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When a fuel rod is damaged, determining the degree of fuel failure makes sense. The
operators can decide whether to continue operating the reactor or shut it down based on
the severity of the fuel failure. The isotopic ratio of two radioactive fission products (FPs) is a
typical technique for evaluating the degree of fuel failure, although this is not applicable in
the case of little fuel failure but large tramp uranium mass. The feedforward neural network
(FFNN) has been used to identify fuel failures in order to overcome the shortcomings of the
isotopic ratio method, although there is still inadequacy in the ability to distinguish between
an intact fuel rod and a defective fuel rod with a small defect. In this study, we propose a
cascade-forward neural network with a decision tree for fuel failure detection that performs
well at classifying the degree of fuel failure and, in particular, at differentiating between an
intact fuel rod and a defective fuel rod with a small size defect. The input of the neural
network is the specific activity of FPs measured in the coolant. The degree of fuel failure is
determined by the neural network’s output, which is labeled using one-hot encoding. The
training set is constructed using the Booth-type diffusion model and the first-order kinetic
model. The performance of the improved neural network is demonstrated. It is shown that
the improved method is more accurate and responsive than the previous neural network
when recognizing the onset of fuel failure. Finally, the most important nuclides are
determined through the sensitivity analysis, and the neural network is simplified
according to the importance of nuclides and the limitation of the radioactive detector in
practical application.
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1 INTRODUCTION

The reactor generates a substantial amount of fission products (FPs) during operation. Under normal
operating conditions, the fission products are contained within the fuel cladding which prevents
them from escaping into the primary coolant and maintains the coolant’s specific activity within the
management limit. While the performance of the fuel rods keeps improving, the fuel cladding is
inevitably defective during operation for a variety of reasons (Qin et al., 2020), including the
following: 1) power ramp defects caused by stress corrosion cracking (SCC) or pellet-cladding
interaction (PCI); 2) circumferential cracking caused by hydrogen embrittlement; 3) fabrication
defects; and 4) fretting defects caused by interaction with the grid spacer or debris in the primary
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coolant (Lewis et al., 2017). When the fuel cladding is defective,
FPs can migrate from the fuel cladding gap to the primary
coolant, considerably increasing the specific activity of the
coolant. If the specific activities or defect sizes exceed the
critical values, the reactor must shut down according to the
regulation (Likhanskii et al., 2006; Qin et al., 2019). Otherwise,
it may increase the risks of occupational exposure and harm the
safety of reactor operation (Iqbal et al., 2007; Qin et al., 2020).

In order to determine whether the fuel cladding is defective,
either a chemical sampling approach from the let-down flow or
the real-time online monitoring system is used to collect specific
activities in the primary coolant. By analyzing the specific
activities of FPs derived by sampling or online monitoring,
fuel rod failures are discovered by various methodologies, such
as the release-to-birth ratio method (Zanker, 1989), fitted escape
rate coefficient method (Yamamoto and Morishita, 2015), and
isotopic ratio method (Kalinichev et al., 2018; Li et al., 2017) (Qin
et al., 2016). Generally, these strategies are developed in
consideration of the FP release model or reactor operation
experience. Among these strategies, the isotopic ratio method
is the one that is most frequently used to detect fuel failures
during reactor operation. It is based on the ratios of specific
activities of two isotopic FPs, which can be used to determine
whether the fuel cladding is defective (Menéndez, 2009). In
addition, it can identify the degree of fuel failure if the fuel
cladding is defective (Li et al., 2017). The advantage of the isotopic
ratio method is its simplicity, as it allows for straightforward
determination of the specific activities of FPs by analyzing the
spectrum obtained from sampling or online monitoring for the
primary coolant. The feature of the isotopic ratio method is that it
does not require the historical operation data of sampling or
online monitoring. The status of the fuel rod can be assessed by
the isotopic ratio at a certain time.

The isotopic ratio method has distinct disadvantages. When
the defect size is small and the mass of tramp uranium is large,
it has been demonstrated that the isotopic ratio increases
slowly before reaching the threshold (Dong et al., 2019).
Thus, the response of the isotopic ratio method is
insensitive for detecting fuel failures. Even in some
circumstances, the isotopic ratio method may fail under the
influence of tramp uranium. In addition, there is no single
standard for the isotopes and the threshold of the isotopic ratio
method (Li and Yang, 2008; Menéndez, 2009; Li et al., 2017;
Lyu and Xiong, 2019).

