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Spatial load forecasting (SLF) is important for regional power infrastructure construction
planning and power gridmanagement. However, for rapidly developing urban regions, SLF
is generally inaccurate due to insufficient historical data. Hence, it is important to introduce
the spatial load density (SLD) from similar regions to improve the accuracy of SLF. To select
similar regions appropriately and acquire SLDs with limited available auxiliary data, this
study proposes a spatial electric load forecasting method based on the high-level
encoding of high-resolution remote sensing images called SELF-HE. In particular,
SELF-HE introduces high-level ground object features as a key index to describe the
characteristics of electric loads in a region and can establish connections between the
remote sensing image features and SLD similarity. Based on this functionality, SELF-HE
achieves more accurate SLF in regions with insufficient historical data. In the experiments,
SELF-HE was compared with four traditional methods, and the results revealed that SELF-
HE achieved improved SLF accuracy. Given that the high-resolution remote sensing
images fully covered urban areas and were readily obtained, the proposed method can
improve the accuracy of SLF with extremely low data collection costs and is applicable to
rapidly developing urban regions.
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INTRODUCTION

Efficient electric load forecasting methods can be employed to determine the electric load within a
given period and provide considerable support for power grid management (Evangelopoulos et al.,
2020; Moreno-Carbonell et al., 2020). Spatial load forecasting (SLF) indicates the extent to which the
load will increase within a geographical region, which is necessary for determining the capacity or
distribution of the equipment within a certain service zone (Willis and Tram, 1983;Willis, 2002). SLF
can identify subzones with the highest anticipated load growth and support advanced preparations
for distribution network expansion planning (Carreno et al., 2010; Melo et al., 2014; Han et al., 2020).
Therefore, it is necessary to obtain high-quality SLF results.

To perform SLF, one of the following two conditions is required: 1) a long-term study based on
multiple years of historical data to reflect the characteristics of load changes during various time
periods during festivals and under different weather conditions, which requires a sufficiently long
time series of data to construct a high-performance regressionmodel (Georgilakis andHatziargyriou,
2015; Xie et al., 2018), or 2) the ability to obtain directly the upcoming electric consumption plans of
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enterprises in the region and/or information pertaining to the
regional economic growth or employment level to be used to
assist in forecasting (Chow et al., 2005). The two above-
mentioned conditions can be met in relatively stable and
established urban areas. However, for rapidly developing cities,
especially areas of new development, this information is difficult
to obtain. Moreover, various regions were developed recently
(especially within the past year), enabling the accumulation of
sufficient time series data to develop regression models.
Furthermore, electric consumption plans are difficult to obtain
due to large changes in population or the unwillingness of
companies to disclose their production plans (Wu and Lu,
2002; Salvó and Piacquadio, 2017).

With regard to the research on performing SLF via spatial load
density (SLD), the implementation of SLF for areas of new
development in cities for the analysis of the SLD is a feasible
solution (He et al., 2015). For a newly developed plot px, if an
existing plot p can be established with an electric load trend that is
similar to that of px, the SLD of p can be obtained by normalizing
the historical electric load data, which can be used in combination
with the range of px to simulate a long time series of data to train a
forecasting model. This strategy is effective for plots with
insufficient historical load data (Yao et al., 2015; Ye et al.,
2019). The advantage of using such SLD methods is the ability
to identify “similar” plots. Given that a plot load is closely related
to the objects/buildings on the ground, the optional source of
information for determining “similar” plots is geospatial
information.

Spatial feature information has a significant influence on the
accuracy of SLF, and using a geographic information system
(GIS) to describe and distinguish different SLD patterns is an
effective means of obtaining spatial–temporal forecasting models
(Monteiro et al., 2005; Brunoro et al., 2009; Shin et al., 2011).
Based on the introduction of geospatial features, the SLF
accuracies achieved with fuzzy clustering, spatial correlation,
cellular automaton, and multiagent methods can all be
effectively improved (Ying and Pan, 2008; Melo et al., 2010;
Melo et al., 2012). However, most existing geographic
information is not directly suitable for SLF or SLD
processing, and this information is relatively neutral
(Vasquez-Arnez et al., 2008). Therefore, most SLD-based
methods adopt one of the following strategies: 1) the nearest
plot is directly considered a similar source or 2) a plot in the
same land use category is selected. For areas with a single
industry and homogeneous structure, these two strategies are
effective. However, for areas with highly diverse content,
neighbor relationships or land use categories are not
sufficient for identifying similar plots (Melo et al., 2015; Shi
et al., 2016). For example, machinery manufacturing and
biopharmaceutical companies belong to the economic
development category (same land-use type); however, they
exhibit completely different electricity consumption
characteristics. Moreover, in areas of new urban
development, this heterogeneity is severe (Ye et al., 2019).
Therefore, it is necessary to study methods of achieving
relatively accurate SLF with insufficient electric load time
series data and approximate geographic information data.

