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In this study, a cladding surface temperature prediction method based on an adaptive RBF
neural network was proposed. This method can significantly improve the accuracy and
efficiency of the thermal safety evaluation of the lead–bismuth fast reactor. First, based on
the sub-channel analysis program SUBCHANFLOW, the core sub-channel model of the
small lead–bismuth fast reactor SPALLER-100 was established. Second, the calculated
2000 groups of core power distribution and coolant flow distribution data were used as
training samples. The adaptive RBF neural network model was trained to predict the
surface temperature of fuel elements in the lead–bismuth fast reactor. Finally, by
comparison, the effectiveness and superiority of the adaptive RBF neural network
method were proved. The results indicate that the relative error of the maximum
temperature of the fuel cladding predicted using the adaptive RBF neural network
method was less than 0.5%, which can be used for the rapid prediction of the thermal
and hydraulic parameters of the lead–bismuth fast reactor.
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INTRODUCTION

As one of the six originally selected GEN IV nuclear energy systems of the Generation IV
International Forum, the lead-cooled fast reactor (LFR) has attracted continuous and widespread
research upsurge worldwide (Pioro 2016; Alemberti 2017; Forum 2014). The distinctive
configurations and features offer the LFR distinctive advantages in the aspects of long-term fuel
sustainability, safety, economics, proliferation resistance, and physical protection.

So far, major nuclear powerhouses have proposed their own LFR development road map and
relevant conceptual designs. In terms of technology maturity, Russia’s BREST–300 takes the
considerably leading position, which is expected to operate in 2026 (Forum 2014; Zabudko
et al., 2021). In parallel, activities are also carried out on SVBR-100, which is based on the
previous naval propulsion systems. Meanwhile, Japan has developed a small LFR (LSPR) and a
direct-contact PBWFR (Takahashi et al., 2008; Alemberti et al., 2014). Europe proposed the
industrial-size plant ELFR design along with its demonstrator called ALFRED (Alemberti et al.,
2020). In the United States, only limited development of the SSTAR has been implemented (Smith
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et al., 2008). Moreover, a number of innovative LFR conceptual
designs that are in various stages have been carried out for
different purposes worldwide (Forum 2014). It is worth noting
that the research on LFR systems in China has received great
emphasis from research institutes to universities (Wu et al., 2016).
One of the representative LFR activities in China is the CLEAR
series carried out by the Institute of Nuclear Energy Safety
Technology (INEST) within the Chinese Academy of Sciences
(CAS), which adopts a pool-type configuration and use
lead–bismuth eutectic (LBE) as the primary coolant. Other
research institutes including the China Institute of Atomic
Energy (CIAE) and Nuclear Power Institute of China (NPIC)
also carried out their own LFR system concepts (Pioro 2016; Ma
et al., 2019).

Actually, in the past decade, a large number of the major LFR
design and engineering problems have been tackled, and
improvements have been implemented in the practices. Issues
such as system integration, component design, performance
assessment, lead technology, and safety analysis (including
accident mitigation) have got remarkable achievements.
However, some technological problems still exist that needed
to be resolved, for example, material corrosion, fuel development,
and further safety validation. Among these problems, a common
problem is the detection and prediction of the cladding maximum
temperature, since the cladding maximum temperature is a key
parameter of the LFR’s thermal safety criteria. It is well known
that the high boiling temperature of lead allows the LFR to require
neither pressurization nor concerning the overheating of the
primary coolant. However, the cladding maximum
temperature still needs to be considered in the LFR thermal
safety analysis due to its higher coolant operating temperature.
The chemical reaction between the LBE and the cladding
material, and the failure of the cladding are closely related to
the cladding temperature.