To address the limitations of the isotopic ratio method, the
neural network–based method for fuel failure detection is
developed (Likhanskii et al., 2006). Artificial neural networks
(ANNs) are a highly effective technique for establishing a
connection between input data and output data in
multidimensional space. ANNs have been extensively used in
the field of nuclear engineering, particularly in fault diagnosis.
Andrews et al. (1999) use ANN models to predict the cesium
release fraction from a water reactor under severe accident
conditions and demonstrate that the models are capable of
reproducing the relationships between the release fraction and
time. Guo et al. (2019) apply the deep neural network to detect the
damaged fuel assembly by processing the real-time image frame

and point out that the deep neural network has more advantages
over the traditional computer vision method. Wang et al. (2022)
use the deep convolutional neural network (CNN) to detect the
system-level fault in the nuclear power plant (NPP) and
demonstrate that it is able to improve the NPP fault diagnosis.
Ebrahimzadeh et al. (2022) use the feedforward neural network in
detection and estimation of fault sensors in the NPP and prove
that it has advantages over traditional methods. Zhang et al.,
(2021) develop a surface crack detection method for nuclear fuel
pellets based on the CNN and show that the new method
improves the performance of traditional machine vision
inspection systems.

In this study, a cascade-forward neural network with a
decision tree is proposed for fuel failure detection, which has a
good performance to classify the degree of fuel failure,
particularly in distinguishing the intact fuel rod and small-size
defective fuel rod. The inputs of the neural network are the
radioactivity of fission products measured in the coolant. The
output of the neural network is the degree of fuel failure, which is
labeled using one-hot encoding. The dataset is generated by the
Booth-type diffusion model and the first-order kinetic model.
The performance of the improved neural network is presented in
the study.

The remaining sections of this manuscript are organized as
follows. Section 2 is dedicated to the improved method for fuel
failure detection. Section 3 shows the performance of the
improved method and results of sensitivity analysis. Finally,
Section 4 concludes the study.

2 METHODOLOGY

2.1 Conceptual Framework
During normal reactor operation, the major source of specific
activity in the coolant is tramp uranium, which has a relatively
low level of specific activity. When the fuel cladding is defective,
the FPs released from the gap in the fuel cladding dominate the
specific activity, that is, in a rather high level. It is obvious that a
large defect size will result in a high level of specific activity. As a
result, the coolant’s specific activity serves as a fingerprint for
predicting the status of fuel failure. While it should be noted that
if the defect size is very small and the tramp uranium mass is
considerable, the tramp uranium contribution may overwhelm
the defective fuel rod contribution.

The framework for the detection approach is depicted in
Figure 1, which is divided into three parts. The blue parts
illustrate how the training, validation, and test datasets are
generated. Due to the extremely low probability of fuel failure
and pursuit of zero fuel rod failure, there is no appropriate fuel
failure dataset for training the network. Thus, the dataset is
generated using the FP release model, which includes the
Booth-type diffusion model and first-order kinetic model, as
detailed in the previous study (Dong et al., 2019). The Booth-
type diffusion and first-order kinetic models are proven to be
appropriate for calculating fission gas release fraction (Lewis
et al., 2017). The green parts denote the establishment of a
system for detecting fuel failures. The system is trained and
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validated on the dataset generated by the blue-outlined technique.
The red parts demonstrate how the system is being used to predict
the status of a fuel failure.

2.2 Fission Product Release Model
2.2.1 Booth-type Diffusion Model
The FP release from the pellet to the gap is dominated by the
diffusion process. Following the assumption from Booth, a one-
dimensional diffusion equation is created considering the FP
generation in the uranium grain due to fission, eliminated by the
decay:

zC r, t( )
zt

� D

r

z2 rC r, t( )( )
zr2

− λC r, t( ) + B, (1)

where C is the concentration of fission products in the uranium
grain (m−3); D is the diffusion coefficient of fission products
(m2s−1); λ is the decay constant of the fission products (s−1); and B
is the production rate of the fission products m−3s−1.

Solving Eq. 1, the release-to-birth ratio of FP release can be
derived:

R

B
� 3
a

��
D

λ

√
, (2)

where a is the radius of the uranium grain.