For geographic information data to support SLF and SLD
processing specifically, high-resolution remote sensing images
constitute an appropriate source. With the advances in satellite
sensor technology, high-resolution remote sensing images are
becoming available, which can provide detailed ground object
information (Pan et al., 2021). High-resolution remote sensing
images can be used to obtain the structural and spatial details of the
objects in urban areas rapidly and efficiently and provide decision-
making support for critical information related to the status,
planning, population, and environment of these areas (Li et al.,
2016; Su et al., 2021; Plant et al., 2022). The specific characteristics
of objects in a certain region can be extracted from remote sensing
images (Srivastava et al., 2019; Chakraborty et al., 2021; Pristeri
et al., 2021). At present, shallow models such as support vector
machines (SVMs), decision trees, k-nearest neighbor (k-NN)
models, and deep models, including convolutional neural
networks (CNNs) and long short-term memory (LSTM)
networks, can all be used to describe the characteristics of the
contents of remote sensing images; adequate application results
have been obtained in various fields (Yuan et al., 2017; Park et al.,
2018; Li et al., 2019; Zhang et al., 2019; Kang et al., 2020). Similarly,
the information required for SLF and SLD processing can be
extracted from remote sensing images.

To address the difficulties in realizing SLF for rapidly
developing regions, this study proposes a spatial electric load
forecasting method based on the high-level encoding of high-
resolution remote sensing images called SELF-HE. In SELF-HE,
deep neural networks are established to obtain the features of
ground objects from remote sensing images, an unsupervised
clustering process is applied to establish connections between
the image features and SLD, and a high-level encoding model is
constructed to extract load characteristics from images. Using this
model, data-rich plots that are similar to a given plot can be
identified based on the features of the corresponding remote
sensing images, enabling the use of the SLDs of similar plots to
solve the problem of insufficient historical data. In the experiments,
we tested the use of the proposed SELF-HE method for SLF in the
northern part of Changchun, China. The results revealed that,
compared with traditional methods, SELF-HE can achieve more
accurate SLF. Moreover, SELF-HE uses only remotely sensed high-
level feature data as the basis for identifying similar plots; hence,
this method is beneficial for large-scale and low-cost SLF.

METHODOLOGY

Basic Principle of Using SLD for SLF
To achieve load forecasting for plots with insufficient historical
electric load data, the proposed method applies the principle
illustrated in Figure 1.

As shown in Figure 1, there are plots in a large zone Z: {p1, p2,
. . . , pn}. For each pi = (area, history, sld), area is the spatial area
corresponding to pi, history is the time series data of the historical
electric loads, and sld is the SLD vector calculated based on
history. Elements in Z can be further separated into two types:
Pknown and Punknown. The difference between Pknown and Punknown
is that the elements of known originate from areas that were
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developed a sufficiently long time ago, where rich historical load
data are available; by contrast, the elements of Punknown
correspond to newly developed urban areas, for which
sufficient historical data have not been accumulated. Owing to
the insufficiency of historical data, a sufficiently accurate
forecasting model cannot be constructed. However, we can
identify plots in Pknown that are highly similar to those in
Punknown and use the SLDs of these plots to construct a
forecasting model jointly based on the SLD information and a
small amount of historical data.

Overall Process of the Proposed Method
The core problem in Figure 1 is to obtain the SLD information for
a given plot px based on a set of plots similar to px in Pknown. The
spatial structure and style of buildings in high-resolution remote
sensing images can provide information to solve this problem.
Thus, we can use the high-level features of ground objects to
perform an approximate search and obtain the target SLD. Hence,
this study proposes the SELF-HE method. The overall process of
SELF-HE is depicted in Figure 2.

As shown in Figure 2, for Zone Z containing plots belonging
to known and unknown, the objective is to develop an SLF model
for plot px in Punknown. The SELF-HE consists of three steps:

Compressed Representation of Image Patches
Suppose that Z is depicted in one or more high-resolution remote
sensing images IMGzone = {img1, img2, . . . , imgn}. Based on the plots
in Pknown, the corresponding image patches are cut from IMGzone to
obtain the image patch set Iknown= {i1, i2, . . . , in}. All data in Iknown are
then used to train a compressed representationmodel, namely,Mcmp.
Using Mcmp, an image patch can be converted into a compressed
representation vector, vcmp. This step is described in detail in
Compressed Representation of Image Patches.

Construction of a Distance Encoding Model and
Group Assignment Model
Using Mcmp, Iknown can be transformed into a set of compressed
representation vectors. A distance encoding model Mdistance is then
constructed based on the locations of the plots. UsingMdistance, each
plot can be associated with a distance vector vdis. Based on vdis and

FIGURE 1 | Basic principle of using SLD for SLF.

FIGURE 2 | Overall process of SELF-HE.
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SLD, the plots can be clustered, and the plots in Pknown can be further
encoded based on the clustering result Tcluster. Thereafter, a group
assignment model Mgroup is constructed and trained based on vdis,
vcmp, and Tcluster. The output of Mgroup is high-level encoding, which
serves as the basis for SELF-HE to determine the degree of similarity
between the plots. This step is described in detail in Construction of a
Distance Encoding Model and Group Assignment Model.

High-Level Encoding and SLF
It should be noted that SELF-HE integrates Mdistance, Mcmp, and
Mgroup to construct a high-level encoding model, namely,Mencode.
In particular, Mencode can realize an end-to-end plot encoding
function, as it accepts the corresponding image patch and features
of a plot as inputs and outputs the encoding result. For Pknown,
Mencode is used to obtain encoding result Vencode for each plot. For
px, Mencode is used to obtain encoding result vx. Thereafter, using
the vector distances between vx and the elements inVencode, SELF-
HE can identify Psimilar plots in Pknown that are the most similar to
px. Based on Psimilar and the historical data for px, an SLF model
Mforecast for px can be obtained. This step is described in detail in
High-Level Encoding and SLF.

