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The pump provides the necessary pressure and flow for the organic Rankine cycle
(ORC) system. The traditional methods have obvious limitations when analyzing the
time-varying characteristics of the key operating parameters of the pump. This study
first introduces the scatter plot analysis method to analyze and evaluate the time-
varying and coupling characteristics of the hydraulic diaphragm metering pump. Then,
a machine learning-fitting algorithm hybrid model is constructed to solve and verify the
actual matching correlation equation of the key operating parameters. In addition, the
complicated non-linear relationship brings great challenges to obtaining the limit value
of the pump isentropic efficiency. This study introduces the bilinear interpolation
algorithm to systematically analyze the change trend between operating parameters
and isentropic efficiency. Based on the wavelet neural network (WNN) with momentum
term and particle swarm optimization-adaptive inertia weight adjusting (PSO-AIWA), a
machine learning framework with an intelligent algorithm is constructed. Under this
framework, the maximum isentropic efficiency of the pump can be stabilized at
70.22–74.67% under all working conditions. Through the theoretical analysis
model, the effectiveness of this framework is evaluated. Finally, the optimal cycle
parameters are evaluated. This study can provide direct significance for the analysis
and optimization of the actual performance of the ORC system.
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1 INTRODUCTION

Energy is the foundation of economic development. The rapid
economic development is accompanied by the massive
consumption of energy, which makes the problem of energy
shortage and environmental pollution increasingly severe.
Globally, the widely distributed and huge amount of waste
heat is not fully utilized (Xu et al., 2021). The development of
the waste heat recovery (WHR) technology is conducive to
improving the comprehensive utilization of energy.

The ORC plays an important role in the WHR field because of
its high reliability and easy maintenance (Roumpedakis et al.,
2019; Feng et al., 2020; Wang et al., 2022). The working fluid
pump provides the necessary pressure for the ORC, which
directly determines the performance of the system (Villani and
Tribioli, 2019; Ping et al., 2021a; Ping et al., 2021b). The outlet
pressure of the working fluid pump directly determines the
evaporation pressure of the evaporator (Feng et al., 2015a;
Wang et al., 2017a). As the outlet pressure of the working
fluid pump increases, the inlet pressure of the expander also
increases. At the same time, the thermal efficiency and net power
output of the system are improved to varying degrees (Meng et al.,
2017). In addition, the increase in evaporation pressure is
conducive to improving the efficiency of the expansion engine
(Ping et al., 2021c). Generally, in theoretical analysis and
optimization, the circulation pressure and mass flow rate are
matched through a linear relationship. However, there is a
complicated nonlinear change relationship between circulation
pressure and mass flow (Feng et al., 2015b; Li et al., 2020;
D’Amico et al., 2018). Simple linear combination will ignore
the objective nonlinear change relationship, which is not
conducive to analysis and optimization.

Isentropic efficiency is one of the important evaluation indexes
of the working fluid pump operating performance. The isentropic
efficiency of the working fluid pump reflects the deviation
between the enthalpy rise of ideal pressurization and the
actual pressurization of the working fluid. Higher isentropic
efficiency means that the working fluid pump has lower
irreversible loss, and the corresponding ORC system has a

better overall performance (Uusitalo et al., 2020). In
theoretical analysis, the isentropic efficiency usually takes a
fixed value that has not been verified by experiments. Table 1
briefly lists the selection of the isentropic efficiency of the pump
(Mohammadzadeh Bina et al., 2017; Mateu-Royo et al., 2019;
Shen et al., 2019; Wang and Fu, 2019; Altun and Kilic, 2020;
Morais et al., 2020; Schifflechner et al., 2020; Jafary et al., 2021;
Khoshgoftar Manesh et al., 2021; Wang et al., 2021). The
experimental test showed that the diaphragm pump efficiency
was 32% (Kosmadakis et al., 2016); the efficiency of the vane
pump was 36.9% (Kim et al., 2017); the plunger pump efficiency
was 33.6% (Chang et al., 2015). From the above analysis, the
difference between the theoretical analysis and the actual test of
the pump isentropic efficiency is obvious. This makes the
theoretical analysis insufficient for the ORC system
performance evaluation and poor guidance for experimental
research.

