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The internal temperature distribution and evolution in cavitation bubble can be investigated
numerically by a thermal lattice Boltzmann method. The simulation results are consistent
with the calculational results of the Rayleigh-Plesset equation and the temperature
equation when the cavitation bubble collapses in an infinite liquid medium and satisfy
Laplace’s law. In this work, a cavitation bubble collapsing near a solid wall is explored to
investigate the characteristics and effects of the bubble temperature. The progress of the
bubble temperature can be clearly captured from a two-dimensional temperature field. The
results show that the bubble temperature can reach extremely high values during both its
first and its second collapse. The change of the bubble temperature is highly related to the
jet velocity and the liquid pressure. Furthermore, the effects on the bubble temperature of
the offset parameters, the initial driving pressure and the initial bubble radius are also
studied. The present findings are meaningful for the research of thermodynamics of
cavitation.
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INTRODUCTION

Cavitation is usually associated with a decrease in the operational efficiency of device, surface
destruction of bodies operating under cavitation conditions (Chahine and Hsiao, 2015). However,
the current research on cavitation has achieved the transformation from cavitation damage to
rational utilization. For example, cavitation cleaning technology is used to clean the surface of cracks,
ultrasonic cleaning technology of glasses, and the use of cavitation bubbles as a transport tool for
drugs to deliver drugs to the surface of diseased tissue (Ohl et al., 2006; Verhaagen and Fernández
Rivas, 2016; Meullemiestre et al., 2017). The main mechanism of cavitation damage was generally
considered to be the effect of micro jets and shock waves (Brennen, 2005; Mason, 2016). In addition
to the mechanical mechanism, the thermal effect produced by cavitation is also important in causing
material cavitation damage because of the high temperature achieved when the bubble collapses
(Suslick et al., 2011; Yusof et al., 2016).

However, there is no definite conclusion about the internal temperature of the bubble because the
high temperature in the process of rapid collapse is local and transient. Nowotny (Nowotny, 1942)
and Gavranek et al. (Gavranek et al., 1960) observed that the high temperature of the bubble in the
final stage of collapse will reduce the strength of metal and can melt a metal surface. Also, because of
the fluid medium, the rates of heating and cooling can be more than 1100 K/s (Suslick and Flannigan,

Edited by:
Mostafa S. Shadloo,

Institut National des Sciences
Appliquées de Rouen, France

Reviewed by:
Morteza Ghorbani,

Sabancı University, Turkey
Haibo Huang,

University of Science and Technology
of China, China

*Correspondence:
Minglei Shan

shanming2003@126.com

Specialty section:
This article was submitted to
Process and Energy Systems

Engineering,
a section of the journal

Frontiers in Energy Research

Received: 13 January 2022
Accepted: 03 March 2022
Published: 08 April 2022

Citation:
Shan M, Yang Y, Kan X, Shu F and

Han Q (2022) Numerical Investigations
on Temperature Distribution and

Evolution of Cavitation Bubble
Collapsed Near Solid Wall.

Front. Energy Res. 10:853478.
doi: 10.3389/fenrg.2022.853478

Frontiers in Energy Research | www.frontiersin.org April 2022 | Volume 10 | Article 8534781

ORIGINAL RESEARCH
published: 08 April 2022

doi: 10.3389/fenrg.2022.853478

http://crossmark.crossref.org/dialog/?doi=10.3389/fenrg.2022.853478&domain=pdf&date_stamp=2022-04-08
https://www.frontiersin.org/articles/10.3389/fenrg.2022.853478/full
https://www.frontiersin.org/articles/10.3389/fenrg.2022.853478/full
https://www.frontiersin.org/articles/10.3389/fenrg.2022.853478/full
https://www.frontiersin.org/articles/10.3389/fenrg.2022.853478/full
http://creativecommons.org/licenses/by/4.0/
mailto:shanming2003@126.com
https://doi.org/10.3389/fenrg.2022.853478
https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#editorial-board
https://doi.org/10.3389/fenrg.2022.853478


2008), making it difficult to directly measure bubble temperature.
Many efforts, both calculations and experiments, have been
devoted to investigating the bubble temperature and its effects
(Tomita and Shima, 1986; Wang et al., 2001; Cervone et al., 2005;
Fujikawa et al., 2006; Dular and Coutier-Delgosha, 2013).
However, the cavitation bubble temperatures obtained by
theory and by experiment are quite different, so it is not yet
possible to from a definite conclusion. In addition, experiments
still have not revealed the internal mechanism of the temperature
change and distribution in a bubble, numerical simulation
methods have become a powerful way to better understand.