Using the three steps above, although the plot corresponding to px
is a newly established area in the city in which historical electric load
data are scarce; based on the characteristics of the high-level
encoding, an approximately similar area in the city can be
identified, for which a large amount of historical data is available
to facilitate the construction of Mforecast. Thereafter, Mforecast can be
used to perform SLF for the area corresponding to px.

Compressed Representation of Image
Patches
This section details the development of a compressed image patch
representation model Mcmp, through which the high-level
information in an image patch can be extracted. The structure
of Mcmp is shown in Figure 3.

As shown in Figure 3, Mcmp consists of three components:

Resize and Grayscale Transform Layer
As the first component ofMcmp, we introduce a layer that converts the
input image into a grayscale image and then scales it to a specified size
Paramsize. The default value of Paramsize is 256 × 256. There are two
reasons for using this layer inMcmp. First, with increasing resolution of
a remote sensing image, the coverage area decreases; therefore, to
cover all areas in Z, it may be necessary to use multiple images. In this
case, even if these images are collected from the same satellite sensor, it
is difficult to ensure that the images are consistent with respect to the
acquisition time or season. To overcome this challenge, grayscale
images can reduce the influence of vegetation growth on the color
(certain band values) in an image, avoiding the case in which the
subsequent neural network focuses on the color instead of the
structure of the ground objects. Second, using a fixed output size
in this layer can significantly reduce the difficulty of subsequent
training. This layer can be realized using a color-to-grayscale
conversion function [mapping the value range to (0, 1)] and an
image resizing function, and the output is the feature map igray.

VGG16 Feature Extractor
The main objective of the second component ofMcmp is to extract
high-level features from the input image. We directly use the
pretrained VGG16 neural network to achieve this goal. This
neural network contains five groups of feature extraction
layers, each consisting of convolution + rectified linear unit
(ReLU) and max pooling layers. One group of layers reduces
the size of the input feature map by half. The pretrained VGG16
neural network does not require training. The standard
pretrained weights obtained based on the ImageNet training
samples are directly used as weights. At the end of the VGG16
network, we add a flattened layer to convert the output feature
maps into one-dimensional vectors.

Vector vflatten represents the representation result for the image
patch. However, this vector comprises thousands of dimensions.

FIGURE 3 | Structure of Mcmp.
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With such high dimensionality, there is considerable redundant
content that is not useful for distinguishing the differences between
object structures in image patches, and an excessively high number
of dimensions can readily cause overfitting in subsequent processing.
Therefore, an additional compression process is required.

Compressed Encoder
In SELF-HE, an unsupervised approach is adopted to
compress the output of the VGG16 feature extractor. First, we
developed an autoencoder model. This model consists of an
encoder Mencoder and a decoder Mdecoder, which performs the
following transformations:

{ ϕ: vflatten → encode
φ: encode → vflatten

(1)

The autoencoder model is expected to achieve the following
via Mencoder and Mdecoder:

argminϕ,φ
����vflatten − (ϕ+φ)vflatten���� (2)

The encoder consists of three layers: a ReLU layer with a number
of neurons equal to the dimensionality of vflatten, a ReLU layer with
256 neurons, and a ReLU layer with Paramcode neurons. Similarly,
the decoder consists of three layers: a ReLU layer with Paramcode

neurons, a ReLU layer with 256 neurons, and a sigmoid layer with a
number of neurons equal to the dimensionality of vflatten. Using
Mencoder, vflatten is compressed into encoding with Paramcode

dimensions, whereas Mdecoder attempts to restore encode to vflatten.
Using only Mencoder, vflatten can be compressed into a Paramcode-
dimensional vector (default value of 32). UsingMencoder as the third
component of Mcmp, the final output vcmp can be obtained.

Based on the above description, the construction and training
process for Mcmp is summarized in Algorithm 1.

Algorithm 1.Mcmp construction and training (MCP-CT) algorithm.

The MCP-CT algorithm accepts IMGzone and Pknown as the
input and generates the Mcmp model after training. Moreover,
Mcmp can compress and encode an image patch based on the

differences with respect to all related images in known, and it
outputs the compressed representation vector vcmp.

Construction of a Distance Encoding Model
and Group Assignment Model
This section details the determination of the distance encoding
model Mdistance and group assignment model Mgroup. Plots can
then be encoded using these two models.

For Zone Z, suppose that the lower left corner is positioned at
the two-dimensional coordinates (0, 0), the width of Z is Lwidth,
and the height is Lheight. The distances of a plot pi from the
coordinates (0, 0) along the x and y axes are denoted by pi.area.x
and pi.area.y, respectively. Accordingly, the following equation is
used to describe the relative position of pi in Zone Z

vdistance �(pi.area.x
Lwidth

,
pi.area.y
Lheight

,
pi.area.x
Lwidth

− 0.5, pi.area.y
Lheight

− 0.5),
(3)

where vdistance describes the position of pi relative to the center of
Z and relative to the coordinates (0, 0). For a plot, Eq. 3 can
describe its position according to the distance from the starting
point and the center point of Z, and form a vector; this vector
is easy to participate in the calculation process of the neural
network, vdistance can assist neural network take plot’s location as
important features during inference.Mdistance consists of a single
layer with an input of pi.area and output of vdistance; thus,
Mdistance can be used to realize end-to-end coding distance
coding for a plot.

To developMgroup, we established the relationship between the
SLD and the image encoding of a plot. This process is illustrated
in Figure 4.

As shown in Figure 4, the process of development and training
consists of two steps.

