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Post-LOCA prediction is of safety significance to NPP, but requires a processing coverage
of non-linearity, both short and long-term memory, and multiple system parameters. To
enable an ability promotion of previous LOCA prediction models, a new gate function
called zigmoid is introduced and embedded to the traditional long short-term memory
(LSTM) model. The newly constructed zigmoid-based LSTM (zLSTM) amplifies the
gradient at the far end of the time series, which enhances the long-term memory
without weakening the short-term one. Multiple system parameters are integrated into
a 12-dimension input vector to the zLSTM for a comprehensive consideration based on
which the LOCA prediction can be accurately generated. Experimental results show both
accuracy evaluations and LOCA progression produced by the proposed zLSTM, and two
baseline methods demonstrating the superiority of applying zLSTM to LCOA predictions.
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1 INTRODUCTION

Loss of coolant accident (LOCA) is a severe accident that causes safety threat to nuclear power plants
(NPPs). Obviously, it is of great importance to systematically analyze, prevent, and predict LOCAs
such that effective decision-making support can be offered to the emergency response strategy. The
prediction of the LOCA progression trends, as one of the significant emergency measures, provides
evaluation of safety threats ahead of their physical occurrence and allows the emergency response
strategy to plan accordingly before worse scenarios emerge. However, the non-linearity of LOCAs
and associated complex system factors prevent accurate LOCA predictions. As a coupling result
influenced by multiple system parameters, the prediction for LOCA progression also faces
multivariant processing challenges, which makes the system modeling more complicated.

In the past decades, various attempts have been taken for process predictions in NPPs. A series of
assumptions based on statistical methods and mathematical equations are applied for process
predictions such as 1) monitoring the real-time condition of LOCA via time–frequency domain
reflectometry (TFDR) (Lee et al., 2017) and 2) using RELAP5/MOD3.3 code to predict the LOCA of
the main stream break on generation III reactor (Yang et al., 2019). The aforementioned research
studies rely on effort-consuming system modeling and have made feasible progress on LOCA
prediction, but the challenges of multivariate processing/coupling remain for further investigation.

Using data-based artificial intelligence (AI) approaches has become an effective way to solve the
non-linearity problem with the progress of machine learning, especially when enormous simulated
NPP data from previous research studies have founded a firm database for AI applications.

A variety of traditional machine learning algorithms have been applied to NPPs. An abnormal
operation state detection method of NPP based on an unsupervised deep generative model is

Edited by:
Xianping Zhong,

University of Pittsburgh, United States

Reviewed by:
Guang Hu,

Karlsruhe Institute of Technology (KIT),
Germany

Sai Zhang,
Idaho National Laboratory (DOE),

United States

*Correspondence:
Jingke She

shejingke@hnu.edu.cn

Specialty section:
This article was submitted to

Nuclear Energy,
a section of the journal

Frontiers in Energy Research

Received: 11 January 2022
Accepted: 28 February 2022

Published: 12 April 2022

Citation:
Gong S, Yang S, She J, Li W and Lu S

(2022) Multivariate Time Series
Prediction for Loss of Coolant

Accidents With a Zigmoid-
Based LSTM.

Front. Energy Res. 10:852349.
doi: 10.3389/fenrg.2022.852349

Frontiers in Energy Research | www.frontiersin.org April 2022 | Volume 10 | Article 8523491

ORIGINAL RESEARCH
published: 12 April 2022

doi: 10.3389/fenrg.2022.852349

http://crossmark.crossref.org/dialog/?doi=10.3389/fenrg.2022.852349&domain=pdf&date_stamp=2022-04-12
https://www.frontiersin.org/articles/10.3389/fenrg.2022.852349/full
https://www.frontiersin.org/articles/10.3389/fenrg.2022.852349/full
https://www.frontiersin.org/articles/10.3389/fenrg.2022.852349/full
http://creativecommons.org/licenses/by/4.0/
mailto:shejingke@hnu.edu.cn
https://doi.org/10.3389/fenrg.2022.852349
https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#editorial-board
https://doi.org/10.3389/fenrg.2022.852349


established by using variational auto encoders (VAE) and
isolation forest (iForest) (Li et al., 2021). Moshkbar-
Bakhshayesh and Ghafari (2022) used support vector machine
(SVM) as a machine learning–based method to predict the vessel
water level. Xiang et al. (2020) proposed a clustering algorithm for
the transient detection in NPPs. Furthermore,Wang et al. (2021a)
utilized the clustering algorithm together with SVM and principal
component analysis (PCA) for the sensor anomalies in NPPs,
which is also reviewed in Hu et al. (2021).