2.2.2 First-Order Kinetic Model
The FPs in the gap and coolant can be treated as a first-order rate
process in which the degree of fuel failure is characterized by the
escape rate coefficient ]i. Then, the equilibrium equations of
fission products can be established:
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dt
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k
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W
( )Ntramp

ci

,

(3)
where i, j, and k denote the isotopes; Ng is the number of FPs in
the gap;Nc is the number of FPs in the coolant; Ri is the FP release
rate from the pellet to gap, which can be derived from Eq. 2; σjϕN
is the FP transmutation; fikλkN is the FP decay and fik is the
branching ratio; ]i is the escape rate coefficient from the gap to
coolant; Q/Wηi is the FP elimination due to purification; β is the
FP elimination due to boron control; τσiϕ is the FP elimination
due to neutron absorption; and L/W is the FP elimination due to
coolant leakage; Among them, Q is the let-down flow rate (kg/s),
L is the leakage flow rate (kg/s), ηi is the purification efficiency,
and W is the total coolant mass (kg); tramp denotes the
contribution of tramp uranium.

2.3 Structure of the Network
In this study, an improved method for fuel failure detection is
proposed based on the cascade-forward neural network (CFNN).
The CFNN is a type of feedforward neural network, in which
there is a direct connection between every two layers of the
network. It means that there is an additional connection between
the input layer and output layer for a regular three-layer neural
network. The advantage of the CFNN is that it accommodates the
nonlinear relationship between the input and output by not
eliminating the linear relationship between the two (Warsito
et al., 2018). Thus, it is suitable for establishing a relationship

FIGURE 1 | Overview of the fuel failure detection method.
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between the specific activity in the coolant and degree of fuel
failure.

Figure 2 illustrates the structure of the CFNN utilized to
identify fuel failures. The network’s input is a vector containing
the normalized specific activity of FPs in the coolant, and the
network’s output is the degree of fuel failure, which is encoded in
one-hot form. The degree is divided into six categories: degree 1
denotes an unbroken fuel cladding, whereas degrees 2–6 denote a
defective fuel cladding. Correspondingly, a high degree indicates
a big defect size. After going through a Softmax layer, the value of
the neuron represents the probability of that degree of failure
occurring.

Perez and Hamawi (2017) show that typical elements in design
basis source term determinations can be represented by Kr, Xe,
Br, I, Rb, Cs, Sr, Ba, Mo, and Te. Among these elements, Kr, Xe, I,
and Cs are most important FPs in fuel failure detection. The
nuclides mainly considered in the study are Kr, Xe, I, and Cs,
which have a relatively large fission yield and a relatively long
half-life, including Kr-85, I-131, I-133, Xe-133, Xe-135, and Cs-
137. Simultaneously, considering the decay chain and the
representativeness of nuclides in each group, the generated
dataset has specific activities of 23 nuclides: Br-83, Kr-85, Kr-
85m, Kr-87, Kr-88, Sr-90, Te-131, Te-131m, I-129, I-131, I-133, I-
134, I-135, Xe-133, Xe-133m, Xe-135, Xe-135m, Xe-138, Cs-134,
Cs-134m, Cs-137, Cs-139, and Pr-143, which are used as the
input of the neural network. Then, the neural networks using 23

nuclides as input are trained in this study. Table 1 shows typical
samples of the input and output of the neural network.

2.4 Development of the Neural Network
Prior to training the neural network, various parameters must be
adjusted to make the neural network work well. The number of
neurons in the hidden layer is obtained empirically using the
following formula (Dong et al., 2019):

l � ����������������������������������
0.43nm + 0.12 m2 + 2.54n + 0.77 m + 0.35

√ + 0.51, (4)
wherem, n, and l are the corresponding number of neurons in the
output, input, and hidden layer, respectively.

Eq. 4 is proven to be an efficient formula to determine the
number of neurons in the hidden layer. Since it is shown that the
neural networks with the number of hidden layer neurons around
the formula all have good performance, the number of hidden
layer neurons is determined directly by the formula. The number
of hidden layer neurons is 11 for an input of 23 nuclides.

As Figure 2 shows, neurons pass their value to the next
layers. Besides the final layer, an activation function, rectified
linear unit (ReLu) function, is applied between the two layers
to make the neural network present the nonlinear relationship.
The ReLu function helps solve the gradient vanishing problem
and increases training efficiency (Choi et al., 2021). The
Softmax function is applied as the activation function in the
final layer:

FIGURE 2 | Structure of the CFNN used for fuel failure detection.

