new intelligent optimization
algorithm proposed by S Saremi, S Mirjalili and A Lewiset. It
is widely used in parameter optimization and prediction of
various models due to its good development ability [20]. In
addition, by imitating the variation and crossover process of
grasshoppers in nature, the diversity of the population is
improved and local optimization is avoided (JemeÏJemei et al.,
2008; Wu et al., 2019b). The linear optimization strategy is
introduced to speed up the optimization speed and update the
individual location with the current optimal location as the target.
In addition, the main contributions/innovations of this article can
be concluded as follows:

C The electrochemical model of SOFC reflecting the V-I data
relationship is carefully established, and GOA is proposed to
extract several unknown parameters of the SOFC model;

C GOA is used to measure the V-I data of the 5 kW SOFC
stack, and comprehensively evaluate and analyze the actual

performance of GOA through comprehensive comparison
with ALO under various working conditions.

C Finally, the simulation results confirm that GOA can
effectively optimize the parameters of the SOFC model
through high precision, strong stability, and high
convergence speed.

The remaining articles are composed as follows. In Section
Solid Oxide Fuel Cells Modeling, the mathematical modeling of
SOFC and objective function will be explained. In addition,
Section Solid Oxide Fuel Cells Parameter Extraction Based on
Glass Jump Optimization Algorithm also introduces the
method of optimizing the model through GOA. Last, in
Section Design of Solid Oxide Fuel Cells Parameter
Extraction Based on Glass Jump Optimization Algorithm,
compare the performance of parameter extraction GOA
and ALO. Finally, the conclusion is shown in section
Conclusion and Perspectives.

SOLID OXIDE FUEL CELLS MODELING

The relative principle of the electrochemical mechanism of SOFC
is denoted in this section.

Electrochemical Reaction Mechanism
For the establishment of an accurate SOFC model and the
improvement of the service life of the battery, the modeling
analysis and parameter estimation of SOFC are studied [21].
Generally speaking, the SOFC model can be divided into ECM
and SSM. Among them, the electrochemical model is used to
study the extraction of SOFC parameters, as illustrated in
Figure 1, on the left is the physical picture and on the right is
the electrochemical reaction process.

The basic generation mechanism inside SOFC is
electrochemical reactions, the anode and cathode reaction
mechanisms are as follows:

At the anode side

H2 → 2H+ + 2e−. (1)
At the cathode side

1
2
O2 + 2H+ + 2e− → H2O. (2)

Total chemical reaction

H2 + 1
2
O2 → H2O. (3)

In the anode,H2 reacts with the catalyst and decomposes into
protons and electrons; O2 reacts with electrons and protons
through catalysis to produce water oxygen in the cathode; and
H+ represents the proton; e− means the electron [22].

Electrochemical Model
This section establishes a voltage characteristic function of
electrochemical by

Frontiers in Energy Research | www.frontiersin.org February 2022 | Volume 10 | Article 8539912

Ai et al. Parameter Extraction of SOFC

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


Vc � Ncell(Eo − Vact − Vohm − Vcon), (4)
where Eo is defined as the open circuit voltage, Ncell is the total
number of cells in a SOFC stack, Vact is defined as activation
voltage drop, Vohm denotes ohmic voltage drop, and Vcon

represents concentration voltage drop.
In addition, voltage loss Vact via Butler-Volmer equation

activation can be described by

Vact � Asinh−1(Iload
2I0,a

) + Asinh−1(Iload
2I0,c

), (5)

where A means the slope of Tafel line, Iload is expressed as
load current density, I0,a denotes the current density of the
anode, and I0,c is defined as the current density of the
cathode [22].

Furthermore, ohmic voltage drop Vohm can be defined by

Vohm � IloadRohm, (6)
where Rohm denotes the ionic resistance.

Finally, concentration voltage drop Vcon is expressed as
follows:

Vcon � −B ln(1 − Iload
IL

), (7)

where B is expressed as a constant and IL represents the limiting
current density.

Subscribe Eqs 5–7 into Eq. 4, the V-I relation of SOFC can be
summarized by

Vc � Ncell(Eo − Vact − Vohm − Vcon),
� Ncell(Eo − A sinh−1(Iload

2I0,a
) − A sinh−1(Iload

2I0,c
) + B ln(1

− Iload
IL

) − IloadRohm), (8)

It can be seen that seven parameters (i.e., Eo, A, I0,a, I0,c, B, IL,
and Rohm) need to be extracted in Eq. 8.