The lattice Boltzmann method (LBM), a mesoscopic
numerical approach, has been applied to complex multiphase
flow fields (Gonnella et al., 2007; Dong et al., 2009; Safari et al.,
2010; Gan et al., 2015). The LBM is easy to implement and
parallelize, and has clear physical background and high
computational efficiency. As one of them, the pseudopotential
Shan-Chen (SC) lattice Boltzmann (LB) model has been widely
used by the LB community. The most remarkable feature of the
SC LB model approach is that the phase separation automatically
without interface tracking or interface capturing via an
interparticle potential. The first thermal LBM based on the SC
model may be credited to Zhang and Chen (Zhang and Chen,
2003). Later, Házi and Márkus (Házi and Márkus, 2008; Márkus
and Házi, 2011), Biferale et al. (Biferale et al., 2012; Biferale et al.,
2013), and Gong et al. (Gong and Cheng, 2012; Liu and Cheng,
2013) also proposed thermal LB models. The common feature of
these models is to solve the thermal LB equation with temperature
distribution function to restore the Navier-Stokes-level
macroscopic temperature equation. The target temperature
equation is a convection-diffusion equation including the
source term. Then, based on the above studies, Li et al. (Li
et al., 2017) revised the existing thermal model to eliminate
the discrete effect of the source term in the target temperature
equation, and proposed an improved thermal multi-relaxation-
time (MRT) LB model at the same time.

Based on this, Shan et al. (Shan et al., 2016; Shan et al., 2017;
Yang et al., 2020; Yang et al., 2021) adopted the above-mentioned
thermal MRT LBM to simulate the collapse of the cavitation
bubble near the solid wall. The temperature change and dynamic
behavior of the bubble were well captured. Previous studies
focused on the stage after the cavitation bubble collapsed, but
did not deeply analyze the characteristics and effects of the time-
dependent bubble temperature. However, both driving pressure
and bubble radius affect the temperature in the bubble. An
increase of the equilibrium bubble radius will gradually reduce
the temperature in the bubble, while an increase of the driving
pressure will gradually increase its temperature (Flannigan and
Suslick, 2005; Huai et al., 2011). Therefore, the mechanism and
effect of the bubble temperature deserve further study.

In this work, an improved thermal MRT LBM is used to
investigate cavitation bubble temperature evolution when
cavitation bubble collapses near a wall. The basic numerical
model is formulated in Section Numerical Model. The
validation of Laplace’s law and the Rayleigh-Plesst equation
are described in Section Model Validation. Numerical
simulations of the bubble collapse near solid wall are

presented in Section Numerical Results, which also includes
further analysis and discussion. Finally, Section Conclusion
gives brief conclusions.

NUMERICAL MODEL

The fluid field can be described by density distribution functions.
Based on MRT collision operator, the extended LB equation of
the density distribution function with external force term can be
given as (He et al., 1999; Lallemand and Luo, 2000)

fα(x + eαδt, t + δt) � fα(x, t) −M−1ΛM(fβ(x, t) − feq
β (x, t))

+ δtS
′
α,

(1)
where fα(x, t) is the density distribution function at particle
position x and time t, δt is the time step and is usually equal to the
unit space δt. α indicates the number of discrete velocities, and S’α
denotes the forcing term in velocity space. For the D2Q9 lattice
model, the orthogonal transformation matrix M is shown as
(Mohamad, 2017)