In recent years, the neural network has been proven that it is
qualified to provide accurate and fast thermal parameter
prediction. The representative application is reported in Cong
et al. (2013), which uses an artificial neural network and wavelet
analysis to carry out the nonlinear research of reactor thermal-
hydraulic analysis. Cong’s work proves that the neural network
method is feasible in thermal-hydraulic analysis. Subsequently,
much research has been carried out to verify the feasibility and
accuracy of the neural network method in different aspects of
reactor thermal-hydraulic analysis. Wang used the BP artificial
neural network method to predict the three key parameters of
core fuel refueling of Qinshan phase II PWR (Wang et al., 2020).
Based on the regularized radial basis function (RBF) neural
network model, Peng studied the power distribution of the
ACP-100 modular reactor. It is not only concluded that the
method can accurately reconstruct the axial power distribution
of the reactor core but also proved that the method has good
robustness and can overcome the inherent uncertainty in the
power distribution reconstruction (Peng et al., 2014).
Furthermore, Xia constructed a real-time three-dimensional
distribution monitoring system of core power by using the
nuclear measurement system and RBF neural network, which
improved the accuracy and real-time performance of monitoring

(Xia et al., 2014). Chen established a feature fusion neural
network with seven layers to predict the key safety parameters
of the Qinshan reactor. The prediction results show great
agreement with the simulation data conducted using the
COSMO code (Chen et al., 2022). Although the neural
network method has been widely used in the prediction of
thermal-hydraulic parameters of reactors and shows great
agreement beyond expectation, the relevant research on
lead–bismuth fast reactors is still insufficient.

In the present study, the adaptive RBF neural network method
is selected to predict the cladding surface temperature of the
SPALLER-100 reactor after comparing the performance of
several neural network methods. (At present, the BP neural
network and RBF neural network are often used to study, so
this study takes the BP neural network as a typical comparison.)
The training data samples used as a training set and prediction set
are obtained by SUBCHANFLOW program. The performance
and generalization ability of the adaptive RBF neural network
were also verified.

MATHEMATICAL MODEL AND METHOD

A Brief Introduction of the RBF Neural
Network
The radial basis function (RBF) neural network is a feedforward
neural network with a three-layer structure, namely, the input
layer, the output layer, and the hidden layer as is shown in
Figure 1 (Hartman, Keeler, and Kowalski 1990; Park and
Sandberg 1991). The basic mathematical model of the RBF
neural network is a locally distributed non-negative nonlinear
function with central radial symmetric decay. It can approach any
nonlinear function with arbitrary precision and has the ability to
approximate the error of global, which fundamentally solves the
local optimization problem of the BP neural network. Moreover,

FIGURE 1 | The structure of the RBF neural network.
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it has a compact topology so that the structural parameters can
realize separation learning and achieves quick convergence. This
characteristic is quite suitable for the real-time control.

The output of hidden layer neurons is as follows:

hj � exp⎛⎝ −
����x − cj

����2
2b2j

⎞⎠, (1)

where x = [xi]T represents the input of the network, the hidden
layer output of the network is expressed as h = [hj]T, hj is the
output of the jth neuron in the hidden layer, c = [cij] =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
c11 / c1m
..
.

1 ..
.

cn1 / cnm

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ is the coordinate vector of the center point

of the Gaussian basis function of the jth neuron in the hidden
layer, i � 1, 2, 3, . . . , n, j � 1, 2, 3, . . . , m; b � [b1, b2, . . . , bm]T,
and bj is the width of the Gaussian basis function of the jth
neuron in the hidden layer. The implied number of layers in this
article is 20, and the transfer function is tanh.RBF network
weights are as follows:

ω � [ω1, . . . ,ωm]T, (2)
The output of RBF network is as follows:

ymt � ω1h1 + . . . + ωmhm, (3)
The error index of the RBF neural network can be written as

follows:

E(t) � 1
2
(y(t) − ym(t))2, (4)

In addition, the RBF neural network has the characteristics
of self-learning, self-organizing, and self-adaptive functions.
Meanwhile, the RBF neural network has the uniform
approximation to nonlinear continuous functions and high
learning efficiency. The advantages expressed before offers the
RBF neural network the capability of large-scale data fusion
and data high-speed parallel processing. Presently, the RBF
neural network has been successfully applied to the aspects of
nonlinear function approximation, time series analysis, data
classification, pattern recognition, information processing,
image processing, system modeling, control, fault diagnosis,
etc. (Seshagiri and Khalil 2000; Li et al., 2004; Wang and Yu
2008).