SLD Relationship Extraction
For plot pi, vdistance is first obtained using Mdistance and is then
concatenated with pi.sld. Thereafter, the data from all plots in
Pknown are aggregated into an input sample batch Tbatch. For SELF-
HE, a deep neural network Msldcluster is then used to cluster all
samples in Tbatch. Msldcluster contains three groups of layers, each
consisting of a dense layer and a batch normalization layer. The
output of the final dense layer is Ncategory (default value is 64).
Moreover, Msldcluster encodes all samples in Tbatch, and the
encoding result is Tnorm, which consists of nondimensional
vectors. It should be noted that Tnorm can be regarded as a
fuzzy representation of the clustering of the samples; by
applying ArgMax, the final clustering result Tcluster can be
obtained. The difference between Tcluster and Tnorm can be used
as a loss function for training Msldcluster:

loss(Tnorm, Tcluster) � losssld(Tnorm, Tcluster) + lossdistance(Tnorm).
(4)

Here, losssld represents the loss of the output in terms of the
SLD difference, which can be expressed as follows:
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losssld(Tnorm, Tcluster) � ∑Nsamples

i�1 ∑Ncategory

j�1 ( − δ(j
− Tcluster[i])ln(Tnorm[i][j])), (5)

where δ(t) � { 1 t � 0
0 t ≠ 0

. In addition, lossdistance represents the

spatial neighboring constraint and is defined as

lossspace(Tnorm) � ∑Nsamples

i�1
����Tnorm[j] − Tnorm[neighbor(j)]����,

(6)
where neighbor(j) denotes the number corresponding to the
element nearest to Sample j. Eq. 4 considers constraints on
the SLD similarity and spatial continuity. Accordingly, plots
with close distances and similar SLDs are assigned to the same
cluster. Moreover,Msldcluster undergoes iterative backpropagation
to improve the clustering results, as expressed by Algorithm 2.

Algorithm 2. SLD relationship extraction (SLD-E) algorithm.

Using SLD-E, the clustering results Tcluster for all plots in Pknown
can be obtained. Plots with close spatial distances and relatively
similar SLDs are mapped to the same category. Moreover, Tcluster

captures the relationship between the SLD in space and the electric
load trend. This relationship serves as a basis for the establishment
of the relationship between image encoding and SLD similarity.

Group Assignment Model Creation
As shown in Figure 4, after Tcluster is obtained in Step 1, the group
assignment model Mgroup can be trained. Mgroup consists of five
dense layers and one sigmoid layer. For the elements in Pknown,
Mcmp is used to obtain the compressed image encoding vcmp,
Mdistance is used to obtain vdistance, and vcmp and vdistance are
concatenated. In this manner, a description Ttrainx
corresponding to the image content and location information
in Pknown is generated. Moreover, Tcluster is used as the model
output Ttrainy. Thereafter, Mgroup is trained using Ttrainx and
Ttrainy. By training Mgroup, the relationship between image
encoding and SLD clustering results is established. This
process is expressed by Algorithm 3.

Algorithm 3.Group assignmentmodel creation (GAMC) algorithm.

Using GAMC,Mgroup is obtained. In particular,Mgroup accepts
the image encoding (compressed image vector and distance
vector) of a ground plot image as an input and generated the

FIGURE 4 | Process of establishing the relationship between the SLD and the image encoding of a plot.

Frontiers in Energy Research | www.frontiersin.org March 2022 | Volume 10 | Article 8523176

Wang and Sun Spatial Electric Load Forecasting

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


corresponding cluster assignment vector vencode as an output.
Thereafter, Vencode can be used as critical data to identify plots
with similar SLD trends.

In the process of obtaining Mgroup, SELF-HE employs an
adaptive number of categories. The SLD-E algorithm of SELF-
HE prespecifies a number of categories Ncategory that significantly
exceed the actual required number. After processing using
Msldcluster for Tcluster, the dimensions of several categories do
not exceed the value of other dimensions (cannot be
represented as a category label in the results); thus, the
number of categories finally obtained is significantly lower
than Ncategory. The actual number of classifications obtained by
Mgroup is then as follows:

Nreal−category � Count(Unique(ArgMax(Tcluser, 0))), (7)
where ArgMax returns indices of the maximum values along an
axis, Unique returns unique elements of an array, and Count
returns the number of elements.

High-Level Encoding and SLF
WhenMcmp,Mdistance, andMgroup have been obtained,Mencode can
be constructed. The inputs into Mencode are the image patch and
area information, and the output is the high-level encoding
vector vencode. Based on vencode, an SLF model is constructed.
The corresponding process is shown in Figure 5.

As shown in Figure 5, Mencode is constructed from Mcmp,
Mdistance, and Mgroup. Moreover, Mcmp accepts image patch data
and generates vcmp, and Mdistance accepts location information as
an input to generate vdistance. Finally, vcmp and vdistance are
concatenated and input into Mgroup to generate the model
output vencode. Through this process, Mencode can realize the
end-to-end capacity to encode the information of individual
plots, and the resulting encoding can be further used to
establish an SLF model.