Fitness Function
The parameter extraction of SOFC is to search optimal
parameters to make the experimental data approach to the
simulation data accurately [23]. Furthermore, overall root
means square error (RMSE) is employed as the fitness
function to appraise the efficacy of various algorithms, which
can be described by

Fitness(x) �
��������������
1
N

∑N

k�1(errork)2
√

�
�������������������
1
N

∑N

k�1(Vm, k − Vc, k)2√
,

(9)
where x is an available solution. It should be noted that N
represents the numbers of I-V data; Vm, k and Vc, k are
defined as the kth measured voltage and calculated voltage,
respectively.

In addition, x denotes the solution vector that can be expressed
by x � [Eo, A, R, B, I0,a, I0,c, IL].

SOLID OXIDE FUEL CELLS PARAMETER
EXTRACTION BASED ON GLASS JUMP
OPTIMIZATION ALGORITHM
Principle of Glass Jump Optimization
Algorithm
The grasshopper optimization algorithm is a novel meta-
algorithm for global optimization where the migration and
foraging behavior of the grasshopper swarm is mathematically
modeled and mimicked to make exploration and exploitation in
solution space.

The mathematical model is presented as follows:

Xi � Si + Gi + Ai, (10)
where Xi denotes the position of the ith grasshopper, Si
represents the social influence between grasshoppers, Gi

defines the gravity factor on the ith grasshopper, and Ai

indicates the influence of wind advection on the position of
the grasshoppers.

FIGURE 1 | Electrochemical mechanism of SOFC.
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Among the above additions, Si has the greatest influence on
the position of the grasshopper. Si can be described as

Si � ∑N

j�1
j ≠ i

s(∣∣∣∣xj − xi

∣∣∣∣) xj − xi∣∣∣∣xj − xi

∣∣∣∣, (11)

where |xj − xi| defines the distance between the ith grasshopper
and the jth grasshopper, s(·) is a function to define the degree of
social influence, which can be expressed as

s(r) � fe
−r
l − er, (12)

where f is the intensity of attraction and l denotes the attractive
length scale.

Furthermore, the rest of additions Gi and Ai can be
calculated as

Gi � −geg (13)
Ai � −uew, (14)

where g is the gravitational constant, eg denotes a unity vector
toward the center of earth, u is a constant drift, and ew is a unity
vector describing the direction of wind.

Besides, for the consideration of coordinating global and local
optimization, the substitution of S, G, and A into Eq. 7 can be
improved as follows:

Xi � ∑N

j�1,j ≠ i
c
ubd − lbd

2
s(∣∣∣∣xj − xi

∣∣∣∣) xj − xi∣∣∣∣xj − xi

∣∣∣∣ + Td, (15)

where c is the decreasing coefficient to shrink the comfort zone,
repulsion zone, and attraction zone, as shown in Eq. 12,N is the
number of the swarm of grasshopper, ubd and lbd are the upper
and lower bounds of the function s(·) in solution space, Td is the
best position of grasshopper in d-dimensional space so far. In
addition, the influence of gravity is not considered, and it is
assumed that the wind direction always points to the optimal
solution [24].

c � cmax − n
cmax − cmin

L
, (16)

where cmax � 1, cmin � 0.00004 in this article, n is the current
number of iterations, and L is the largest number of iterations.

General Execution Procedure
In this section, the overall framework of the GOA strategy for
extracting SOFC parameters is mainly composed of three parts.

First, collect V-I data from the electrochemical model of SOFC
under various operating conditions. Next, apply GOA to process
the data. Finally, GOA obtains the best SOFC parameters through
successive iterations. In addition, Table 1 also shows the basic
steps of the GOA strategy. Among them, the difference between
various algorithms is mainly reflected in the retrieval mechanism.

As shown in Figure 2, GOA mainly contains several critical
operators, including global optimization where the migration and
foraging behavior of the grasshopper swarm are mathematically
modeled and mimicked to make exploration and exploitation in
solution space. Therefore, to find optimal parameters for SOFC,
GOA can be directly used to handle the training model.

DESIGN OF SOLID OXIDE FUEL CELL
PARAMETER EXTRACTION BASED ON
GLASS JUMP OPTIMIZATION ALGORITHM
In this section, GOA is used to extract the unknown parameters of
the SOFC model. Table 2 shows the search range of unknown
parameters in the model. Meanwhile, all V-I measurement data
are collected from the 5 kW SOFC stack of WCS-SFC MATLAB/
SIMULINK. The number and effective area of the stacked series
of units are 1,000 cm2 and 96, respectively.

In this section, the experimental conditions are RHa = 1 atm,
RHc = 1 atm, Tc = 1,173 K and RHa = 2 atm, RHc = 2 atm, Tc =
1,273 K. Through comprehensive comparison, carefully evaluate

TABLE 1 | Extraction procedure of GOA for SOFC parameter extraction.