M � c

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1
−4 −1 −1
4 −2 −2

1 1 1
−1 −1 2
−2 −2 1

1 1 1
2 2 2
1 1 1

0 1 0
0 −2 0
0 0 1

−1 0 1
2 0 1
0 −1 1

−1 −1 1
−1 −1 1
1 −1 −1

0 0 −2
0 1 −1
0 0 0

0 2 1
1 −1 0
0 0 1

1 −1 −1
0 0 0
−1 1 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (2)

where c is the lattice constant, which equal to δx/ δt = 1, and the
diagonal matrix

Λ � diag(τ−1ρ , τ−1e , τ−1ς , τ−1j , τ−1q , τ−1j , τ−1q , τ−1v , τ−1v ), (3)
where τ−1ρ = τ−1v = τ−1j = 1.0, τ−1ς = τ−1e = 0.8, τ−1q = 1.1. In the
momentum space, the density distribution functionm � Mf and
the equilibrium density distribution meq � Mfeq, which can be
expressed as

m � Mf � Mαβfβ � (ρ, e, ς, jx, qx, jy, qy, pxx, pxy)T , (4)
meq � Mfeq � Mαβf

eq
β � (ρ, eeq, ςeq, jx, qeqx , jy, qeqy , peq

xx, p
eq
xy)T

� ρ(1,−2 + 3|v|2, 1 − 3|v|2, vx,−vx, vy,−vy, v2x − v2y, vxvy)T
(5).

where ρ � ∑
α
fα is the macroscopic density. v represents the

macroscopic velocity and |v| � v2x + v2y .
The collision process of momentum space can be transformed

from Eq. 1 into

mp � m − Λ(m −meq) + δt(I − Λ

2
)S, (6)

where mp � (mp
0, m

p
1, . . . , m

p
8), S � MS′ is the forcing term, in

which S′ � (S0′ , S1′,/, S8′)T, and I is the unit tensor.
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The Streaming Process is Shown as

fα(x + eαδt, t + δt) � fp
α(x, t), (7)

where fp � M−1mp. The macroscopic velocity of the Eq. 5 can be
calculated by

ρv � ∑
α

eαfα + δt
2
F, (8)

where the fluid-fluid interactive force is F � (Fx, Fy) in 2D space,
which is given by (Shan, 2006; Shan, 2008)

F(x) � −Gψ(x)∑N

α�1ω(|eα|2)ψ(x + eα)eα, (9)
where ω(| �eα|2) denotes the weight coefficient with ω(1) = 1/3 and
ω(2) = 1/12, G represents the strength of interaction between
fluids. ψ(x) is the interaction potential, which is given by
(Sbragaglia et al., 2007)

ψ(x) �
���������������
2(pEOS − ρc2s )/Gc2√

, (10)
where cS � c/

�
3

√
is the lattice sound speed, pEOS is a prescribed

non-ideal equation of state (EOS), coupling the Peng-Robinson
(P-R) EOS, which is given by (Yuan and Schaefer, 2006)

pEOS � ρδT

1 − bρ
− aϑ(T)ρ2
1 + 2bρ − b2ρ2

, (11)

where a � 0.45724R2T2
c /pc, b � 0.0778RTc/pc, and δ is the gas

constant.
ϑ(T) � [1 + (0.37464 + 1.54226ω − 0.26992ω2)(1 −

��
T
Tc

√
)]2, in

which ω � 0.344 is the acentric factor, Tc and pc indicate the
critical temperature and pressure. The constants a = 2/49, b = 2/
21 and δ � 1 are used in the present study (He et al., 1998).

For the D2Q9 lattice, Li et al.’s (Li et al., 2012; Li et al., 2013)
forcing scheme can be given by

S �

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

6(vxFx + vyFy) + 0.75ε|F|2
ψ2δt(τe − 0.5)

−6(vxFx + vyFy) − 0.75ε|F|2
ψ2δt(τς − 0.5)

Fx

−Fx

Fy

−Fy

2(vxFx − vyFy)
(vxFy + vyFx)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (12)

The adjustable coefficient ε, seen in Eq. 12, which can make
the mechanical stability solution and the thermodynamic
consistency requirement approximately the same in a wide
temperature range.