In addition, part of the theoretical analysis ignores the
influence of the irreversibility of the working fluid pump
pressurization process on the ORC system. Experiments show
that there is an obvious correlation between the operating
characteristics of the pump and the performance of the ORC
system (Wang et al., 2017b). Miao et al. (2015) found that the
peak power of the pump can account for 29.9% of the expander.
Peris et al. (2015) analyzed the influence of the power
consumption of the multistage centrifugal pump on the
thermal efficiency of the system through the experiment. The
results showed that the efficiency is 8.8% under the premise of
considering the pump power consumption; without considering
the pump power consumption, the thermal efficiency of the
system can reach 10.64%. After testing the performance of the
medium and low temperature ORC system, Wang et al. (2010)
found that when the working fluid pump power consumption is
not considered, the system thermal efficiency was 3.2%; when the
working fluid pump power consumption was considered, the
system thermal efficiency was only 1%. Moreover, the current
research on pumps is generally carried out on the test bench of the
ORC system (Feng et al., 2019). Because the experimental test of
the ORC system is generally carried out under a stable high-

TABLE 1 | Isentropic efficiency in theoretical analysis.

Refs Year Research description Isentropic
efficiency (%)

Khoshgoftar Manesh et al. (2021) 2021 Thermodynamic modeling, simulation, and evaluation of the integrated cycle (supercritical carbon
dioxide cycle and ORC) are performed

80

Jafary et al. (2021) 2021 Energetic and exergetic analysis of the ORC-internal heat exchange-based system 85
Wang et al. (2021) 2021 Design and optimization of the ORC for marine engine waste heat recovery 80
Morais et al. (2020) 2020 Economic, energetic, and exergetic analyses of a solar-biomass-ORC cooling cogeneration hybrid

system
85

Altun and Kilic (2020) 2020 Thermodynamic evaluation of the ORC for geothermal power 80
Schifflechner et al. (2020) 2020 Thermodynamic comparison of the supercritical CO2 and ORC for geothermal combined heat and

power generation
80

Wang and Fu (2019) 2019 Thermoeconomic analysis of the CCHP-ORC system 80
Shen et al. (2019) 2019 Design and optimization of the ORC system 100
Mateu-Royo et al. (2019) 2019 Multi-objective optimization of a high-temperature heat pump-ORC hybrid system 90
Mohammadzadeh Bina et al.
(2017)

2017 Thermoeconomic evaluation of the ORC for geothermal power 95
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temperature heat source, the pump cannot be operated under full
working conditions. The lack of some working conditions makes
it impossible to analyze the coupling characteristics between the
operating parameters and the isentropic efficiency in detail.

There are many operating parameters related to the isentropic
efficiency of the working fluid pump, and the interaction is
complicated. Moreover, there is a relatively obvious nonlinear
relationship between the isentropic efficiency and the operating
parameters. Conventional analysis methods have limitations in
constructing the nonlinear dynamic characteristics of the
working fluid pump. In recent years, machine learning has
provided new ideas and methods for solving the dynamic
characteristic modeling problems related to the ORC. Palagi
et al. (2019) compared the predictive accuracy of the ORC
system feedforward, recurrent, and long short-term memory
network models. Rossi and Renzi (2018) constructed an ANN
prediction model for the pump. By evaluating the robustness, the
feasibility of using ANN to construct pump dynamic
characteristics is verified. Fubin Yang et al. (2018) first built a
neural network model based on the characteristics of the data.
Then, through a genetic algorithm, the robustness of the model
was improved. Themaximum net power output of the systemwas
7.13 kW; the prediction error of the model was between −0.2 and
0.2 kW. Zhao et al. (2019) optimized the ORC system
performance globally. After optimization by the particle swarm
algorithm, the net power output of the system exceeds 6.87% of
the initial net power output of the system. Ping et al. (2020), Ping
et al. (2021d) analyzed and evaluated the nonlinear relationship
between the key component parameters and performance in the
ORC system through machine learning and intelligent
algorithms. Then, the performance of key components was
predicted and optimized. It can be seen that in the dynamic
characteristic modeling of the ORC system, machine learning has
an excellent learning ability, parallel computing ability, and
adaptability to a large amount of information. This feature not
only provides a new method for solving the dynamic
characteristic matching of key parameters but also brings new
ideas for predicting the isentropic efficiency. The wavelet neural
network is composed of the wavelet transform theory and neural
network. The wavelet basis function is the activation function in
the neural network. At the same time, the factors in the basis
functions replace the thresholds in the hidden layer nodes.
Therefore, this structure fundamentally changes the topology
of the BPNN. Based on the wavelet theory, the parameters
and structure of the model are initialized. Therefore, from the
perspective of a fitting performance, the wavelet transform
function can be selected according to the characteristics of the
fitted variable. Therefore, the WNN has strong robustness,
generalization ability, and convergence speed. In addition, the
wavelet transform function has orthogonality. Therefore, the
wavelet transform function can select the best strategy to fit
the objective function. The WNN not only has the generalization
ability of a neural network but also has the multi-scale analysis
ability of wavelet transform (Yuan et al., 2020; Hamedani et al.,
2021; Jafarzadeh Ghoushchi et al., 2021). The selection of inertia
weight has an important effect on PSO. Inertia weight can
effectively adjust the influence of the last search speed on the