FIGURE 2 | Flowchart of SOFC parameter extraction for GOA.
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the parameter extraction performance of ALO and GOA.The
experimental conditions are shown in Table 3 and Table 4. Tc
represents the operating temperature of the battery, RHa

represents the relative humidity of the anode vapor, and RHc

represents the relative humidity of the cathode vapor.
In addition, in order to obtain a fair and convincing

comparison, the two algorithms performed 12 independent
runs and obtained statistical results. At the same time, the
maximum number of iterations and overall size of all MhA
are designed to be 50 and 200, respectively. On the other
hand, Matlab 2019a used a personal computer equipped with
IntelR CoreTMi7 CPU, 2.0 GHz, and 32 GBAM to conduct all the
situation studies.

Case 1 (RHa = 1atm, RHc = 1 atm,
Tc = 1,173K)
When the experimental conditions are RHa = 1 atm, RHc = 1 atm,
and Tc = 1,173 K, the statistical results of the seven parameters of
the SOFC and RMSE electrochemical models obtained by the
GOA and ALO algorithms are shown in Table 3, which εi
(i=1,2,3,4) denotes the semi-empirical coefficients, λ means the
water content of proton exchange membrane, Rc are the
equivalent impedance of a proton membrane and b is the
parametric coefficient; Obviously, the result obtained by
RMMSEGOA is much smaller than that of ALO. The RME
obtained by ALO is 60.32% smaller than that of GOA. This
proves that GOA can greatly enhance the accuracy of SOFC
model parameter extraction.

Figure 3A shows the convergence of ALO and GOA. This
shows that GOA can achieve lower errors. In particular, it is
difficult for ALO to converge, and it is difficult to obtain the best
solution with high quality. Therefore, it can be seen that GOA has

gradually discovered high-quality solutions with high
convergence stability and high search efficiency.

Figure 3B also shows the RMMSE box whiskers obtained by
ALO and GOA. This reflects the RMSE distribution achieved by
ALO and GOA in 12 runs. Obviously, the distribution range and
upper and lower limits of GOA are smaller than ALO. In
addition, it can effectively reduce the deviation value of
RMMSE obtained by GOA. Therefore, it can also effectively
verify that GOA can more accurately extract the unknown
parameters of the SOFC model.

Besides, the average RMSE obtained by ALO and GOA are
shown in Figure 3C, which shows that GAO can acquire a smaller
average RMSE. Besides, RMSE obtained by GOA is 54.68%
smaller than that of ALO, which verifies that GOA can
effectively enhance the accuracy of parameter extraction.
There is no doubt that GOA can effectively find more
appreciate unknown parameters.

Last, Figure 3D describes V-I curves via ALO and GOA under
RHa = 1 atm, RHc = 1 atm, Tc = 1,173 K experimental conditions.
It can easily see that data via GOA are highly matched up with
measure data; the result effectively reflects that GOA has superior
performance for SOFC parameter extraction.

Case Two (RHa = 2atm, RHc = 2 atm,
Tc = 1,273K)
Table 4 shows the model parameters and RME of ALO and GOA
under the experimental conditions of RHa = 2 atm, RHc = 2 atm,
Tc = 1,273 K, indicating that GOA can effectively improve the
calculation accuracy. For example, the RME obtained by GOA is
69.23% lower than that of ALO. Therefore, GOA has a stable
global search function. While considering reliability and speed
accuracy, ideal results can be obtained.

TABLE 2 | Upper/lower range of seven unknown parameter for SOFC models.

Parameter Eo (V) A (V) Rohm (kΩ · cm2) B (V) I0,a (mA/cm2) I0,c (mA/cm2) IL (mA/cm2)

Lower bound 0 0 0 0 0 0 0
Upper bound 1.2 1 1 1 30 30 200

TABLE 3 | Statistical results of average RMSE obtained by various algorithms (RHa = 1 atm, RHc = 1 atm, Tc = 1,173 K).

Algorithm ε1 ε2 ε3 ε4 λ Rc b RMSE

ALO 1.1035 0.0576 0.0000E + 00 0.3875 23.2656 8.3687 200.0000 1.0451E-03
GOA 1.5695 0.1168 0.0000E + 00 0.0925 23.0000 8.9233 200.0000 4.4297E-04

Which ελ (λ=1,2,3,4) denotes the semi-empirical coefficients, λmeans the water content of proton exchange membrane, λc are the equivalent impedance of a proton membrane and λ is
the parametric coefficient.

TABLE 4 | Statistical results of average RMSE obtained by various algorithms (RHa = 2 atm, RHc = 2 atm, Tc = 1,273 K).