By stacking multiple hidden layers, deep neural network
(DNN) has stronger non-linear feature extraction ability. It
was utilized to predict the vessel water level (Koo et al., 2018)
as well as to identify the fault diagnosis scheme (Santos et al.,
2019).

Convolutional neural network (CNN) is a variant of DNN and
is usually used for image processing. Viewing NPP sensor data as
images, CNN was applied to event identification (Lin et al., 2021;
Pantera et al., 2021) and break size estimation (Lin et al., 2022).
The mentioned traditional machine learning algorithms (SVM)
and deep learning methods (DNN and CNN) can deal with non-
linearity, while the sequential data-dependency and multiple
physical factors are not taken into account.

Recurrent neural network (RNN), as a classical example, has
been successfully applied to sequential data modeling in former
explorations. Several long short-term memory (LSTM)–based
models cover both the non-linearity and time correlation of
LOCAs. For example, the LSTM-based expert system was
adopted to predict LOCA behaviors (Mira et al., 2020;
Santhosh et al., 2010; Chen et al., 2021) and to evaluate
abnormal operation conditions in NPPs (She et al., 2020;
Wang et al., 2021b). The coolant flowrate variation was
analyzed by She et al. (2021) using a combination of CNN
and LSTM. PCA and LSTM were used to identify the fault
diagnosis scheme Saeed et al. (2020).

It is necessary to consider modeling non-linearity, multivariate
processing, and long-term memory for accurate prediction of
LOCA. The aforementioned literatures ignored that LSTM
cannot model longer time series. To fully cover the non-
linearity, time correlation, and multivariate processing for
LOCA predictions, this study proposes an improved LSTM
model in which a new gate function called ‘zigmoid’ is
constructed. With rigorous experimental verifications
conducted on simulated LOCA datasets, the zLSTM is proved
to be more accurate and efficient for post-LOCA predictions.

This article starts with Section 1 as the introduction and
illustrates the zigmoid function in Section 2. After the
presentation of the verification experiments in Section 3, this
article is then concluded in Section 4.

2 ZIGMOID METHOD

2.1 Zigmoid for Better Long-Term Memory
Established for the sequential processing problems, RNN
obtained preliminary short-term memory. To enable the long-
term memory, Hochreiter and Schmidhuber (1997) made a gate-
level innovation on RNN and created LSTM that is capable for

both short and long-term processing. Nevertheless, the
contribution of xt in LSTM will decay in k timesteps by fk

t
when ft is a constant (Tallec and Ollivier, 2018). This gives the
unit an effective decay period timescale of O( 1

1−ft
). In case the

LSTM is required to have a memory of 1,000 steps, the forget gate
parameter ft has to reach 0.999 since the effective decay period
timescale = 1/(1 − ft). However, it is very challeging to achieve
this, according to the following analysis of LSTM.

The standard LSTM process is defined as follows:

it � sigmoid Wixxt +Wihht−1 + bi( ) (1)
f t � sigmoid Wfxxt +Wfhht−1 + bf( ) (2)
ot � sigmoid Woxxt +Wohht−1 + bo( ) (3)
ĉt � tanh Wcxxt +Wchht−1 + bc( ) (4)
ct � ft ⊙ ct−1 + it ⊙ ĉt (5)
ht � ot ⊙ tanh ct( ) (6)

whereWix,Wih, bi,Wfx,Wfh, bf,Wox,Woh, bo,Wcx,Wch, and bc are
trainable parameters.

However, the derivative of sigmoid is 0.000999 when ft = 0.999,
as shown in Figure 1, which causes LSTM to be untrainable at
this stage. In other words, the LSTM’s long-term memory ability
is weakened at the far end of the time series and cannot guarantee
accurate prediction in LOCAs.