Now turns to solving the temperature equation, the target
temperature equation is written as (Guo et al., 2002; Li et al.,
2016)

zT

zt
+  · (vT) �  · (αT) + ϕ, (13)

where the thermal diffusivity is α � k
ρcv
, k indicates the thermal

conductivity, ρ denotes the macroscopic density and cv is the
specific heat at constant volume. The source term ϕ can be
written as

ϕ � T⎡⎢⎣1 − 1
ρcv

(zpEOS

zT
)

ρ

⎤⎥⎦∇ · v. (14)

The discrete equation of temperature distribution function can
be given by

gα(x + eαδt, t + δt) − gα(x, t) � −�Λαβ(gβ − geq
β )∣∣∣∣(x.t) + δtQ

’
α(x, t),

(15)
where gα(x, t) is the temperature distribution function at
position x and time t, Q’

α represents the source term of the
discrete velocity space, and �Λαβ � (M−1ΛM)αβ is the collision
matrix.

Eq. 15 can be converted as follows

np � n − Λ(n − neq) + δtQ, (16)
where n � Mgwith n � (np0, np1, ..., np8)Τ and neq � Mgeq, in which
g � (g0, g1, ..., g8)Τ and the equilibrium distribution
geq � (geq

0 , g
eq
1 ,/, geq

8 )Τ. In the D2Q9 model, neq are given by

neq � T( 1, −2, 2, vx′ −vx′ vy, −vy′ 0, 0 )T . (17)
Q is the source term in the momentum space, which is

shown as

Q � (Q0, 0, 0, 0, 0, 0, 0, 0, 0 )T , (18)
where Q0 � ϕ + 0.5δtztϕ. According Ref. (Chopard et al., 2009),
in the numerical implementation, Eq. 18 is calculated with
ztϕ ≈ [ϕ(t)−ϕ(t−δt)]

δt
.

The streaming process of temperature function is similar to
Eq. 7

gα(x + eαδt, t + δt) � gp
α(x, t), (19)

where gp � M−1mp. It should be emphasized that the unit used in
this work is the LBM lattice unit. The length’s unit is lu, time
step’s unit is ts and the unit of mass is mu. The units of velocity,
density, pressure, and viscosity are given as lu/ts, mu/lu3, mu/
(ts2lu) and lu2/ts, respectively.

MODEL VALIDATION

Laplace’s Law
Laplace’s law states that in the case of cavitation bubbles, the
pressure difference between inside and outside the bubble is
inversely proportional to the bubble radius, which is shown as
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Δp � pin − pout � σ

R
, (20)

where pin indicates the pressure inside the bubble, pout indicates
the pressure outside the bubble, σ represents the surface tension,
and R is the equilibrium radius of the bubble. A spherical bubble
in the liquid domain is located in the center of a periodic field
without gravity. The initial density field formula is (Shan et al.,
2016)

ρ(x, y) � ρin + ρout
2

+ ρin − ρout
2

× tan h
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣2(

������������������
(x − x0)2 + (y − y0)2√

− R)
W

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,
(21)

where tan h(x) � (e2x − 1)/(e2x + 1) is the hyperbolic tangent
function. ρin represents the density inside the bubble and ρout
represents the density outside the bubble. The width of the phase
interface W = 5. (x0, y0) is the central coordinates of the 401 ×
401 lattice system. At dimension temperature 0.85Tc, the initial
vapor and liquid density are approximately equal to the 0.34 and
6.6. The initial bubble radius R0 is set as 20, 30, 40, 50 and 60. It
can be clearly observed from Figure 1 that the direct
proportionality of the pressure difference Δp to the inverse
radius 1/R, indicating that the simulation results are in good
agreement with Laplace’s law.