next search speed. Inertia weight can also effectively balance the
relationship between the local search and global search in PSO.
Larger inertia weight will improve the global search capability of
the algorithm. The smaller inertia weight is beneficial to the local
search of the algorithm, which improves the local search ability
and speeds up the convergence of the algorithm. In the
conventional PSO algorithm, the inertia weight decreases
linearly with the number of iterations. When the algorithm
has obtained the global optimal value in the early stage, the
inertia weight cannot be reduced quickly, so the algorithm cannot
realize the local search. When the algorithm is in the local
optimization, this method cannot effectively avoid the local
optimal value. Therefore, in order to make the algorithm
search for the maximum value of the isentropy efficiency
quickly and effectively, this study introduces the PSO-AIWA
algorithm. The inertia weight is not affected by the number of
iterations, so the local search ability and global search ability of
the algorithm are balanced. Therefore, the PSO-AIWA algorithm
can improve the convergence accuracy of the algorithm while
ensuring the diversity of particle swarm (Wu et al., 2014;
Taherkhani and Safabakhsh, 2016; Hop et al., 2021).

A positive displacement pump is widely concerned in the ORC
field because of its good sealing and easy maintenance
(Nematollahi et al., 2018; Wang et al., 2019; Carraro et al.,
2020). As a kind of the positive displacement pump, the
hydraulic diaphragm metering pump has a better metering
accuracy than the mechanical diaphragm pump and a better
sealing performance than the plunger pump. In this study, the
scatter plot analysis method is introduced to analyze the time-
varying characteristics of the key operation parameters in the
visualization plane. This study introduces the scatter plot analysis
method and the bilinear interpolation algorithm to analyze time-
varying characteristics of the key operating parameters and the
change trend of isentropic efficiency under all working
conditions. In addition, a machine learning model for
matching the key operating parameters is constructed. The
model is coupled with a fitting algorithm into a machine
learning-fitting algorithm hybrid model, which solves and
verifies the actual matching correlations of the key operating
parameters. Moreover, based on a wavelet neural network
(WNN) with the momentum term, an isentropic efficiency
machine learning prediction model is constructed. The model
and the particle swarm optimization-adaptive inertia weight
adjusting (PSO-AIWA) are coupled into a machine learning
framework with an intelligent algorithm. Then, through the
theoretical analysis model, the effectiveness of the machine
learning model is verified. Finally, the isentropic efficiency
limiting and optimal cycle parameters are evaluated.

The key operating parameter matching correlation equation of
the hydraulic diaphragm metering pump takes into account the
nonlinear mapping relationship between operating parameters
and time-varying characteristics, which provides useful guidance
for the theoretical analysis, experimental design, and component
matching of the ORC system. Obtaining the maximum value of
the isentropic efficiency of the hydraulic diaphragm metering
pump under different working conditions is conducive to the
selection of numerical values in theoretical calculations.
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Moreover, it also brings direct guidance for obtaining the ORC
system performance limits.