ThroughMencode, all plots in Pknown can be processed to obtain
the encoding results Vknown = {v1, v2, . . . , vn}. For plot px, for

which an SLF model should be obtained, the corresponding
image patch Ix is then cut from Z in accordance with its area
attribute, and px.area and Ix are input into Mencode to obtain
vencode. For two encoding vectors, the distance between them is as
follows:

distance(v1, v2) � l1norm(v1 − v2). (8)
Based on Eq. 8, the m nearest vectors in Vknown can be

identified using the k-NN algorithm; thus, the most similar
plots in known, that is, similar = {p1, p2, . . . , pm}, can be
identified. The average SLD, as denoted by averageSLD, is
calculated as follows:

averageSLD(Similar) � ∑m
i pi.SLD
m

. (9)

Accordingly, averageSLD represents the variation trend
and fluctuation range of the electric load data of px.
Although insufficient historical data are available for px, these
data can provide the range of load changes within a
period. Thereafter, based on the load change interval INT of
px.history, long-term historical data can be estimated by
calculating longhistory = INT × averageSLD, which can
further support the development of Mforecast.

After all the above-mentioned steps, we finally obtain an end-
to-end deep neural network model Mencode that can be used as a
bridge from ground-building features to electrical load
characteristics. Moreover, the remote sensing image data and
location information of a plot are input into Mencode, which then
produces high-level encoding corresponding to the image. This
code can be used to identify the most similar plots with rich
historical electrical load data and subsequently to obtain the
average SLD. For the current plot, the average SLD can
supplement the shortcomings of the insufficient data and
obtain forecasting Mforecast, which is more stable and accurate
than using the historical data of the plot. Finally, electrical power
forecasting for developing regions or regions lacking historical
load data could be realized.

EXPERIMENTS AND RESULTS

Method Realization and Study Area
We adopted Python to implement the SELF-HE method and all
methods considered for comparison, and TensorFlow was used to
develop the deep neural network models in SELF-HE. All
experiments were performed on a computer with an Intel
Core i9-9900K CPU, a GeForce RTX 2080 11 GB graphics
processing unit (GPU), and 64 GB of memory.

The target area in this study corresponds to the northern area
of the city of Changchun, Jilin Province, China. This area is a
rapidly growing area of Changchun, and methods such as SELF-
HE are required to provide decision support for SLF. This area is
shown in Figure 6.

The target area and SLF Zone Zmarked in Figure 6 contained
various commercial, residential, educational, and manufacturing
areas, all of which exhibited significantly different electrical load

FIGURE 5 | Mencode and SLF model development.
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characteristics. The high-resolution remote sensing images of the
study area were not obtained from a single remote sensing
satellite sensor. In particular, we used the ArcGIS Living Atlas
“World Image” web map service as the data source. For Zone Z in
the study area, this service can provide detailed remote sensing
image information from Level 0 to 23. We selected the 17th level,
at which the resolution was 1.19 m per pixel, which was sufficient
to distinguish the structural characteristics of ground objects and
could support the process of SELF-HE. Different regions in Z
exhibited typical differences in structure and morphology, and
these differences were used as critical clues to identify plots with
similar SLDs.

For the electrical load data, we selected 640 plots with
dimensions of 300 × 300 m and collected historical electric

load data from ammeters in the corresponding plots. The
plots are shown in Figure 7.

As shown in Figure 7, these plots can be divided into three
categories, the details of which are listed below.

Five Years
Five years of historical data were available from 2016 to 2020. The
corresponding area was developed relatively early; thus, the data
were relatively rich, and 170 plots belonged to this category.

Three Years
Three years of historical data were available from 2018 to 2020;
several accumulated electrical load data were available for this
area, and 351 plots belonged to this category.

FIGURE 6 | Study area and the corresponding remote sensing images.

FIGURE 7 | Plots and amount of historical data.
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Two Years
Only 2 years of historical data were available from 2019 to 2020.
These plots belonged to a newly developed area, for which there were
insufficient historical data; and 119 plots belonged to this category.

Among all the above-mentioned plots, 50% of the plots in
categories 1) and 2) were randomly selected as the SLD source
dataset. This dataset consisted of historical data from 2016 to 2019
and did not contain data from 2020. The 2020 data for all the plots
were used to construct the test set, whichwas further divided into three
subsets, as follows. Test set 1 corresponded to the remaining 50% of
the 5-years plots, Test set 2 corresponded to the remaining 50% of the
3-year plots, and Test set 3 corresponded to all 2-year plots.

Methods Considered for Comparison
To evaluate the load forecasting capacity of SELF-HE, the
following methods were considered for comparison in this study.

Forecasting Model Trained Using Historical Data
(F-History)
For all test sets, all data except those from 2020 were used to train
the forecasting model. For this model, the SLD dataset was not
required. Moreover, F-History uses an LSTM network as a
forecasting model, and the forecasting time period is 7 days
(when forecasting the load for the following 7 days at a certain
time point, the load data generated in the previous 7 days are
required as input).

Nearest Matching SLD (Nearest-SLD)
For an unknown plot px, the plot in the SLD source dataset that was
the closest to px was used to train the same LSTM forecasting model
as in F-History based on the corresponding SLD information.

K-Neighbor Matching SLD (Neighbor-SLD)
For an unknown plot px, the k plots in the SLD source dataset that
were the closest to px were identified, and their average SLD was
obtained to develop the forecasting model.

Structural Similarity Matching SLD (Similar-Structure)
Mcmp from SELF-HE was used to extract vcmp for each plot; vcmp

was used as a metric to determine the best-matching plot in the
SLD source dataset, and its SLD was then used to construct a
forecasting model.

SELF-HE
The method proposed in this study.