Validation of Rayleigh-Plesset Equation and
Temperature Equation
As is well known, the bubble dynamics equation in a viscous
fluid—i.e., the R–P equation—is (Brennen, 1973)

R€R + 3
2
_R
2 � 1

ρl
[(p∞ + 2σ

R
− pv)(R0

R
)3γ

+ pv − p∞ − 4μ _R
R

− 2σ
R
],

(22)
where pv is the vapor pressure in the bubble, p∞ is the liquid
pressure. Dots represent time derivative: _R � dR/dt, €R � d2R/dt2

. γ is the adiabatic coefficient. μ � (τv − 1
2)c2sδt is dynamic

viscosity. In order to compare this simulation result with the
numerical solution and R-P equation solution, the corresponding
LBM parameters are substituted into Eq. 22 to obtain the solution
of the R-P equation. The pressure difference Δp � p∞ − pv �
0.0853 obtained is used to trigger the collapse of the bubble. The
initial densities of vapor and liquid are ρv ≈ 0.34 and ρl ≈ 6.6 at
0.85Tc, respectively. The size of the numerical simulation domain
is 401 × 401, and the periodic boundary conditions are used in all
directions. The time is dimensionless throughout the simulation
time step. The bubble radius is normalized to the initial radius R0.
As shown in Figure 2, the simulation results are consistent with
the numerical results of the R-P equation. The correctness of the
improved pseudopotential thermal MRT LB model is verified.

The temperature formula of the cavitation bubble, deduced
from the R–P equation, is

T � T∞(R0

R
)3(γ−1)

, (23)

where T∞ indicates the ambient temperature of the liquid, and γ =
1.3 is a constant representing the adiabatic coefficient. In our
simulation, periodic boundary conditions are adopted in all
directions. The liquid temperature T∞ = 0.85Tc is considered
uniform. The pressure difference Δp � p∞ − pv. The
instantaneous temperature T is normalized, and the t* is
dimensionless throughout the simulation time step.

The current theoretical results show that the maximum
collapse temperature of the bubble is infinite. What prevents
such a runaway increase is heat dissipation, viscous dissipation
and other uncontrollable factors in experiments or numerical

FIGURE 1 | Validation of Laplace’s law.

FIGURE 2 | Evolution curve of collapsed bubble radius.
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simulations. As shown in Figure 3, the simulation results closely
track the theoretical solution results, supporting the reliability of
the present model. The thermal LBmodel can therefore be used to
predict and analyze the collapse of cavitation bubble near
solid wall.

NUMERICAL RESULTS

Model Establishment
As illustrated in Figure 4, numerical simulation is carried out in
the two-dimensional x-y plane, and the computational domain lx
× ly. The nonslip boundary scheme (Mohamad, 2017) is applied
at the wall that is defined at y = 0 and periodic boundaries are
utilized in the horizontal direction. The top of the computational
domain is set as an open boundary, and the anti-bounce-back
approach is applied. In our simulation, the initial radius of the
bubble is R0, b denotes the distance from the center of the bubble
to the solid wall, and λ � b

R0
is defined as the offset parameter. The

initial equilibrium temperature is taken as T∞ = 0.85Tc,
corresponding to the coexistence densities ρv ≈ 0.34 and ρl ≈ 6.63.

Bubble Profile and Grid Independent
Validation
Figure 5 shows the comparison between the current bubble
profile and the results of an underwater pulsed discharge
experiments published in the literature (Shan et al., 2019).
Due to the difference in the size of the cavitation bubbles in
the experimental study and numerical simulation, their collapse
time cannot be directly compared and needs to be normalized.
Comparing the Figures 5A,B, it can be found that the
morphological evolution process of the bubble is consistent,
and the dimensionless time obtained after normalization is the
same. The result verifies the correctness of the LBM numerical
experiment from the appearance change of the bubble.