2 DYNAMIC CHARACTERISTICS

2.1 Bench Description
Yuxin Yang et al. (2018) have described the bench of the
hydraulic diaphragm metering pump in detail. This study
introduces the ORC system and working conditions of the
pump. The ORC system is shown in Figure 1. The speed of
the hydraulic diaphragm metering pump can be changed by the
frequency converter. The working conditions selected in this
study need to cover the entire working condition range as

comprehensively as possible in order to systematically
optimize the isentropic efficiency. We selected 15, 20, 25, 30,
35, 40, 45, and 50 Hz at equal intervals in the full frequency band
that the motor can cover. The corresponding hydraulic
diaphragm metering pump speeds are 870 r/min–2900 r/min.

2.2 Matching Characteristics
A performance test platform for the hydraulic diaphragm
metering pump is established using R245fa as the organic
fluid, and the performance of the pump under different
working conditions is tested. Figure 2 is the schematic
diagram of the working fluid pump performance test platform.
The experimental process is as follows: first, make sure that the
components in the test platform are connected to the pipeline
tightly. The liquid storage tank and pipeline in the test platform
are evacuated, and R245fa is added to the liquid storage tank. The
working fluid enters the pump from the tank and is pressurized in
the pump. The valve can adjust the flow, thus changing the
circulation pressure. Finally, the working fluid re-enters the liquid
storage tank to complete the cycle. The frequency converter is
used to control the speed of the working fluid pump. A power
sensor is used to measure the power consumption of the working
fluid pump. The flowmeter is used to measure the flow of the
working fluid. The flowmeter is located behind the valve at the
outlet of the working fluid pump. The experimental data in the
cycle are collected by using the data acquisition instrument.

In the actual operation process of the hydraulic diaphragm
metering pump, the operating parameters have transient
pulsation. This characteristic makes the key operating
parameters have strong time-varying characteristics. Figure 3A
shows the time-varying characteristics of the mass flow rate. The
figure shows that there is a strong correlation and periodicity
between the mass flow rate and time, and the mass flow rate can
be regarded as a time series variable. Figure 3B shows the time-
varying characteristics of the outlet pressure. From the figure,
although the outlet pressure changes frequently, it has a strong
correlation and periodicity with time. The outlet pressure can be
regarded as a time series variable. Therefore, the construction of
time series correlations will help to obtain actual matching
correlations between the key operating parameters.

FIGURE 1 | Schematic representation of the ORC system.

FIGURE 2 | Working fluid pump performance test platform.

FIGURE 3 | Time-varying characteristics of the key operating
parameters.
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2.3 Isentropic Efficiency
The transient characteristic also makes the isentropic efficiency
and operating parameters have a strong nonlinear dynamic
characteristic. Different operating parameters have obvious
differences in the effect of isentropic efficiency. In this study,
the bilinear interpolation algorithm is used to fit the mapping
relationship between the operating parameters and isentropic
efficiency, and the influence surface of different operating
parameters on isentropic efficiency is drawn in a three-
dimensional space. Based on the fitting surface, the nonlinear
variation trend between the operating parameters and isentropic
efficiency is analyzed. The bilinear interpolation algorithm
interpolates the data points in different dimensions and then
combines the data points in different dimensions. This feature
can not only fully consider the change relationship between
adjacent data points but also reduce the calculation cost. For
given points A(i, j), B(i + 1, j), C(i, j + 1), and D(i + 1, j + 1) on
the plane, the corresponding isentropic efficiencies are ηs(i, j),
ηs(i + 1, j), ηs(i, j + 1), and ηs(i + 1, j + 1). The point to be
interpolated is P(i + u, j + v), and the corresponding isentropic
efficiency is ηs(i + u, j + v). Here, u and v are the increments in
the X-axis and Y-axis directions, respectively. Then, the
isentropic efficiencies corresponding to E(i + u, j) and
F(i + u, j + 1) can be expressed as follows:

ηs(i + u, j) � ηs(i, j) + u[ηs(i + 1, j) − ηs(i, j)], (1)
ηs(i + u, j + 1) � ηs(i, j + 1) + u[ηs(i + 1, j + 1) − ηs(i, j + 1)],

(2)
ηs(i + u, j + v) can be expressed as follows:

ηs(i + u, j + v) � ηs(i + u, j) + v[ηs(i + u, j + 1) − ηs(i + u, j)],
(3)