TABLE 1 | Typical samples of the input and output of the neural network.

Specific activity (Bq/g) Normalized specific activity
(input)

Probability vector (output) Degree of
failure

\{1.4 357e+01, 4.2 612e-02, 4.4 207e+01, 8.7 714e+01,
1.1 916e+02, 7.0 106e-03, 8.0 954e+01, 3.8 272e+00,
1.1 828e-09, 4.7 286e+00, 6.7 657e+01, 2.4 087e+02,
1.2 158e+02, 3.0 619e+02, 7.1 566e+00, 1.0 031e+02,
4.1 319e+01, 2.1 286e+02, 1.6 813e-07, 8.2 949e-05,
7.0 140e-03, 2.1 082e+02, 5.2 939e+00\}

\{0.089 0, 0.060 3, 0.077 9, 0.088 3, 0.083 5, 0.047 4,
0.098 3, 0.063 0, 0.053 1, 0.006 4, 0.043 5, 0.091 8,
0.076 1, 0.045 4, 0.057 6, 0.044 9, 0.088 1, 0.096 5,

0.038 2, 0.087 1, 0.053 1, 0.098 3, 0.098 0\}

\{4.9 257e-02, 8.9 995e-01,
5.0 790e-02, 0, 0, 0\}

2

\{1.4 453e+02, 2.1 697e-01, 4.4 500e+02, 8.8 301e+02,
1.1 996e+03, 6.9 479e-02, 8.1 495e+02, 3.8 526e+01,
1.1 871e-08, 4.5 788e+01, 6.8 098e+02, 2.4 248e+03,
1.2 239e+03, 1.9 201e+03, 6.1 294e+01, 1.0 097e+03,
4.1 595e+02, 2.1 428e+03, 1.6 831e-06, 8.3 504e-04,
7.0 395e-02, 2.1 224e+03, 5.3 292e+01\}

\{0.896 2, 0.306 9, 0.783 8, 0.888 5, 0.840 5, 0.469 3,
0.989 6, 0.634 0, 0.533 3, 0.061 7, 0.438 2, 0.923 8,
0.766 4, 0.284 6, 0.493 5, 0.452 4, 0.886 9, 0.971 1,

0.382 5, 0.877 2, 0.533 3, 0.989 4, 0.986 5\}

\{9.4 024e-02, 1.0 606e-01,
7.9 991e-01, 0, 0, 0\}

3

Frontiers in Energy Research | www.frontiersin.org March 2022 | Volume 10 | Article 8518484

Dong et al. CFNN With DT for Fuel Failure Detection

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


yi � exi∑je
xj
, (5)

where xi and xj indicate neurons in the previous layer.
After applying a Softmax function, the values of the neurons

are normalized to [0,1], and the summation of each value of
neurons in the final layer is 1. Then, the value of neurons can
represent the probability of the corresponding degree of failure.
The advantage of Softmax function is that it can improve the
discrimination between the output neurons and hence increase
learning efficiency.

Accompanying the Softmax function, cross-entropy is selected
as the loss function (de Boer et al., 2005):

L � − 1
N

∑N
i�1

∑
j

y i( )
j log ŷ i( )

j( ), (6)

where N is the total number of samples, i denotes the sample
number, j denotes the neurons in the final layer, y(i)

j is the real
value in the training sample, and ŷ(i)

j is the output value of the
neural network. Using Softmax function and cross-entropy
together will make the training process faster and more
stable.

Adam is selected as the optimizer (Kingma and Ba, 2017),
and the neural network is trained with a learning rate of 0.01
balancing the convergence and training speed. The loss of
training and validation is shown in Figure 3. It can be seen that
the loss of training and validation almost does not decrease
after 1,000 epochs. In addition, aiming to avoid the
discrepancy of single training, the neural network is trained
10 times individually and averaged to inference the degree of
fuel failure.

2.5 Optimization for Small Defects
The dataset utilized to train the ANN is imbalanced, with the
intact condition prevailing. As a consequence, the trained
neural networks have a tendency to categorize degree 2 or 3
(small defects) as degree 1 (intact), which significantly

underestimates the degree of fuel failure. To overcome this
issue, a decision tree (DT) such as the classifier is developed, as
shown in Figure 4.