In addition, in order to make a more accurate comparison and
prove the symmetry of the collapse of cavitation bubble near the
solid wall, the grid independence verification is carried out in this
section. First the coordinates of the bubble surface need to be
obtained. The criterion for the interface between the vapor and
the liquid is that the density of the interface point is equal to
(ρv+ρl)/2. We chose 301 × 301, 401 × 401 and 501 × 501 grids,
according to the principle of the same scale, the initial bubble
radii are 60, 80, and 100, respectively. The dimensionless time T*
is defined, which represents the time from the initial state to the
first collapse. The bubble contour points of 0, 0.2T*, 0.4T*, 0.6T*,
0.8T*, and T* under three grid resolutions are extracted, and the
coordinate points obtained in the x and y directions are
dimensionless, as shown in Figure 6. The result shows that
the normalized contours of cavitation bubble collapse near the
wall almost coincide with each other of the three grid resolutions,
which indicates that the numerical model of cavitation bubble
collapse near the wall is independent of the grid size. Considering
the computational efficiency and the observability of the results,
we choose 401 × 401 grids for the following numerical
experiments.

Collapse Evolution Process of Cavitation
Bubble Near a Wall
Figure 7 shows the evolution of the temperature, pressure and
fluid velocity fields of a single cavitation bubble collapse near the
solid wall (prior to complete collapse). Due to the left-right
symmetry of the entire system, in the evolution result image,
the left side is the pressure field and the fluid velocity field, and the
right side is the temperature field. As shown in Figures 7A,B, the
spherical cavitation bubble is deformed into an elongated bubble
in the direction perpendicular to the solid wall. The fluid velocity
above the bubble is relatively high, which leads to a higher
temperature in the liquid area and the area above the bubble.
The near-wall fluid velocity is lower, causing the temperature in

FIGURE 3 | Comparative calculation of the cavitation bubble
temperature vs. time.

FIGURE 4 | Computational domain.
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the bottom area of the bubble to decrease. As can be seen from
Figures 7C,D, the micro-jet formed above the bubble causes local
liquid pressure fluctuations and makes the local fluid particles
vibrate rapidly. A thermal boundary layer forms at the bubble
surface. Figure 7E shows the first collapse of the bubble, where
the micro-jet impinges on the bottom edge of the bubble and the
bubble temperature rises instantaneously. After the first collapse,
a shock wave is emitted toward the solid wall and forms a hot spot
on the wall, as has been discussed in Refs. (Yang et al., 2020) and
(Yang et al., 2021). As shown in Figure 7F, the bubble becomes
toroidal and its internal initial temperature is low. Then the
toroidal bubble collapses rapidly under the driving action of the
micro-jet, that is, the second collapse of the bubble. It can be seen
from the time steps of Figure 7F-(i) that the second collapse of

the bubble is very fast. The toroidal bubble temperature increases
sharply and reaches a maximum when the bubble collapses
completely.

From previous work, we know that the bubble temperature
affected by the nondimensional offset parameter λ, initial
pressure difference Δp and initial bubble radius R0. In order to
understand the evolution results of the bubble temperature, the
following sections discuss and analyze the above-mentioned
factors in detail.

Analysis of Different Offset Parameters
In this section, the effect of the different offset parameters on the
bubble temperature will be discussed. Since the temperature
distribution in the bubble is not uniform, we take a certain
point inside the bubble as the temperature measurement
point. For example, when λ = 1.2, as shown in Figure 8A, the
coordinates of the measurement point are (201, 27). This is a
point located at the bottom of the bubble on the vertical bisector
of the x axis. For other values of λ, the temperature measurement
point can be obtained by the same way. Figure 9 shows the bubble
temperature curves with offset parameters of 1.2, 1.4 and 1.6. In
order to explain the changes of the bubble temperature more
clearly, the maximum jet velocity of the perpendicular bisectors of
the x axis under three offset parameters is also shown in Figure 8.
The initial conditions and parameter settings of the three cases
are the same. In Figure 9A, the bubble temperature decreases
slightly during the bubble shrinkage stage, which is caused by the
lower pressure of the bottom liquid and lower velocity. With the
formation of the micro jet, the maximum jet velocity accelerates
gradually, and the bubble temperature also increases. Then, the
jet velocity decreases after reaching its maximum, which is
impeded by the deforming bubble. Meantime, the bubble
temperature drops briefly and rises sharply at the first

FIGURE 5 |Comparison of the bubble profile with experimental results (λ = 1.2). (A) the morphological change diagram of cavitation bubble near solid wall collapse
under high-voltage discharge-induced bubble experiment; (B) the phase diagram of cavitation bubble near solid wall collapse obtained by LBM simulation.