The prediction models used in each of the five methods above
exhibit the same structure. Consequently, the capacity to adapt to
different data characteristics and historical data volumes has a
significant influence on the accuracy of the results. To evaluate
the forecasting accuracy of each of the five methods for a given
plot, we used the error rate defined below:

ErrorRate(Plot) � ∑m
d�1

|Forecastm−Realm |
Realm

× 100%

m
. (10)

This equation measures the 1-to-m-day forecasting error for a
plot, where Forecastm represents the forecasting result on the

mth day, and realm represents the true load on the mth day. For
the entire test set, the prediction error was as follows:

AverageErrorRate(set) � ∑n
i�1ErrorRate(Ploti)

n
. (11)

This average error rate represents the average forecasting error
for all plots in a set of test data. As the value increases, the error
increases. In this study, the average error rate was used tomeasure
the forecasting capacity of each method.

Details of the SELF-HE Clustering Results
and Comparison of the Average Error Rates
of the Five Methods
The SELF-HE method comprises multiple steps. The SLD-E
algorithm in Step 2 performs cluster encoding based on SLD
and spatial distance, and typical clustering results are shown in
Figure 8.

Figure 8 presents several examples of the typical clustering
results of the SLD-E algorithm. The clustering results were

FIGURE 8 | Clustering results of SLD-E.
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obtained using SLD and spatial distance as criteria (the image
content was not considered in the clustering process). However,
as can be seen from the resulting clusters, plots in the same cluster
exhibit similar spatial characteristics. Cluster 1 consists of
residential areas that are highly similar in structural scale
(size) and arrangement, and the patterns of electricity
consumption in these areas are highly similar. For Cluster 2,
although the sizes and directions are different, the plots
correspond to the production workshops of small enterprises
and exhibit similar compositions of content. The plots in Cluster
3 are from commercial areas and display similar patterns of
arrangement. For the plots in Cluster 4, although their contents
are not the same, they are all close to the main road. As can be
seen from the results, the approximation of the SLD is correlated
with the spatial characteristics of the remote sensing images.
However, the mode of this correlation is not unique, and the four
clusters correspond to four different correlation modes.
Therefore, pure image approximation cannot describe all
relevant relationships, and a more effective method, such as
the GAMC algorithm of SELF-HE, is required to describe
these relationships.

The average error rates of the five methods are shown in
Table 1. As can be seen from this table, F-History does not use the
SLD source dataset and relies only on the historical data in the test
set to build a forecasting model. Moreover, given that Test set 1
contains 4 years of historical data, F-History reaches its optimal

forecasting accuracy using this test set. The accuracy of this
method rapidly declines as the amount of available historical
data decreases, and the poorest result is obtained for Test set 3,
with an average error rate of 17.12%. It can be seen that a
reduction in the amount of historical data has a significant
influence on the forecasting model. For Nearest-SLD and
Neighbor-SLD, the spatial distance was used as the criterion
for selecting the SLD information from Pknown. For Test sets 1 and
2, these methods yield lower accuracies than F-History. However,
for Test set 3, the results are superior to those of F-History,
indicating that Nearest-SLD and Neighbor-SLD have positive
influences on the load forecasting when the available historical
data are limited. Similar-Structure used the similarity of image
characteristics to identify plots with similar SLDs in known, and
the trend of the results obtained using this method is similar to
those of Nearest-SLD and Neighbor-SLD, with an accuracy
slightly lower than that of Neighbor-SLD. Among all the
methods, SELF-HE achieves the best results. For Test set 1,
the average error rate of 4.23% is the lowest result obtained;
for Test set 3, with only 1 year of historical load data, the average
error rate of 8.14% is superior to those of the other methods. A
comparison of the performance of the five methods is presented
in Figure 9.

As shown in Figure 9, for all data sets, the SELF-HE method
achieves the lowest average error rate, and Neighbor-SLD is
superior to the other three methods. Moreover, F-History has

TABLE 1 | Average error rates of the five methods.

Method Average error rate (%)

Test set 1 Test set 2 Test set 3

F-History 4.91 8.28 17.12
Nearest-SLD 6.72 9.54 13.32
Neighbor-SLD 5.26 8.97 12.52
Similar-Structure 5.76 10.65 14.56
SELF-HE 4.23 5.47 8.14

FIGURE 9 | Comparison of the five methods.

TABLE 2 | Average error rate using Test set 1.

Method Average error rate on test set 1 (%)

1 year 2 years 3 years 4 years

F-History 13.31 7.65 5.31 4.91
Nearest-SLD 12.67 8.99 6.21 6.72
Neighbor-SLD 11.22 8.05 6.08 5.26
Similar-Structure 11.07 7.33 6.34 5.76
SELF-HE 6.33 5.63 4.47 4.23
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the least significant influence on the test set with the smallest
amount of data. Test set 1 contains 5 years of historical data, and
the electricity consumption behavior of the corresponding plots is
relatively stable. Based on Test set 1, using 1 year (2019), 2 years
(2018 and 2019), 3 years (2017–2019), and 4 years (2016–2019) of
historical data, the average error rates achieved by the five
methods are listed in Table 2.

The corresponding trends of the average error rate with
respect to the historical data volume shown in Table 2 are
illustrated in Figure 10.