Two distinct forms of the CFNN are developed in the
improved method. The CFNN1 is used for predicting whether
the fuel cladding is defective. Its structure is the same as shown in
Figure 2, except that the output layer contains just two neurons.
If the output of the CFNN1 indicates that the fuel cladding is
intact, the degree of fuel failure can be assessed to 1. Otherwise,
the CFNN2 is used to predict the degree of fuel failure when the
fuel cladding is defective. The output of the CFNN2 is the
probability of the corresponding degree under defective
condition.

2.6 Relative Importance of the Input of the
Neural Network
Due to the fact that the neural network is a black-box used to
make a connection between the input and output, it is
incapable of explaining the mechanisms behind physical

FIGURE 3 | Training and validation loss over epochs.
FIGURE 4 |Diagram of the CFNNwith the decision tree designed for fuel
failure detection.

FIGURE 5 | Comparison of accuracy between the previous FFNN
method and the improved method.
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phenomena. While the output of the neural network depends
on the magnitude of the weights between connections, the
contribution of input variables can be determined by
interpreting the weights of the trained neural network.
This is meaningful information for reactor operators to
select the appropriate FPs predicting the status of fuel
failure.

Amethod to determine the relative importance of the input of the
neural network is proposed first by Garson, (1991) and simplified by
Gevrey et al., (2003). Themethod essentially involves partitioning the
hidden-output connection weights of each hidden neuron into
components associated with each input neuron.

For each hidden neuron, the absolute value of the input hidden
layer connection weight is divided by the sum of the absolute
value of the input hidden layer connection weight of all input
neurons:

Qnl � Wnl| |∑
n
Wnl| |, (7)

where W denotes the weight between neuron connections, n
denotes the input layer, and l denotes the hidden layer.

Once the parameter Qnl is determined, the sum of Qnl for each
hidden neuron is divided by the sum of each hidden neuron of the
sum for each input neuron of Qnl. The relative importance of all
output weights attributable to the given input variable is then
obtained. Then, the relative importance of all output weights for a
given input variable can be obtained:

RIn �
∑
l
Qnl

∑
l
∑
n
Qnl

. (8)

Apart from the connection between the input and hidden
layer, there are also connections between the input and other
layers. Then, the relative importance should also include other
connections and be averaged:

RIaven � 1
3

RI1→2
n + RI1→3

n + RI1→4
n( ). (9)

3 RESULTS AND DISCUSSION

3.1 Performance of the Method
3.1.1 Accuracy of the Method
The accuracy is calculated as the ratio between the number of
correct predictions to the total number of predictions. For
example, when a fuel cladding shows degree 1 failure, the
prediction is correct if the output of the neural network
indicates a degree 1 failure. Otherwise, the prediction is
wrong. The predictions are made for all samples in the test set
using the trained neural network.

It has been proven that the general FFNN predicts the degree of
fuel failure and performs well when the defect size is relatively large,
while there will be deviations for small defects, particularly under the
impact of large mass of tramp uranium. Figure 5 shows the
comparison among the FFNN in the previous study, the CFNN,

TABLE 2 | Confusion matrix of neural network results for small defects in percentage.

(A) FFNN

Actual degree 1 Actual degree 2 Actual degree 3 (%)

Predicted degree 1 100% 55.0% 8.3
Predicted degree 2 0 45.0% 5.7
Predicted degree 3 0 0 86.0

(B) CFNN

Actual degree 1 Actual degree 2 Actual degree 3 (%)

Predicted degree 1 100% 30.6% 7.9
Predicted degree 2 0 69.4% 0.9
Predicted degree 3 0 0 91.2

(C) CFNN with DT

Actual degree 1 Actual degree 2 Actual degree 3 (%)

Predicted degree 1 100% 20.0% 3.7
Predicted degree 2 0 80.0% 3.1
Predicted degree 3 0 0 93.2

FIGURE 6 | Variation of total specific activity and neural network output
after fuel failure of degree 5.
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and the CFNN with the DT. It can be seen that the CFNN increases
the accuracy from 45 to 69% for degree 2, while the CFNN with the
DT further increases the accuracy to 80% for degree 2. In addition,
there is a minor increase in accuracy for degrees 3–6.

The detailed prediction results for small defects are listed in
Table 2. As can be observed, both the CFNN and CFNN with DT
methods continue to underestimate the degree of fuel failure for
degree 2. However, the improved method significantly lowers the
underestimation rate. The underestimation phenomenon in the
previous study is attributed to an imbalanced dataset, where the
sample number of degree 1 is larger than that of other degrees.
Supposing the neural network is trivial, it is obvious that
classifying all samples into degree 1 has a higher accuracy
than classifying all samples into any other degree. Then, the
trained neural network has a tendency to identify degree 2 and
degree 3 as degree 1, increasing the probability of correct
prediction.