Figure 4 shows the fitting results of the bilinear interpolation
algorithm. It can be seen from Figure 4A that as the outlet
pressure increases, the isentropic efficiency gradually increases.
Starting from the outlet pressure around 0.87 MPa, the isentropic
efficiency increases slightly. As the mass flow rate increases, the
isentropic efficiency generally shows an increasing trend, but the
increase is not obvious. In addition, the outlet pressure has a
greater impact on the isentropic efficiency than the mass flow
rate. It can be seen from Figure 4B that the isentropic efficiency
gradually increases as the inlet pressure increases. Compared with
the inlet pressure, the outlet pressure has a greater impact on the
isentropic efficiency. Starting from the inlet pressure around
0.25 MPa, the isentropic efficiency increases slightly. From
Figure 4C, the isentropic efficiency does not increase
significantly with the increase of the inlet temperature. From

FIGURE 4 | Change trend of pump parameters.
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Figure 4D, as power consumption increases, the isentropic
efficiency decreases. From Figure 4E, the isentropic efficiency
increases with the increase of the outlet temperature before 32°C
Starting from the outlet temperature around 32°C, the isentropic
efficiency increases mildly.

3 MACHINE LEARNING

3.1 WNN and PSO
TheWNN has the advantages of the ANN and wavelet analysis at
the same time; the network has fast convergence speed and has a
strong ability to analyze transient processes (Santhosh et al., 2018;
Guo et al., 2019; Yuan et al., 2020). The wavelet basis function is
used as the activation function of the WNN, and the translation
and expansion are performed through the translation factor and
the expansion factor. The WNN is used to learn the dynamic
operating characteristics of the hydraulic diaphragm metering
pump so as to construct a nonlinear mapping relationship
between the operating parameters and isentropic efficiency.
Because the WNN uses the gradient learning algorithm to
modify the weights and parameters, the learning progress of
the WNN is slow, and it is easy to fall into local minimum. This
study introduces the WNN with a momentum term to improve
its learning efficiency.

The PSO algorithm has a strong ability of optimization. But in
the process of optimization, the PSO algorithm is easy to produce
a convergence effect of the population, causing premature and
stagnation. In order to balance the local and global search
capabilities of the PSO algorithm, this study introduces the
PSO-AIWA algorithm.

The model construction process is as follows: machine
learning first constructs a nonlinear mapping relationship by
mining the characteristics of the training set and then, through
the test set to evaluate its generalization ability. In addition, the
20,000 learning rate combinations and the 88 node numbers in
the model structure under full working conditions are optimized
and selected to further improve the generalization ability of
the model.

Coupling the WNN with the momentum term and PSO-
AIWA into a machine learning framework with an intelligent
algorithm. The machine learning framework consists of two
parts: prediction and optimization. The WNN model is used
to predict the isentropic efficiency of the working fluid pump. The
PSO-AIWA algorithm is used to optimize the isentropic
efficiency of the working fluid pump. The output variable of
the prediction model is used as the fitness function of the
optimization algorithm. The fitness value of the optimization
algorithm is the isentropic efficiency of the working fluid pump.
The input variables of the prediction model are taken as the
optimization variables of the optimization algorithm. By coupling
the prediction model and optimization algorithm, the limit value
of the isentropic efficiency of the working fluid pump is predicted
and optimized.

Then, the isentropic efficiency limiting value of the hydraulic
diaphragm metering pump under all working conditions is

optimized. The schematic representation of the WNN
topology is shown in Figure 5.

3.2 BPNN
The BPNN has a solid theoretical foundation, good intelligence
characteristics, and adaptability to off-line data. In the prediction
model of the ORC system, the BPNN based on the error
backpropagation algorithm is widely concerned. The BPNN
can learn from a large number of input variables and output
variables. In the process of learning, the BPNN can dynamically
adjust weights and thresholds in the network so as to learn the
mapping relationship. First, the neurons in the input layer
transmit the acquired information to the hidden layer, and the
hidden layer transmits the information to the output layer after
transformation processing. The network then compares the
deviation between the desired value and the actual value.
Based on the deviation, the network propagates the error
signal back to the input layer from back to front in the
direction of the negative gradient. At the same time, the
weights and thresholds in the network will be corrected. In the
process of forward transmission of input information and reverse
transmission of errors, the accuracy of the network is gradually
improved (Hu et al., 2019; Wang et al., 2020; Xie et al., 2020).