Algorithm ε1 ε2 ε3 ε4 λ Rc b RMSE

ALO 1.1678 0.0906 0.0000E + 00 0.1824 27.4584 11.6574 163.6798 1.1588E-02
GOA 1.1504 0.0832 0.0000E + 00 0.1725 30.0000 10.0929 168.3301 3.4563E-03

Which can be find that GOA can get more accurate results.
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FIGURE 3 | (A) Convergence curves of ALO and GOA; (B) Boxplot of
RMSE obtained by ALO and GOA; (C) average RMSE of ALO and GOA; (D)
comparison between ALO and GOA.

FIGURE 4 | (A) Convergence curves of ALO and GOA; (B) Boxplot of
RMSE obtained by ALO and GOA; (C) average RMSE of ALO and GOA; (D)
comparison between ALO and GOA.
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Figure 4A shows the convergence of ALO and GOA,
indicating that GOA can obtain a lower RMMSE.
Furthermore, GOA can obtain a lower RMSE than ALO. At
the same time, compared with ALO, GOA requires less than 20
iterations to converge to a lower RMSE. Which can be find that
GOA can get more accurate results.

Moreover, the boxplots of RMSE obtained by ALO and GOA
under the second experiment condition are shown in Figure 4B,
which indicate the distribution of the results obtained by ALO
and GOA in 12 runs. In addition, it can be seen that the upper/
lower bound sand distribution range of GOA is smaller than that
of ALO. It can effectively verify that the GOA can simultaneously
enhance convergence stability and searching ability.

Besides, Figure 4C shows the average RMSE obtained by ALO
and GOA; it shows that the two algorithms can find global
optimum more easily. On this basis, GOA can more accurately
and stably determine the best values of these unknown parameters.
For example, the average RMSE obtained by GOA is 69.23% lower
than ALO under the second experiment condition.

Finally, Figure 4D describes the V-I curves based on
measurement data and extraction data via GOA under RHa =
2 atm, RHc = 2 atm, Tc = 1,173 K experimental condition.
Therefore, the results show that the data extracted by GOA
are highly matched with the measured data, which effectively
reflects the superiority of GOA in SOFC parameter extraction.

CONCLUSION AND PERSPECTIVES

In order to improve the accurate and efficient parameter
extraction of the SOFC electrochemical model, a parameter
extraction strategy of the SOFC model based on GOA is
proposed. On this basis, the following three main
contributions/novelties can be drawn:

C GOA is applied to enhance parameter extraction accuracy of
SOFC electrochemical model;

C Case studies demonstrate that GOA can considerably
acquire high accuracy, great robustness, and fast
convergence of SOFC parameter extraction compared
with ALO. In particular, RMSE obtained by ALO is 60.32
and 69.23% smaller than that of GOA under different
experiment conditions, which verifies that GOA can
effectively improve the accuracy of parameter extraction.

C By imitating the variation and crossover process of
grasshoppers in nature, the diversity of the population is
improved and local optimization is avoided, and the linear
optimization strategy is introduced to speed up the
optimization speed and update the individual location
with the current optimal location as the target.

Future studies will be undertaken in the following two aspects:

C Using GOA for the parameter extraction of SOFC is a
promising optimization method, which provides a
new method for effectively improving solution quality
with a more reliable fitness function of SOFC
parameters extraction. Therefore, it may be applied to
parameter extraction of more complex models and even
other FCs;

C The proposed method is only evaluated in simulation
conditions. Hence, its practical performance using actual
experimental data will be tested in the next step.

C In addition, when the relevant parameters and external
characteristics of the fuel cell are known, GOA can also
be used in the research of PEM parameter extraction.
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GLOSSARY

Variables

A slope of Tafel line

Vc SOFC’s output voltage, V

Eo Nernst potential, V

Vact activation voltage loss, V

Vohm ohmic voltage loss, V

Vcon concentration voltage loss, V

IL limiting current density (mA/cm2)

Iload load current density (mA/cm2)

I0,a anode exchange current density (mA/cm2)

I0,c cathode exchange current density (mA/cm2)

I0 exchange current density (mA/cm2)

Rohm ionic resistance (kΩ · cm2)

ABC artificial bee colony

IBAS improved beetle antenna search

DE differential evolution

ALO ant lion optimizationant optimization algorithm

CBSSO chaotic binary shark smell optimization

BPSO bone particle swarm optimization

DNM dynastic model

ECM electrochemical model

GOA grasshopper optimization algorithm

ALO ant lion optimizationant optimization algorithm

GA genetic algorithm

GWO gray wolf optimization

IADE improved adaptive differential evolution

MhA meta-heuristic algorithm

MVO multivariate optimization

PSO particle swarm optimization

PEMFC proton exchange membrane fuel cell

RMSE root mean square error

SECM simple electrochemical model

SOFC solid oxide fuel cell

SSM steady-state model

V-I voltage-current
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