FIGURE 6 | Validation of grid independent (λ = 1.2).
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collapse. In Figure 9B, the trend of the bubble temperature curve
is similar to that of Figure 9A, and the jet velocity decreases
slightly before the first collapse. The maximum bubble
temperature is higher than in Figure 9A. However, as shown
in Figure 9C, the jet velocity keeps increasing in the early stages of
the collapse, and the acceleration of the final stage of the collapse
decreases. The bubble temperature increases as λ increases and
reaches the greatest value when λ = 1.6. It can be inferred that the
larger is λ, the higher is the maximum bubble temperature. In
addition, we find that the cavitation bubble will become toroidal

when λ = 1.2 after the first collapse. The bubble collapses directly
without becoming toroidal when λ = 1.4 or 1.6 (i.e., when it is
farther from the wall). As shown in Figure 8B, the coordinates of
the temperature measurement point of the toroidal bubble are
(183, 39). Figure 10 shows the evolution of the toroidal bubble
temperature and the maximum jet velocity around the bubble
from the second collapse to complete collapse. Due to the driving
effect of the jet and the water hammer effect, the jet velocity
increases rapidly, and the toroidal bubble collapses and produces
high temperature almost instantaneously.

FIGURE 7 | Temperature, pressure, and velocity field evolutions of cavitation bubble (R0 = 80, λ = 1.2, and Δp = 0.0853). (A) Temperature (right), pressure, and
velocity field (left) of cavitation bubble collapse near a wall at t = 400 ts; (B) Temperature (right), pressure, and velocity field (left) of cavitation bubble collapse near a wall at
t = 600 ts; (C) Temperature (right), pressure, and velocity field (left) of cavitation bubble collapse near a wall at t = 800ts; (D) Temperature (right), pressure, and velocity
field (left) of cavitation bubble collapse near a wall at t = 1030 ts; (E) Temperature (right), pressure, and velocity field (left) of cavitation bubble collapse near a wall at
t = 1070 ts; (F) Temperature (right), pressure, and velocity field (left) of cavitation bubble collapse near a wall at t = 1090 ts; (G) Temperature (right), pressure, and velocity
field (left) of cavitation bubble collapse near a wall at t = 1100ts; (H) Temperature (right), pressure, and velocity field (left) of cavitation bubble collapse near a wall at t =
1120 ts; (I) Temperature (right), pressure, and velocity field (left) of cavitation bubble collapse near a wall at t = 1130 ts.

FIGURE 8 | (A) Coordinate of the temperature measurement point during the first collapse; (B) Coordinate of the temperature measurement point during the
second collapse.
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Analysis of Different Driving Pressures and
Bubble Radii
In this section, the influences of the initial driving pressure
and bubble radius are studied. Because the collapse time is
different for different Δp and different initial radius R0, the
time step is normalized in the following section for
comparison. Figure 11 shows the bubble temperature vs.
time during the first collapse for three different values of
initial Δp. The result shows that there is no obvious
dependence of temperature on Δp at the bubble contraction
stage. As Δp increases, the bubble temperature increases
gradually. Then the bubble temperature drops briefly, as
shown in more detail in Figure 9A, the bubble temperature
is related to the jet velocity. Due to the impeding effect of the
bubble, the jet velocity decreases briefly, causing the bubble
temperature to drop. One may note that, the smaller Δp, the
more significant the temperature drop. When the bubble
collapses for the first time, its temperature increases
dramatically. For Δp = 0.0897, the bubble temperature rises
fastest and to the greatest value. It can be concluded that the

FIGURE 9 | (A) Bubble temperature and maximum jet velocity vs. time for different offset parameters at λ = 1.2; (B) Bubble temperature and maximum jet velocity
vs. time for different offset parameters at λ = 1.4; (C) Bubble temperature and maximum jet velocity vs. time for different offset parameters at λ = 1.6.