Based on the characteristics of the BPNN, the mass flow rate
time series prediction model and the outlet pressure time series
prediction model are constructed, respectively. Then, the time
series is predicted and evaluated.

3.3 Variable Selection
The isentropic efficiency prediction and optimization model
selects the temperature, pressure, power consumption, and
mass flow rate of the hydraulic diaphragm metering pump as
input variables. The isentropic efficiency is the output variable.

The input variable of the mass flow rate time-varying
characteristic prediction model is the equipment running time,
and the output variable is the mass flow rate. The input variable of
the time-varying characteristic prediction model of outlet

FIGURE 5 | Topological structure of the WNN.
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pressure is the equipment running time, and the output variable is
the outlet pressure.

4 RESULTS AND DISCUSSION

4.1 Model Evaluation
The evaluation of key operating parameter matching refers to the
quantitative evaluation of the time-varying characteristic
prediction and fitting ability of the hybrid model. The
evaluation of the predictive model refers to the quantitative
evaluation of the predictive ability.

Root mean square error (RMSE) represents the degree of
deviation of the data set. The smaller the RMSE, the better
will be the accuracy of the model. In this study, the RMSE is
used to evaluate the accuracy. The RMSE is calculated as follows:

RMSE �

�������������������������
1
N
∑N
i�1
(observedi − predictedi)2

√√
, (4)

In the evaluation of key operating parameter matching,
observedi refers to the result obtained through the fitting
algorithm. predictedi refers to the result obtained through
machine learning. In the evaluation of the isentropic efficiency
limiting value prediction model, observedi refers to the
isentropic efficiency obtained through experimental data.
predictedi refers to the result of the isentropic efficiency
predicted by the machine learning framework with the
intelligent algorithm.

4.2 Key Operating Parameter Matching
The coefficients and constant terms of the final correlation
equation are obtained by the BPNN, Fourier series fitting
algorithm, and trigonometric function fitting algorithm. First,
the time-varying characteristics of the mass flow rate and the
outlet pressure of the working fluid pump are predicted by the
BPNN. Then, the Fourier series fitting algorithm is used to fit the
time-varying characteristics of the mass flow rate. The
trigonometric function fitting algorithm is used to fit the time-
varying characteristics of the outlet pressure. Finally, the key
operating parameter-matching correlation is obtained through

the time-varying characteristic equation of the mass flow rate and
the time-varying characteristic equation of the outlet pressure.

First, the time-varying characteristics of the mass flow rate are
predicted. Then, the time-varying characteristics of the mass flow
rate are fitted by the Fourier series, Gaussian function, ordinary
least squares, power function, rational function, and
trigonometric function. According to the prediction and fitting
results, the RMSEs of Fourier series, Gaussian function, ordinary
least squares, power function, rational function, and
trigonometric function are 8.89 × 10−5, 5.49 × 10−4, 1.65 ×
10−4, 1 × 10−3, 2.6 × 10−3, and 2.08 × 10−4, respectively.
Therefore, the Fourier series fitting algorithm is used to fit the
time-varying characteristics of the mass flow rate. Figure 6 shows
the fitting results of the Fourier series on the time-varying
characteristics of the mass flow rate. The correlation between
the mass flow rate and time is as follows:

_m � 2 − 2 cos(10−2t) + 10−1 sin(10−2t), (5)
In addition, the time-varying characteristics of the outlet

pressure are predicted. Then, the time-varying characteristics of
the outlet pressure are fitted by Fourier series, Gaussian function,
ordinary least squares, power function, rational function, and
trigonometric function. According to the prediction and fitting
results, the RMSEs of Fourier series, Gaussian function, ordinary
least squares, power function, rational function, and trigonometric
function are 2.49 × 10−2, 1.5 × 10−3, 7.8 × 10−3, 1.1 × 10−2, 4.02 ×
10−2, and 1.1 × 10−3, respectively. Therefore, the trigonometric
function fitting algorithm is used to fit the time-varying
characteristics of the outlet pressure. Figure 7 shows the fitting
results of the trigonometric function on the time-varying
characteristics of the outlet pressure. The correlation between
the outlet pressure and time is as follows:

10 arcsin(2pout) − 9 � 10−2t, (6)
From Eq. 5 and Eq. 6, we obtain the following:

_m�2−2cos[10arcsin(2pout)−9]+10−1 sin[10arcsin(2pout)−9],
(7)

Equation 7 is the actual matching correlation equation for the
key operating parameters of the hydraulic diaphragm
metering pump.