Adaptive RBF Neural Network
An adaptive algorithm is a process aimed at approaching the
target continuously, which is based on a gradient algorithm. By
introducing the adaptive algorithm into the conventional neural
network, the “over-fitting” phenomenon can be effectively
eliminated. Thus, it can significantly reduce the dependence
on the accuracy of the neural network identifier and
dramatically improve the weakness of the conventional neural
network.

According to mature literature, compared with the adaptive
BP neural network, the adaptive RBF neural network can
effectively improve the performance of the controller when the

system has large uncertainty and has a better prediction effect
(Zhu et al., 2008). In view of this, the adaptive gradient descent
(Adam) algorithm is adopted to overcome the drawbacks of
falling into local minimum and slow convergence that the
traditional BP neural network has. The flowchart of the
adaptive RBF neural network algorithm is demonstrated in
Figure 2.

The Adam algorithm updates the parameters as follows:

FIGURE 2 | Flowchart of adaptive RBF neural network algorithm.
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θt+1 � θt − η��̂
νt

√ + ϵ
m̂t, (5)

where η is the learning rate, which controls the update ratio of
weights and takes a smaller value, which will make the training
converge to better performance, t is the iteration time, m̂t is the
weighted average of the gradient, and ]̂t is the weighted deviation.
During training, β represents the error signal between the output
layer and the hidden layer, β1 is the exponential decay rate of the
first moment estimation, and β2 is the exponential decay rate of

the secondmoment estimation. In this article, η � 0.001, β1 � 0.9,
β2 � 0.999, and ϵ � 10−8. The detailed process is shown in
Figure 3.

SPALLER-100 Introduction
SPALLER-100 is a small lead–bismuth fast reactor with a
thermal power of 100 MW (Liu et al., 2020). The schematic
diagram of the small lead–bismuth fast reactor SPALLER-100
core is shown in Figure 4 (cross-section view) and the main
parameters of the SPALLER-100 is listed in Table 1. The core
of the SPALLER-100 is hexagonal and consists of 48 fuel
assembly, 13 control rod components, 66 reflector
components, and 126 shielding components. The coolant
and reflector were 208 Pb–Bi, and the shielding material was
B4C. In this study, the SPALLER-100 is chosen as the research
target.

SUBCHANFLOW Code Description
The data used for training the RBF neural network is conducted
using the SUBCHANFLOW code. SUBCHANFLOW is a sub-
channel flow code to analyze thermal-hydraulic phenomena in
the core of pressurized water reactors, boiling water reactors, and
innovative reactors operated with gas or liquid metal as coolant,
which is developed by the Karlsruhe Institute of Technology
(Imke and Sanchez. 2012).

The SUBCHANFLOW code can handle rectangular and
hexagonal geometry fuel rod types. The total flow or each
channel flow can be selected as the boundary conditions.
According to the friction force at the inlet of the tube bundle,
the flow can be automatically allocated to the parallel channel. In
addition, the given inlet and outlet pressure difference boundary
can be used for steady-state calculation. The inlet fluid
temperature and outlet pressure are always given as boundary
conditions. In this study, the SPALLR-100 core channel is divided
and numbered first. The nodalization scheme of the SPALLER-
100 core is shown in Figure 4A. The nodalization scheme of the
SPALLER-100 core is shown in Figure 4B. The heat conduction
of fuel rod (heating part) in the SUBCHANFLOW is solved using
the standard finite volume method. The convective heat transfer
coefficient between the fuel rod and coolant is calculated
according to the empirical relationship between the heat
transfer form and coolant flow pattern. The constitutive
relation used in the SUBCHANFLOW code is listed as follows:

(1) Physical properties model: the thermophysical
properties data of lead–bismuth alloy are from the
HLMC handbook.

(2) Thermal conductivity model: SUBCHANFLOW uses the full
implicit finite difference method to calculate the heat
conduction process in fuel core and cladding materials.

(3) Heat convection model: the general heat transfer equation of
liquid metal heat transfer:

Nu � A + B · PeC, (6)

(4) Pressure loss model: the Novendstern model and Rehme
model are used for the pressure drop calculation.