Given that the plots in Test set 1 (from the older urban areas)
have the longest available history, their electricity consumption
characteristics are more stable than those for the other test sets.
Consequently, the 1-year results in Table 2 are superior to the
results for Test set 3 in Table 1. As shown in Table 1 and
Figure 10, as the amount of historical data increases, the average
error rates of all the methods decrease. The decreasing trend of
F-History is the most significant, indicating that this method is
highly dependent on the amount of historical data. Moreover,
F-History requires more historical data than other methods to
develop the forecasting model and demonstrates improved
performance when there are abundant historical data, and the
electricity consumption behavior for the corresponding plots is
stable. However, for newly developed areas in a city, sufficient
historical data were not available, and the electricity consumption
behavior of users corresponding to those plots was not sufficiently
stable (e.g., several companies had not started running their
machines). These problems prevented F-History from
achieving high performance in the SLF. As observed, Nearest-
SLD exhibits an unstable trend from three to 4 years, with an
increase in the amount of historical data, leading to a slight
increase in the average error rate; whereas the trends of Neighbor-
SLD and Similar-Structure are more stable. Since the Z is located
in a rapid development region of city, many plots’ corresponding
supporting facilities have been built in just recent years, and some
companies have undergone industrial transformation and
renovation; this may lead to huge differences in the
characteristics of historical data that are far apart in time. At
this time, if a larger amount of data is introduced from a single
neighbor (whether in distance, distribution, or structure), it may

lead to the introduction of too much heterogeneity information
and reduce the accuracy; so errors increase for Nearest-SLD,
Neighbor-SLD, and Similar-Structure in Figure 10. Among all
the methods, the trend of SELF-HE is the most gradual, and the
results obtained using only 2 years of historical data are similar to
the results of the other methods using 4 years of data.

Using SLDs to supplement the lack of historical data can
improve the performance of an SLF model. The Nearest-SLD
algorithm uses a known plot from among the neighbors of the
plot of interest as the source of the SLD information. This strategy
can achieve higher performance than F-History; however, due to
the extensive distribution of boundaries between different land
use areas in cities, the use of the plot in the nearest position may
cause an increase in error. Hence, Nearest-SLD is not stable. To
address this shortcoming, Neighbor-SLD uses multiple known
plots from among the neighbors of the plot of interest as the SLD
source, achieving higher and more stable performance than
Nearest-SLD. The concept of Similar-Structure is consistent
with that of SELF-HE. In particular, the similarity between the
features of remote sensing images is used as the standard for
identifying plots with similar SLDs. However, as can be seen from
Figure 8, the spatial characteristics defining an SLD cluster do not
necessarily follow a uniform rule; as distinct spatial arrangements,
adjoining relationships, and content compositions may all be
commonalities that define SLD clusters. Given that Similar-
Structure uses only the vector distance based on vcmp as the
standard for assessing similarity, it may be suitable only for cases
analogous to that of Cluster 1 in Figure 8, and it may not readily
adapt to other cases. Similar-Structure exhibits no significant
advantage over Nearest-SLD or Neighbor-SLD. Among all the
methods, the trend of SELF-HE is the most gradual, and the
results obtained using only 2 years of historical data are similar to
those of the other methods using 4 years of historical data.

To analyze comprehensively the processes by which the SLF is
obtained using each method, we selected a typical plot in the
northeast corner of Z as the unknown plot Px; the process of each
algorithm is shown in Figure 11.

As shown in Figure 11A, there are two types of plots in this
area. The plots indicated in blue are from the training set; their
SLD is stable and contains more historical data. The plots

FIGURE 10 | Trends of average error rate with respect to the historical data volume.
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indicated in yellow are from the testing set, and they contain less
historical data. Given that Px is an unknown plot from the testing
set, additional SLD data may be required to facilitate its SLF
calculation. The characteristics of the five methods are shown in

Figure 11B, and the error rates of the fivemethods on Px are listed
in Table 3.

For F-History, as it only uses limited historical data for SLF
calculations, the plots of the neighbors do not participate in the
SLF calculation. Moreover, due to the lack of historical data, the
SLF model generated by F-History is readily fitted with specific
features, which reduces its prediction accuracy. The error rate of
F-History is 15.20%. For Nearest-SLD, there are four plots closest
to Px (east, south, west, and north). Given that the north and east
are unknown plots, only west or east can be selected. The Nearest-
SLD algorithm finally selected the south plot as the source of SLD.
Although this selection mitigates the lack of historical data in
F-History, this plot is located at the junction of residential and

FIGURE 11 | Detailed process of each method: (A) unknown plot Px and (B) comparison of all the methods.

TABLE 3 | Error rates of the five methods on Px.

Method Error rate on Px (%)

F-History 15.20
Nearest-SLD 21.24
Neighbor-SLD 13.75
Similar-Structure 9.56
SELF-HE 6.79
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industrial areas, and its load consumption characteristic is
significantly different from that of Px, leading to the
introduction of heterogeneous SLD. Thus, the forecast
results obtained are lower than those of F-History, and its
error rate is the highest, at 21.24%. The Nearest-SLD algorithm
uses SLD to identify similar plots. As can be seen from
Figure 11B, Nearest-SLD identified a plot across the main
road. Although this plot can help Px obtain the SLD and
improve the accuracy of the forecast; in urban
environments, several main roads divide different
administrative regions, functional regions, enterprises, or
residential structures in the city, which results in different
policies and groups that are core driving forces of power
consumption. The Nearest-SLD error rate is 13.75%.
Similar-Structure selected a plot with a similar building
structure and composition content near Px. The SLD
provided by this plot causes the error rate of Similar-
Structure to reach 9.56%, indicating that it is feasible to use
the structure of the ground building as an index to obtain the
SLD. However, this method exhibits several problems. In
particular, for this plot in the rapid urban development area,
the electricity consumption characteristics are not sufficiently
stable; thus, further improvement is required. Moreover, SELF-
HE uses Mgroup to assign vencode to all plots and then selects the
10 most similar plots. Based on the average SLD of these plots,
the optimal result obtained by SELF-HE demonstrates an error
rate of 6.79%. This result indicates that the SELF-HE electric
load forecasting based on the high-level encoding of high-
resolution remote sensing images is more effective than those
of the other methods. Moreover, SELF-HE achieves the optimal
results among the five methods, indicating that it can extract
key characteristics for SLD clustering in remote sensing images
and acquire SLDs that are highly similar to the SLD of a plot of
interest, enabling more accurate and stable forecasting results
to be obtained. The corresponding results reveal that SELF-HE
can foster connections between different remote sensing image
characteristics (e.g., the specific characteristics described in
Figure 8) and SLD selection, which can serve as a new data
source for SLF.