FIGURE 6 | Fourier series fits the time-varying characteristics of the
mass flow rate.

FIGURE 7 | Trigonometric function fits the time-varying characteristics of
the outlet pressure.
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4.3 Isentropic Efficiency Limiting Value
Aswe all know, the change of operating parameters of the hydraulic
diaphragmmetering pump directly affects the isentropic efficiency.
Moreover, the strong coupling between the operating parameters
and performance makes the degree of influence difference obvious.
Although the experiment can test the isentropic efficiency of the
hydraulic diaphragm metering pump, it is difficult to obtain the
limiting value of the isentropic efficiency from limited and discrete
experimental points. The research on transient pulsation
characteristics of the pump is expensive and complicated.
Theoretical analysis has great limitations for constructing the
complex non-linear mapping relationship. Based on the WNN
with the momentum term, an isentropic efficiency prediction
model is constructed. Then, the model and the PSO-AIWA
algorithm are coupled into a machine learning framework with
the intelligent algorithm to optimize the isentropic efficiency.
Within the boundaries of operating parameters, the limiting
value under all working conditions is obtained.

4.3.1 Generalization Ability
Structural parameters have an important influence on the
generalization ability of the prediction model. Therefore, the
selection of the learning rate of the weights and the learning

rate of the wavelet basis function in the network is particularly
important. Furthermore, the nodes in the network also have an
important influence on the generalization ability of the network.
The 20,000 learning rate combinations and 88 nodes are
optimized to improve the generalization ability. Table 2 lists
the optimization results. From Figure 8, the RMSEs are 5.8 ×
10−3, 2.8 × 10−3, 3.3 × 10−3, 6.7 × 10−3, 3.7 × 10−3, 8.3 × 10−3, 1.8 ×
10−3, and 3.8 × 10−2, respectively. The prediction model has good
generalization ability under full working conditions. In addition,
the selection results of hyperparameters in the BPNN are also
listed in Table 2.

4.3.2 Prediction and Optimization
In the experiment, a variety of operating parameters are
constantly changing with the high-speed operation of the
hydraulic diaphragm metering pump. There may be multiple
maximum points of the isentropic efficiency in the region within
the operating parameter boundaries. Therefore, it is necessary to
make a reasonable selection of the optimization boundaries of the
operating parameters so that the process of prediction and
optimization is accurate and fast.

The bilinear interpolation algorithm is used to construct the
curved surface to provide the required boundaries for
prediction and optimization. The three dimensions in the
space represent different operating parameters, and the
fourth dimension represents the isentropic efficiency with
the intensity of the color. The dark region is the region
where the maximum isentropic efficiency may exist.
Figure 9 shows the region where the maximum isentropic
efficiency may exist at 870 r/min. The optimization boundaries
of the inlet pressure are 0.16–0.17 MPa; the optimization
boundaries of the outlet temperature are 28.96–29.62°C; the
optimization boundaries of the outlet pressure are
0.98–1.23 MPa; the optimization boundaries of power
consumption are 120.55–195.7 W; the optimization
boundaries of the mass flow rate are 0.066–0.072 kg/s; the
optimization boundaries of the inlet temperature are
28.52–28.94°C.

FIGURE 8 | Generalization ability of the prediction model.

TABLE 2 | Structural parameters of the WNN prediction model and BPNN prediction model.

Structural parameters of the WNN prediction model

Speed (r/min) Weights learning rate Learning rate of
wavelet basis function

Number of hidden layer
nodes

Number
of hidden layers

870 0.099 0.025 26 1
1160 0.081 0.077 22 1
1450 0.099 0.081 20 1
1740 0.091 0.001 12 1
2030 0.065 0.037 20 1
2320 0.063 0.051 12 1
2610 0.095 0.075 24 1
2900 0.025 0.015 18 1

Structural parameters of the BPNN prediction model

Learning rate Number of hidden layer nodes Number of hidden layers

0.1 30 1
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The cost function of this study can be expressed as follows:

max (ηs) � f( _m,Tin, Tout, Pin, Pout, _W), (8)
The inlet temperature, inlet pressure, outlet temperature,

outlet pressure, power consumption, and mass flow of the
hydraulic diaphragm metering pump are selected as the
control variables in the process of optimization. The

boundary of control variables is constrained in the process of
optimization. Constraints are shown in Table 3.