Using a DT-like technique can address this issue. As the first
step is to decide whether the fuel cladding is defective using a
CFNN, the dataset needs to be divided into two categories: intact
and defective. Under such condition, the dataset is balanced.
After passing through the CFNN1, the samples with intact fuel
cladding are classified into degree 1, and other samples with
defective fuel cladding go to CFNN2. The dataset of defective fuel
cladding of degrees 2–6 is also balanced. Theoretically, the
CFNN1 and CFNN2 in the DT are both trained by the
balanced dataset, and the degree of fuel failure should not be
underestimated. From Table 2, it can be seen that some samples
are still underestimated. The major reason is that the escape rate
coefficient of degree 2 is extremely small (< 1 × 10−7s−1). In
addition, some samples of degree 2 are in the cases of short-time
after defective fuel cladding. The specific activity in the coolant is
not significantly different from the intact condition. This
indicates that the feature is not sufficiently noticeable for
samples of small defect size. As a result, the CFNN with the
DT method still underestimates 20% degree 2 samples.

3.1.2 Responding Speed
When the fuel cladding is defective, it is necessary to rapidly
detect the status of fuel failure. On the contrary, the growth in
specific activity in the coolant is a gradual process. At the onset of
fuel failure, the neural network lacks the confidence in predicting
that the fuel cladding is defective, as illustrated in Figure 6.

Figure 7 shows the comparison of response time between the
previous FFNN method and improved method. The test set is
randomly sampled considering the influence of the failure onset
time, the escape rate coefficient, and the tramp uranium mass.
The sample space is built on 10 random defect time, 10 random
tramp uranium mass, and 15 random escape rate coefficients of
degrees 3–5, a total of 1,500 samples. As illustrated in Figure 7A,
there is significant delay in detecting fuel failures using the
previous FFNN when the defect size is small and defect
occurrence is early. Under these conditions, the response of
the CFNN is 15% faster than that of the FFNN. Furthermore,
the response of the CFNN with DT is twice faster than that of the
FFNN for degree 3 with early defect occurrence. Both the CFNN
and CFNN with DT work well for late defect occurrence, with
responses more than twice faster than those of the FFNN.

For degrees 4 and 5, the performance of the FFNN is adequate.
The results of the CFNN and CFNN with DT are consistent with
those of the FFNN and demonstrate no significant improvement

FIGURE 7 | Comparison of response time between the previous FFNN
method and the improved method. (A) Degree 3, (B) Degree 4, and (C)
Degree 5
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in reaction speed, as shown in Figures 7B,C. That is because the
degrees 4 and 5 correlate to a relatively large defect size, which
induces a high increase rate of specific activity in the coolant. The
neural network has a high degree of confidence in predicting the
occurrence of the defect after the specific activity reaches a
critical value.

Table 3 shows the confusion matrix of the neural network
results of the test set. The time frame of evaluation is chosen as
48 h from the commencement of fuel failure. Since the
structure of the FFNN and CFNN is relatively close,
comparing Table 3A and Table 3B, it can be seen that the
accuracy does not decrease, although the CFNN method
responds more quickly than the FFNN method. However,
the accuracy of the CFNN with DT method is worse than
that of the FFNN or CFNN methods, despite its high response

speed. This indicates that the CFNN with DT makes a trade-off
between accuracy and speed.

The main reason for the fast response of the CFNN with DT
method is because the first classifier of the DT is used to detect
whether the fuel cladding is defective, which is a binary
classification problem. In comparison to the FFNN or CFNN,
which are multi-class classification problems, there is a more
distinct dividing line between different classes. Since the first
classifier of DT responds fast, the second classifier of DT is unable
to accurately detect the degree of fuel failure at the moment of the
commencement of fuel failure. The feature of the current specific
activity may be similar with a minor degree of fuel failure. This
phenomenon can also be found in Figure 6.

3.2 Contribution of the Nuclide
It is known that hundreds of nuclides are produced during reactor
operation, and their fission yields and decay constants are
significantly different, which may vary several orders of

TABLE 3 | Confusion matrix of neural network results of the test set in percentage.