Since the sigmoid function in the forget gate determines the
long-term memory of LSTM, a natural idea is to amplify the
derivative of the sigmoid function such that model training is still
feasible for LSTM even when ft reaches 0.999. For this purpose,
zigmoid is constructed by embedding a transfer function within
the original sigmoid.

zigmoid x( ) � sigmoid trans x( )( ) (7)
trans x( ) � eβpx − 1 x≥ 0

1 − e−βpx x< 0
{ (8)

where β is a hyper-parameter.
The derivative of zigmoid is

dzigmoid x( )
dx

� dsigmoid x( )
dtrans x( ) *

dtrans x( )
dx

(9)

FIGURE 1 | Sigmoid properties.
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dtrans x( )
dx

� βpeβpx x≥ 0
βpe−βpx x< 0{ (10)

When β is a large value, that is, max(dzigmoid(x)
dx )≥ 1.0, this may

lead to gradient explosion. The numerical experiments in PyTorch
show that such a case can be avoided when β≤ 2.5402. On the other
hand, the lower bound of β is set to 1.0 because a small value of β
cannot achieve effective gradient amplification. Therefore, β is
ranged to [1.0, 2.5402] to ensure the system stability.

As shown in the comparison of Figures 1, 2, zigmoid amplifies the
derivate at the far end of the time axis where sigmoid failed to do so.

2.2 zLSTM
The aforementioned defined zigmoid with ranged β is expected to
alleviate the gradient problem for long time series. The following

attempts are then conducted to build a new variant of LSTM
using the proposed zigmoid (zLSTM) as shown in Figure 3:

1. Replace sigmoid function in the forget gate with zigmoid such
that the gradient can be effectively amplified (Figure 3).

2. Replace it with (1 − ft) (Cho et al., 2014) in order to reduce the
trainable parameters.

ft � zigmoid Wfxxt +Wfhht−1 + bf( ) (11)
ot � sigmoid Woxxt +Wohht−1 + bo( ) (12)
ĉt � tanh Wcxxt +Wchht−1 + bc( ) (13)
ct � ft ⊙ ct−1 + 1 − ft( ) ⊙ ĉt (14)
ht � ot ⊙ tanh ct( ) (15)

whereWix,Wih, bi,Wfx,Wfh, bf,Wox,Woh, bo,Wcx,Wch, and bc are
trainable parameters.

2.3 Hyper-Parameter β
An appropriate hyper-parameter β is of great significance for
controlling the intensity of the derivative amplification. β should
be a value that amplifies the gradient enough for the network to
learn long-term information.

Further information to be learned is that the smaller gradient
is in zigmoid. For an input sequence with length L:

1
1 − ft

� L (16)
ft � zigmoid x( ) (17)

Therefore,

FIGURE 2 | Zigmoid properties.

FIGURE 3 | Structure of zLSTM.

Frontiers in Energy Research | www.frontiersin.org April 2022 | Volume 10 | Article 8523493

Gong et al. Multivariate LOCA Prediction With zLSTM

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


dzigmoid x( )
dx

� L − 1
L2

β 1 + log L − 1( )( ) (18)

The gradient has to be greater than a certain value gmin such
that the networks can continue the learning. The gmin is observed
and suggested in this study as 0.01.

L − 1
L2

β 1 + log L − 1( )( )≥gmin (19)

yields

β≥
gminL2

L − 1( ) 1 + log L − 1( )( ) (20)

Thus, the β value can be calculated as

β �
1.0 βlim < 1.0
βmin 1.0≤ βlim ≤ 2.5402
2.5402 βlim > 2.5402

⎧⎪⎨⎪⎩ (21)

where βlim � gminL
(L−1)(1+log(L−1)).

2.4 Capabilities of zLSTM
zLSTM obtained by the aforementioned procedure has the
following capabilities:

1. zLSTM contains basic properties of LSTM:
a. Non-linearity: As a variant of RNN, zLSTM inherits the

non-linearity processing ability.
b. Short-term memory: Zigmoid maintains LSTM’s short-

term memory ability.
2. As an improved version of LSTM, zLSTM has advantages

such as
a. Long-term memory: Compared with sigmoid, zigmoid has

a greater gradient with the same output. This enhances the
long-term performance by allowing the model to conduct
learning over the full length of the time series. Longer
inputs are then allowed to be fed into the model, enriching
the information used for predictions.

b. Reduced trainable parameters: Given that the sum of forget
gate and input gate is 1, the input gate can be omitted to
deduct parameters. Gate reduction brings reduced
trainable parameters such that the computing time and
resource are less than traditional models.