FIGURE 3 | Flowchart of Adam algorithm.
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PERFORMANCE ANALYSIS OF THE
ADAPTIVE RBF NEURAL NETWORK

The feasibility, accuracy, and efficiency of the RBF neural network
are verified based on the steady-state data in this section. First, the
hottest assembly in the core is found according to the
SUBCHANFLOW calculation results. This searching process
repeats 100 times to guarantee the result’s reliability. Second,
focusing on the hottest assembly, several groups of data were
randomly selected with the power ranging from 0 to 1,200 kW
and the mass flow ranging from 1,200 to 2,200 kg/s. Third, these
data are calculated using the SUBCHANFLOW code as an input.
Finally, 2000 groups of effective data samples are obtained.
Among these 2000 groups of data samples, 1900 groups are
selected as the training set, and the remaining 100 groups are
selected as the prediction set. Then, the prediction model is
evaluated by comparing the error between the prediction
results and the calculation result.

Figure 5A and Figure 6A demonstrate the error band between
the prediction result and the calculation result of the adaptive
BP neural network and adaptive RBF neural network
separately. It can be observed that the prediction results
conducted using the adaptive RBF neural network show a
good agreement with the calculation results in the cladding
maximum temperature, since the error bound is within 5%.
Meanwhile, Figure 5B and Figure 6B show the comparison
results between the predicted and experimental values of the
two methods. By comparing the two figures, it can be seen that
the fitting results of the two lines in Figure 6B are better, that
is, the adaptive RBF neural network shows a better
performance in predicting cladding maximum temperature
than the adaptive BP neural network.

Table 2 illustrates the efficiency and accuracy of different
methods after 50 times prediction. The adaptive RBF neural
network reaches the average relative error of 0.10 within 6 s
and 160 iteration times, which is fully superior to the adaptive BP
neural network. Therefore, the adaptive RBF neural network
prediction model has better accuracy and feasibility in
predicting cladding maximum temperature.

THE TRANSIENT PREDICTION
PERFORMANCE ANALYSIS

In the transient response analysis part, the axial and radial power
of each fuel rod in the fuel assembly is assumed and uniformly
distributed for simplification, since the power distribution has a
little influence on the transients. All the coolant channels in a
single assembly can be merged into a large channel centered on
the fuel rod with the equivalent heating perimeter and wetted
perimeter. The initial power is set to 30 MW. Figure 7 shows the
variation of the coolant mass flow and the variation of the

FIGURE 4 | Cross-section view and the nodalizaiton scheme of SPALLER-100 core.

TABLE 1 | Main parameters of the SPALLER-100.

Parameter Numerical value

Number of fuel rods in the assembly 61
Internal and external diameters of fuel rod (cm) 1.2/1.35
Number of components 48
Rod diameter ratio 1.7
Average linear power density (kW/m) 22.77
Average volume power density (MW/m3) 29.37
Active zone length (cm) 150
Cladding thickness (mm) 12.7
Fuel rod gap width (mm) 0.15
Cladding thickness (mm) 0.6
Cladding material Stainless steel
Fuel material UO2
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maximum cladding temperature conducted using the
SUBCHANFLOW code.

Among these calculation data, 800 groups were randomly
selected in the 80s data sample, 750 groups were used as the
training set, and the remaining 50 groups were used as the
prediction set. Similar to Performance Analysis of the Adaptive
RBF Neural Network, the mass flow and the heating power is
considered as the input and the cladding maximum temperature

is considered as the output. The neural network is operated to
predict the cladding maximum temperature in the following 5s,
that is, 80–85s. Thus, the error bound between the prediction
results and the calculation results is used to evaluate the transient
performance of different prediction methods, which is shown in
Figures 8A,B, Figures 9A,B.

Both the adaptive BP neural network and adaptive RBF
neural network show remarkable transient prediction ability

FIGURE 5 | The error comparison diagram and the error bound of adaptive BP neural network.

FIGURE 6 | The error comparison diagram and the error bound of adaptive RBF neural network.

TABLE 2 | Comparison of calculation efficiency.