(A) FFNN

Actual degree 3 Actual degree 4 Actual degree 5 (%) Actual degree 6

Predicted degree 3 100% 2.2% 0 0
Predicted degree 4 0 97.8% 0 0
Predicted degree 5 0 0 96 0
Predicted degree 6 0 0 4 0

(B) CFNN

Actual degree 3 Actual degree 4 Actual degree 5 (%) Actual degree 6

Predicted degree 3 99.8% 0 0 0
Predicted degree 4 0.2% 98.2% 0 0
Predicted degree 5 0 1.8% 96 0
Predicted degree 6 0 0 4 0

(C) CFNN with DT

Actual degree 3 Actual degree 4 Actual degree 5 (%) Actual degree 6

Predicted degree 3 95.6% 0% 0 0
Predicted degree 4 4.4 94.8% 0 0
Predicted degree 5 0 5.2% 94.6 0
Predicted degree 6 0 0 5.4 0

FIGURE 8 | Contribution of FPs to the output of the neural network.

FIGURE 9 | Energy spectrum of FPs obtained by a CZT detector.
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magnitude. Because using all nuclides for fuel failure detection is
uneconomical and impracticable, it is vital to identify the key
nuclides for predicting the status of the fuel cladding.

The neural networks in this study use 23 nuclides as the input,
mainly including noble gases, iodine, and cesium. Due to their
relatively large fission yield and long half-life, these types of
nuclides are already frequently utilized in the isotopic ratio
method for fuel failure detection. In order to evaluate the
contribution of these nuclides to the determination of the
degree of fuel failure and support the further selection of FPs,
a sensitivity analysis is performed using the method provided in
Section 2.6.

After training the neural network, the connection weights are
acquired. Then, Qnl in Eq. 7 can be easily calculated. After
obtaining Qnl, the contribution of the input variable can be
calculated using Eq. 8. Since there are connections between
the input and other layers, it should be noted that the
contribution derived by Eq. 8 needs to be averaged.

The contribution of FPs derived by sensitivity analysis of 10
trained neural networks is shown in Figure 8. It can be obviously
seen that the most important nuclides are I-131, Xe-133, Xe-135,
and Kr-85, which is consistent with the prevalent knowledge.
These nuclides are already usually used in the isotopic ratio
method for fuel failure detection (Menéndez, 2009; Li et al.,
2017; Lyu and Xiong, 2019). These four nuclides are critical in the
fuel failure detection process. Besides these four nuclides, it can be
seen that Xe-133m, Sr-90, and I-133 also have a relatively high
contribution.

The previous study has shown that increasing the quantity of
input nuclides can improve detection accuracy. While
considering the efficiency and limitation of the detection
apparatus, some nuclides may be ignored. Although the neural
network can be simplified by ignoring some FPs, it is better to not
ignore the aforementioned seven nuclides.

3.3 Nuclide Selection in Real Scenario
The ideal neural network should make extensive use of FP-
specific activity. While due to the detection limitation of the
detector, only a few nuclides can be used as the input of the neural
network. Since the specific activity of FPs in the coolant is
supposed to be detected by a cadmium zinc telluride (CZT)
detector, the nuclides used as the input are selected based on
matching the energy spectrum of the CZT detector and generated
dataset. A typical spectrum of FPs derived by the CZT detector is
shown in Figure 9, and the generated dataset has specific

activities of 23 nuclides as stated in Section 2.3; the nuclides
used as the input are selected as I-131, I-133, Xe-133, and Xe-135
combining the sensitivity analysis in Section 3.2. Then, the neural
networks with an input of four nuclides are trained based on the
improved method and used for practical application, which is
consistent with the previous study.

4 CONCLUSION

In this study, an improved method based on the CFNN and DT
for fuel failure detection is proposed. The method considerably
improves the accuracy of fuel failure detection when the defect
size of the fuel cladding is small. The CFNN with DT method
increases the detection accuracy from 45 to 80% for fuel failure of
degree 2. In comparison to the previous FFNN method, the
response speed of the CFNN with DT method is more than
twice, although at the expense of sacrificing some precision. The
sensitivity analysis of the trained neural network indicates that I-
131, Xe-133, Xe-135, and Kr-85 are the most important nuclides
in fuel failure detection. Besides these four nuclides, Xe-133m, Sr-
90, and I-133 also have a relatively high contribution to the neural
network for detecting fuel failure.
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