Comparison of Methods Under Different
Scenarios
To more fully evaluate the spatial forecasting ability of SELF-HE
under different scenarios, we introduce more regions for
comparison, and the characteristics of these regions are as
follows.

Stable old urban region (SO-R).
The central part of Changchun City is selected as the research
object. This area has been developed for decades, and the number
and type of residents and enterprises are relatively stable.

The changing old urban region (CO-R).
A region of Jilin City was selected as the research object. The
original industry in this region was concentrated in the chemical
field, and now it is transforming into the green and high-
tech field.

Rapidly developing area with relatively monotonous
industry (DM-R).
Select a developing region in Tonghua City, and the enterprises in
this region are mainly concentrated in the pharmaceutical field.

Rapidly developing areas combining various
industries (DV-R).
The economic and technological development zone of
Changchun City is selected as the object, and the enterprises
in this area come from various fields.

For the above four test scenarios, we tested the error rates of
the five methods, and the comparison is shown in Table 4.

It can be seen from Table 4 that for scenario SO-R, all five
methods have achieved good results due to the relatively stable
electric load character, and SELF-HE is slightly better than the
other four methods. For CO-R, the large amount of historical data
becomes unreliable because the region is in industrial
restructuring, and F-History achieves the worst results due to
its high dependence on historical data. For DM-R, due to the
monotonous industrial structure, the prediction is relatively easy,
and the five methods have obtained good results. For DV-R, the
accuracy drops due to the heterogeneity of electricity users in the
region. SELF-HE has obtained the best results for the above four
scenarios, indicating that SELF-HE has good stability and can
adapt to various spatial forecast work; especially for CO-R and
DV-R the advantages of the proposed method are more obvious,
indicating that SELF-HE can cope with the changes and diversity
of electric users in a region and can obtain higher-precision
forecasting results.

Further Research
The separate strategy of plots has a considerable impact on SELF-
HE. Smaller plots will make the SLF results more capable of
reflecting the characteristics of urban regions, but it will also
increase the fluctuation of the load data in the boundaries
between different regions and reduce the SLF accuracy.

TABLE 4 | Comparison of the methods under different scenarios.

Scenarios Average error rate (%)

F-History Nearest-SLD Neighbor-SLD Similar-Structure SELF-HE

SO-R 5.51 5.35 6.77 6.21 5.05
CO-R 17.67 10.32 11.45 10.67 7.23
DM-R 5.32 4.32 4.56 4.77 4.01
DV-R 8.95 7.33 7.89 7.95 5.21
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Meanwhile, larger plots will introduce more objects and make the
load data more stable, but they will confuse the content of
different regions and reduce the value of the SLF result. In
this study, the plot size was manually specified; this strategy
may not yield the optimal solutions and may cause a longer trial-
and-error experimental process. In future research, we plan to
introduce more urban data sets and plot sizes to explore the
relationships between different urban areas and a variety plot
sizes and then explore ways to optimize the plot size
automatically to make SELF-HE more efficient.

CONCLUSION

For the SLF process, considerable historical data are typically
required to construct forecasting models. As it is generally
difficult to accumulate sufficient data for rapidly developing
regions in cities, considering the SLD information of plots for
which abundant historical data are available is a feasible solution.
With this approach, the key is to find plots with electricity
consumption behaviors that are similar to that of the plot to
be predicted.

To this end, this study proposes a spatial electric load
forecasting method based on the high-level encoding of high-
resolution remote sensing images called SELF-HE. Based on the
experimental results, when the plots contained relatively small
amounts of historical data, the traditional F-History approach
could not achieve high accuracies, and the Nearest-SLD method
could be influenced by the boundaries of different land use
categories, introducing errors into the forecasting results.
Owing to the diversity of historical data and ground data, a
selection strategy that only relies on SLD (Neighbor-SLD) or
ground object features (Similar-Structure) cannot fully represent

the characteristics of the plot to be predicted; thus, the prediction
results are unstable. Moreover, SELF-HE adopts high-resolution
remote sensing images as a data source for the identification of
similar plots, which enables the direct use of remote sensing
images to obtain more appropriate SLD estimates. Thus, SELF-
HE achieved the optimal results among the five methods.

Furthermore, SELF-HE bridges the remote sensing features
and electric load characteristics and enables SLF to be performed
based on remote sensing, to obtain higher-quality electric load
forecasting results at a lower data collection cost. Using SELF-HE,
load forecasting results for larger regions or areas of new
development can, therefore, be rapidly obtained, which play an
important role in the field of regional power infrastructure
construction planning and power grid management.
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