FIGURE 10 | Bubble temperature vs. time during the second collapse.

FIGURE 11 | Bubble temperature vs. time for different values of Δp
during the first collapse.

FIGURE 12 | Bubble temperature vs. time for different values of Δp
during the second collapse.
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large pressure difference has large potential energy, which
releases more energy when collapsing leading to a higher
temperature. The bubble becomes toroidal after the first
collapse in all three cases. Figure 12 shows the time-
dependence of the toroidal bubble temperature. The initial
toroidal temperature is low; it increases gradually as the
bubble collapses and eventually reaches a maximum. The
collapse temperature is almost the same as that of the three
Δp. It can be inferred that the pressure difference has little
effect on the toroidal bubble temperature during the second
collapse.

The evolutions of the bubble temperature during the
cavitation bubble collapse with initial radii of 80, 85 and 90
and with an initial driving pressure Δp = 0.0853 are shown in
Figure 13. It can be seen that the bubble temperature rises

gradually after a brief cooling. When R0 = 90, the larger value,
the bubble temperature drops significantly. The bubble
temperature then increases sharply when the bubble
collapses for the first time. The larger the bubble radius, the
greater is the internal energy, and the more energy is released
when the bubble collapses, which leads to higher bubble
temperature.

The bubble becomes toroidal after the first collapse. In
Figure 14, the bubble temperature of the newly formed
toroidal bubble is the lowest among these three examples
when R0 = 90, but for the value of R0 the final temperature is
the highest, with the most drastic bubble temperature change. For
larger initial radius, the maximum bubble temperature is
therefore higher at the second collapse.

CONCLUSION

In this paper, the validation of the Laplace’s law, R-P equation
and temperature equation are verified, and the simulation
results of cavitation bubble collapse near the wall are
consistent with the experimental results. Using a thermal
multiphase lattice Boltzmann model with liquid-vapor phase
change, we have numerically investigated the temperature
evolution characteristics of a cavitation bubble collapsing
near the wall. The main findings and conclusion are
summarized as follows.

1) The temperature distribution in the bubble varies with the
external liquid pressure and velocity. At the initial stage of the
bubble collapse, the temperature in the upper region of the
bubble increases due to greater jet velocity and pressure in this
region. At the same time, the temperature in the bottom
region of the bubble decreases because the jet velocity and
pressure field near the wall are low. The simulation results
show that the bubble temperature is highly dependent on the
jet velocity and the pressure field.

2) The offset parameter affects the change of temperature
inside the bubble. The results show that the bubble hit
by a jet generates high temperature almost instantly. The
larger is λ, the higher is maximum bubble temperature.
When λ is smaller—for example, when λ = 1.2—the bubble
becomes toroidal after the first collapse, and high
temperature is generated in the bubble due to the driving
effect of pressure and water hammer effect when the
toroidal bubble collapses completely.

3) The initial driving pressure and initial bubble radius also have
an effect on the bubble temperature. 1) During the first
collapse, the larger the initial Δp, the greater is bubble
temperature. A large pressure difference has large potential
energy, which causes the bubble to release more energy when
it collapses, thus increasing the bubble temperature. The
second collapse, of the toroidal bubble, is mainly governed
by the water hammer effect and the jet rebound effect. The
initial driving pressure Δp has little effect on the toroidal
bubble. 2) The greater the initial bubble radius, the higher is
the bubble temperature. Large bubble contains large internal

FIGURE 13 | Bubble temperature vs. time during the first collapse for
several values of R0.

FIGURE 14 | Toroidal temperature vs. time during the second collapse
for several values of R0.
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energy, and will release more energy when the bubble
collapses, resulting in higher bubble temperature.

We believe that the present simulations are useful for
understanding the internal mechanisms of the cavitation
bubble temperature and its effects. Moreover, the investigation
of the temperature evolution and distribution in the bubble
provide insights to assists in the further research and
applications on the thermodynamics of cavitation bubbles.
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