Model Iteration times Calculation time/s Average
absolute error (°C)

Average
relative error (%)

Adaptive BP neural network 241 8 9.67 0.26
Adaptive RBF neural network 160 6 0.72 0.10

Prediction performance to the mass flow variation.
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to the mass flow variation with the error bound being within
3%. It can be concluded from Figures 8B, 9B that the
difference between the two prediction results is not large.
However, in the error point diagram given by Figures 8A, 9A,
it can be clearly seen that the results of adaptive RBF are
compared with adaptive BP, and most of the data are close to
the center line, indicating that its stability is better. The
average errors are shown in Table 3. The maximum
relative error of adaptive RBF neural network is 2.1%, and
the average absolute error is 2.94°C, which proves the adaptive
RBF neural network is able to deal with transient conditions as
well. Also, it is reasonable to infer that the adaptive RBF
neural network will have a better accuracy when extending the

prediction time, since the preorder prediction result will
influence the following prediction result.

Prediction Performance to the Power
Variation
Similarly, transient responses to the power variation are
verified by setting the initial coolant mass flow to 4,000 kg/
s, and assuming the core power changes. Figure 10 shows the
change of core power and the cladding maximum temperature
calculated using the SUBCANFLOW code within 80s. The
effectiveness of the adaptive RBF neural network under power
variation conditions is analyzed.

FIGURE 7 | Variation of coolant mass flow and cladding maximum temperature within 80s.

FIGURE 8 | The error comparison diagram and the error bound of adaptive BP neural network under coolant mass flow variation condition.

Frontiers in Energy Research | www.frontiersin.org April 2022 | Volume 10 | Article 8521467

Wu et al. Neural Network LFR Parameter Prediction

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


Figure 11 gives the predicting error bound of the adaptive
BP neural network and adaptive RBF neural network during
power variation condition separately. The average error data

are shown in Table 4. It can be seen that compared with the
adaptive BP results, the adaptive RBF has more error points
close to the center line, and its accuracy is better. In addition,

FIGURE 9 | The error comparison diagram and the error bound of adaptive RBF neural network under coolant mass flow variation condition.

TABLE 3 | Comparison of average error under mass flow variation condition.

Model Average
relative error (%)

Average
absolute error (°C)

Adaptive BP neural network −0.04 4.20
Adaptive RBF neural network 0.03 2.92

FIGURE 10 | Variation of reactor power and cladding maximum temperature within 80s.
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the correctness of the aforementioned results can be verified
from the point-line diagrams of the predicted and
experimental values given in Figure 11A and Figure 11B.
As shown in Table 4, the error of adaptive RBF neural network
is less than 1%, which is slightly better than the adaptive BP
neural network prediction method.

Combined with the conclusion conducted in Prediction
Performance to the Power Variation, it can be concluded that the
adaptive RBFneural network shows good effectiveness and superiority
in predicting cladding maximum temperature under power variation
and coolant mass flow variation conditions. Thus, the adaptive RBF
neural network can be used to real-time predict the dynamic value of
LFR claddingmaximum temperature, which is obviously beneficial for
the reactor’s safety under both transient conditions and accident.

CONCLUSION

This study analyzes the performance of the adaptive RBF
neural network in predicting the cladding maximum
temperature for the typical LFR. The feasibility, accuracy,
and efficiency of the adaptive RBF neural network under
both steady-state and transient conditions are evaluated.
The conclusions drawn from the study are summarized as
follows:

(1) A cladding maximum temperature prediction method based
on the adaptive RBF neural network for the LFR is proposed.
The SUBCHANFLOW program is used to generate data for
the RBF neural network training.

(2) By comparing the adaptive RBF neural network and the
adaptive BP neural network, the adaptive RBF neural
network shows full superiority. The adaptive RBF neural
network has good feasibility, accuracy, and efficiency in
predicting the cladding maximum temperature of the
lead–bismuth fast reactor.

(3) The adaptive RBF neural network can accurately predict the
trend of the cladding maximum temperature in short time

FIGURE 11 | The accuracy comparation between adaptive BP neural network and adaptive RBF neural network.

TABLE 4 | Average error results calculated by different methods.

Model Average
absolute error (°C)

Average
relative error (%)

Adaptive BP neural network 3.29 −0.16
Adaptive RBF neural network 2.31 0.09
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under the transient conditions of power variation and
coolant mass flow variation.

(4) The real-time thermal-hydraulic parameter
prediction capability of the adaptive RBF neural network
is of great significance for the LFR’s thermal safety.
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