With the properties and advantages mentioned previously,
this work proposes zLSTM as a better solution for LOCA
prediction due to the following considerations:

1. Compared to traditional machine learning algorithms, such as
the ones mentioned in Moshkbar-Bakhshayesh and Ghafari
(2022), and feed-forward neural network (Santos et al., 2019),
zLSTM can achieve better feature extraction with its LSTM
kernel that performs the calculation along timesteps. It is then
suggested for the non-linear LOCA process, whose variation
features are hard to capture.

2. Long term features can be captured by a combination of
existing models, such as CNN + LSTM (Wang et al.,

2021c), with a sacrifice of more hyper-parameters and more
tuning tricks, which burdens the model hyper-parameter
processing and deployment. zLSTM, on the contrary,
avoids such process by using an improved structure
without additional hyper-parameters.

3. The training process of zLSTM is more executable due to
reduced gate and parameters, allowing it to generate training/
predicting results with less time and efforts.

4. Compared to those baseline models, the LOCA prediction
from zLSTM has better credibility and enhanced
generalization performance due to zLSTM’s lower
overfitting probability and fewer trainable parameters.

3 EXPERIMENTS

3.1 Datasets
The datasets are obtained from LOCA simulations using an
industry-grade NPP simulation platform (Sun et al., 2017).
The simulations are carried out at 100% reactor power for
LOCA cases, that is, break sizes of 0.9, 0.95, 1.0, 1.5, and
2.0 cm2.

There are a total of twelve crucial system parameters selected
as the modeling features:

1. pressurizer water level;
2. coolant average temperature;
3. steam generator No. 1 water level;
4. steam generator No. 2 water level;
5. loop 1 coolant flowrate;
6. loop 2 coolant flowrate;
7. pressurizer pressure;
8. stream generator No. 1 output pressure;
9. stream generator No. 2 output pressure;
10. reactor power;
11. cold leg temperature;
12. hot leg temperature.

3.2 Data Preprocessing
To reduce the influence of multiple dimensions, the dataset is
preprocessed using the z-score method such that fast
convergency can be achieved during the model training
process.

xscaled � x − �x

σ
(22)

where �x and σ denote mean and variance of x, respectively.

3.3 Metrics
As common metrics for regression task evaluation, mean
squared error (MSE) and mean absolute error (MAE) are
chosen as the performance judgment for the proposed
zLSTM model.

MSE � 1
n
∑n
i�1

yi − ŷi( )2 (23)
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MAE � 1
n
∑n
i�1

|yi − ŷi| (24)

where yi and ŷi are the original value and predicted value,
respectively.

3.4 Hyper-Parameter Setting
The zLSTM structure consists of one input layer, two hidden
layers, and one output layer. Details are provided in Table 1.

3.5 Baseline Methods
There have been two similar investigations performed by She
et al. (2020) and She et al. (2021). However, their major
purpose was to verify the feasibility and effects of applying
deep learning methods to the LOCA predictions. Neither of
them covers the multivariate processing performance that
requires theoretical innovation on the NN itself, such as
defining a new zigmoid function for the LSTM model. To
demonstrate the superiority of using the zigmoid method for
multivariate processing, these two previous cases are selected
as the baseline, and the prediction accuracy represented by
MSE and MAE is compared among all the three methods. The
mentioned two previous works, LSTM and CNN-LSTM, are
compared with zLSTM to demonstrate its superiority on post-
LOCA predictions.

3.6 Model Training
All datasets are randomly split into three subsets, that is, a
training set (60%), a validation set (20%), and a test set (20%).
Multivariate time series data needed for model training are
derived by applying the rolling update method. Following the
previous work, the window sizes for LSTM and CNN-LSTM
remain 5 and 50. zLSTM uses the same window size as the
compared baseline, which means that it uses window size 5
when comparing with LSTM and 50 for CNN-LSTM. The
training parameters are optimized using Adam algorithm
(Kingma and Adam, 2014) with a learning rate 10–3 for all
models. When the training starts, a sliding window moves
from the first row of the training dataset and provides a series
of training input data describing the parameter variation
during the period limited by the window size. The model
learns and memorizes the variations such that it can
reproduce similar ones once the test data is fed to it. The
model is trained during such iterations until desired loss value
is reached. More training process details are provided in She
et al. (2020).

3.7 Model Verification Experiments
The performance of the proposed zLSTM is verified through
experiments designed to predict crucial parameters of
LOCA, in which both univariate scenario and multivariate
scenario are tested using zLSTM and the two baseline
methods.

The first crucial parameter chosen as the prediction feature
is loop 1 flowrate since it is the most impacted parameter
during a LOCA. Flowrate data from the test dataset are the so
called “single input” for the univariate scenario. As for the
multivariate scenario, all the twelve system parameters are
integrated into a vector xt and fed into the zLSTM for a
coupled prediction processing. A single output (loop 1
flowrate prediction) is generated by zLSTM’s single-cell
output layer that merges the processing results of the 12-
dimension vector. The multivariate experiment is only for
zLSTM since both baseline methods are originally single-
input models without parameter-coupling capability. With
a diversity consideration, similar univariate and multivariate
experiments are conducted to predict the pressurizer water
level as well.

The univariate test is necessary since the two baseline methods
are oriented to only one system parameter prediction. During this
experiment, the memorizing performance of the models for long-
and short-term information is tested, allowing the zLSTM to
present its long-term memory advantage with the amplified
gradient. For a fair play, zLSTM used for this experiment
takes the same single input as the baseline methods. Such
univariate-input zLSTM is named zLSTM-univariate
(zLSTM-U).

The multivariate test, on the other hand, is to confirm a lower
loss value when the prediction is generated with an algorithm
(zLSTM) that takes all associated parameters into account. In this
case, system parameters associated to the predicted feature are fed
to zLSTM as multivariate inputs, naming it zLSTM-multivariate
(zLSTM-M).

3.7.1 Prediction of Loop 1 Coolant Flowrate
As mentioned in the verification process introduction, the
univariate experiment uses the single input value for LSTM,
CNN-LSTM, and zLSTM-U. The multivariate experiment,
which is for zLSTM-M only, yields a single predicted feature
(flowrate or water level) using a 12-dimension vector containing
all the key system parameters. The experiments in this subsection
focus on the variation of the loop 1 coolant flowrate during LOCAs
of five different break sizes. Regarding the discussion in Section
3.6, both zLSTM-U and zLSTM-M select window size 5 to run the
univariate and multivariate tests against LSTM, which forms a test
group {LSTM, zLSTM-U5, zLSTM-M5}. When comparing to
CNN-LSTM that has window size 50, the test group becomes
{CNN-LSTM, zLSTM-U50, zLSTM-M50}. Model performance is
evaluated using MSE and MAE for each of the six models,
providing twelve accuracy evaluation results for each of the five
LOCA cases. Table 2 shows all these 60 results for the loop 1
flowrate predictions. The predicted LOCA trends are plotted in
Figures 4, 5.

TABLE 1 | Hyper parameters of zLSTM model.

Item Value

Units of input layer 1a or 12b

Units of zLSTM of 1st hidden layer 128
Units of zLSTM of 2nd hidden layer 64
Units of output layer 1

a1 for zLSTM univariate (zLSTM-U).
b12 for zLSTM multivariate (zLSTM-M).
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3.7.2 Prediction of Pressurizer Water Level
As another crucial system parameter describing the LOCA
behavior, the pressurizer water level is predicted in this
subsection by experiments same as in Section 3.7.1. Table 3
presents the 60 MSE/MAE data as the accuracy evaluations of the
two test groups. Meanwhile, the water level variation illustrated
by all the models is presented in Figures 6, 7.

3.7.3 Result Analysis
The prediction accuracy metrics listed in Tables 2, 3 describe
the prediction performance of the tested models. The upper
half of each table presents the prediction errors from zLSTM
(both U and M) against those from LSTM. It can be seen that
zLSTM achieves lower errors than LSTM on both MAE and
MSE. For instance, the average MAE difference between LSTM
and zLSTM-U5 for flowrate prediction is 0.26 in Table 2,
giving a 28.7% improvement on prediction accuracy.
Additionally, zLSTM working on multivariate mode also
beats its univariate mode due to the advantages brought by

the 12-dimension parameter vector. The average MAE
difference between zLSTM-U5 and zLSTM-M5 is 0.24,
giving an accuracy improvement of 28.8%. Similar
comparison is reflected by the lower half of each table,
where zLSTM once again proves its superiority over CNN-
LSTM with accuracy improvements such as 29.52% for
pressurizer water level prediction (MSE in Table 3, CNN-
LSTM vs. zLSTM-U50).

Figure 4 to Figure 7 visually illustrate the predicted LOCA
trends in different LOCA cases. The mini graphs within the figures
amplify chosen segments of the trends, offering a better view to the
model performance. After the LOCA occurs at t = 10s, the loop 1
flowrate and the pressurizer water level experience dramatical
variations, and then approach a stable state with help from the
emergency response system. During the entire process, the zLSTM
group {U5,M5, U50,M50} represents a more precise prediction
performance. At the beginning of the LOCA, it is the zLSTM
that grasps the suddenly inserted non-linear variation using
its efficient short-term memory, producing a prediction close

TABLE 2 | Prediction accuracy evaluations for loop 1 flowrate.

Metric Model 0.9 0.95 1.0 1.5 2.0

LSTM
vs.
zLSTM

MAE LSTM 1.751 × 100 1.841 × 100 3.023 × 10–3 1.114 × 100 4.800 × 10–3

zLSTM-U5 1.598 × 100 1.605 × 100 2.732 × 10−3 1.040 × 100 3.928 × 10−3

zLSTM-M5 9.235 × 10–1 9.243 × 10–1 2.008 × 10–3 9.603 × 10–1 3.443 × 10–3

MSE LSTM 1.039 × 101 1.048 × 101 2.700 × 10–5 7.702 × 100 8.000 × 10–5

zLSTM-U5 9.835 × 100 9.850 × 100 2.300 × 10−5 4.659 × 100 5.700 × 10−5

zLSTM-M5 3.458 × 100 3.444 × 100 1.800 × 10–5 3.984 × 100 5.000 × 10–5

CNN-LSTM
vs.
zLSTM

MAE CNN-LSTM 2.353 × 100 2.270 × 100 2.615 × 10–3 1.223 × 100 3.848 × 10–3

zLSTM-U50 9.006 × 10−1 8.550 × 10−1 2.003 × 10−3 1.030 × 100 3.187 × 10−3

zLSTM-M50 7.217 × 10–1 7.241 × 10–1 1.630 × 10–3 1.025 × 100 2.330 × 10–3

MSE CNN-LSTM 2.140 × 101 2.322 × 101 2.700 × 10–5 6.878 × 100 5.700 × 10–5

zLSTM-U50 4.054 × 100 4.030 × 100 1.500 × 10−5 5.231 × 100 5.300 × 10−5

zLSTM-M50 2.126 × 100 2.121 × 100 1.300 × 10–5 4.141 × 100 4.400 × 10–5

Underline data, the best result of univariate experiments; bold data, the best result of multivariate and univariate experiments.

FIGURE 4 | Prediction of loop 1 coolant flowrate on break size 0.9 cm2.
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to the actual trend. How the zigmoid function can enhance
the model’s long-term memory is well verified when the
zLSTM models generate better predictions at the far end
of the time axis. zLSTM-M50 is the one that grasps the
progression trends most accurately and persistently, which
demonstrate the importance and effect of using multivariate
processing (12-dimension vector) and wide data window
(size 50).

The analysis conducted to investigate further explanations is
presented as follows:

1. The multivariate mode of zLSTM (zLSTM-M) allows the
prediction to be generated based on the coupling of system
parameters, that is, the prediction comprehensively considers
all the 12 critical system parameters relevant to LOCA
progression. Sufficient information provided by such a 12-
variable input vector guarantees improved prediction accuracy.

2. LOCA predictions for small breaks received higher loss
values than those for big ones. They confirm the

difficulties of learning and simulating a process with
dramatical variations, for example, a small LOCA.
Inflect points shorten the time period necessary for
information gathering, preventing the model from
sufficient evaluation of the progression process. The loss
values rise along with the number of inflect points,
showing that more inflect points cause more missing
information during learning and prediction.

3. It is observed that a larger input window size gives the zLSTM
model a better performance since the window size
determines the coverage of critical information. More
accurate results are generated when the model is capable
of learning comprehensively by capturing more useful
information from the predicted process.

To summarize, the application of zigmoid function to LSTM
has enhanced the short and long-term memory of the model.
With the input vector integrated using 12 system parameters, the
zLSTM-M model can be even more comprehensive to the

FIGURE 5 | Prediction of loop 1 coolant flowrate on break size 1.0 cm2.

TABLE 3 | Prediction accuracy evaluations for pressurizer water level.

Metric Model 0.9 0.95 1.0 1.5 2.0

LSTM
vs.
zLSTM

MAE LSTM 1.505 × 10–1 1.519 × 10–1 4.167 × 10–2 4.791 × 10–1 8.124 × 10–2

zLSTM-U5 1.402 × 10−2 1.393 × 10−2 3.855 × 10−2 4.698 × 10−1 7.919 × 10−2

zLSTM-M5 8.800 × 10–4 8.990 × 10–4 1.214 × 10–6 1.346 × 10–3 5.000 × 10–6

MSE LSTM 7.775 × 10–2 7.898 × 10–2 2.423 × 10–3 3.794 × 10–1 9.233 × 10–3

zLSTM-U5 7.723 × 10−2 7.723 × 10−2 2.126 × 10−3 3.453 × 10−1 8.841 × 10−3

zLSTM-M5 1.618 × 10–2 1.894 × 10–2 9.000 × 10–4 2.939 × 10–2 1.761 × 10–3

CNN-LSTM
vs.
zLSTM

MAE CNN-LSTM 9.192 × 10–2 9.238 × 10–2 3.150 × 10–2 4.221 × 10–1 3.595 × 10–2

zLSTM-U50 5.561 × 10−2 4.991 × 10−2 2.770 × 10−2 3.777 × 10−1 3.373 × 10−2

zLSTM-M50 1.264 × 10–2 1.410 × 10–2 5.940 × 10–4 2.448 × 10–2 9.870 × 10–4

MSE CNN-LSTM 3.231 × 10–2 3.234 × 10–2 1.359 × 10–3 3.216 × 10–1 2.872 × 10–3

zLSTM-U50 1.227 × 10−2 1.131 × 10−2 1.196 × 10−3 2.416 × 10−1 2.029 × 10−3

zLSTM-M50 4.600 × 10–4 4.860 × 10–4 6.000 × 10–6 8.740 × 10–4 2.00 × 10–5

Underline data, the best result of univariate experiments; bold data, the best result of multivariate and univariate experiments.
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multivariate environment of LOCA, allowing the predicted
feature to be more accurate.

4 CONCLUSION

A new gate function zigmoid is raised as a solution to the far-end
gradient problem of RNN class models, which is proposed to
cover the non-linearity, time correlation, and multivariate
processing for LOCA predictions. Proved through theoretical
analysis, the zigmoid function is embedded into traditional LSTM
to form zLSTM that is capable of effectively memorizing both
short- and long-term information. Its multivariate processing is
enabled by using a 12-dimension input vector that integrates 12
system parameters. The multivariate mode gathers all-sided
system information that eliminates blind spots during the

prediction process. The verification experiments successfully
demonstrate the aforementioned advantages of the zLSTM
model. The accuracy metrics (MAE/MSE) of zLSTM is kept
lower than traditional models for both univariate and
multivariate scenarios. During the LOCA progression, the
parameter trends are followed by zLSTM’s prediction, with
the smallest deviation according to the experiment figures.
All these findings confirm zLSTM to be a better method for
LOCA predictions.

In addition to the achievements, there are a few issues
remaining for future investigation. First, zLSTM is constructed
by replacing only the forget gate in LSTM. Possible further
enhancement could be obtained with more applications of the
zigmoid function. The next is the model training process that may
be improved using more actual NPP data. Last but not least,
inflect points in the LOCA trend cannot be well followed by the

FIGURE 6 | Prediction of pressurizer water level on break size 0.9 cm2.

FIGURE 7 | Prediction of pressurizer water level on break size 0.95 cm.2
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prediction curve generated from the deep learning models, which
implies alternative solutions in future explorations.
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