Figure 10 shows the optimization results of the maximum
isentropic efficiency. The limiting value of the isentropic
efficiency at 870–2900 r/min can be stabilized at 70.22–74.75%.
Table 4 shows the optimal operating parameters corresponding
to the isentropic efficiency limiting value under all working
conditions. The results show that there is no unique set of
speed and operating parameters to make the isentropic
efficiency reach the limiting value under full working
conditions. By reasonably adjusting the operating parameters,
the isentropic efficiency of the hydraulic diaphragm metering
pump can reach a larger value under different working
conditions. Reasonable adjustment of different operating
parameters through this framework can make the isentropic
efficiency reach the maximum under all working conditions.

4.3.3 Verification and Comparison
Within the same optimization boundaries, the isentropic
efficiency is optimized through theoretical analysis to verify
the effectiveness of this framework. The prediction and
optimization accuracy of the machine learning framework and
theoretical analysis model are compared.

FIGURE 9 | Optimal boundaries of operating parameters at 870 r/min.

TABLE 3 | Constraints of the optimization process.

Speed
(r/min)

Tin (°C) Tout (°C) _m (kg/s) pin (MPa) pout (MPa) _W (W)

Min Max Min Max Min Max Min Max Min Max Min Max

870 28.52 28.94 28.96 29.62 0.07 0.07 0.17 0.18 0.98 1.23 120.5 195.7
1160 30.11 30.66 30.68 32.25 0.06 0.06 0.18 0.19 1.21 1.33 210.8 223.6
1450 28.95 29.34 29.36 29.81 0.1 0.12 0.18 0.19 0.91 0.95 129.1 138.2
1740 28.62 29.06 29.37 31.64 0.08 0.11 0.17 0.18 0.84 0.97 141.5 180.9
2030 29.17 29.54 29.96 30.5 0.06 0.07 0.18 0.19 1.04 1.23 200.5 220.3
2320 28.48 29.09 29.11 30.18 0.11 0.12 0.17 0.18 1.15 1.32 289.4 315.8
2610 27.36 28.45 28.71 30.01 0.09 0.11 0.18 0.19 1.25 1.47 227.6 245.4
2900 case1 38.86 40.21 40.27 41.67 0.32 0.36 0.26 0.27 1.15 1.32 357 395.4
2900 case2 52.38 52.67 52.77 53.13 0.27 0.29 0.34 0.38 0.9 1.05 381.2 390.6

FIGURE 10 | Optimization results under all working conditions.
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Table 5 shows the differences between theoretical analysis
modeling andmachine learning modeling. It can be seen from the
table that the theoretical analysis is to calculate the efficiency of
the pump through the theoretical calculation equation and
REFPROP. First, the optimization algorithm generates a set of
operating parameters. The enthalpy values corresponding to
operating parameters are calculated by REFPROP in
theoretical analysis. Then, the isentropic efficiency is calculated
by the theoretical calculation equation. The output variables of
the theoretical analysis model are taken as the fitness function of
the optimization algorithm. The fitness value of the optimization
algorithm is the isentropic efficiency of the pump. The input
variables of the theoretical analysis model are taken as the
optimization variables of the optimization algorithm. The
theoretical analysis model is coupled with the optimization
algorithm to optimize the isentropic efficiency of the pump.
The machine learning model is composed of the wavelet
transform and neural network, which can directly construct

the mapping relationship between the operating parameters
and isentropic efficiency.

Figure 11 shows the comparison results. Under the same
speed and the same operating parameters, the maximum mean
absolute percentage error (MAPE) of theoretical analysis is
74.19%, while the machine learning MAPE is only 9.23%.
From the figure, compared with the theoretical analysis,
machine learning has obvious advantages. In addition,
theoretical analysis shows that the optimal inlet temperature is
higher than the optimal outlet temperature at the other seven
speeds except 2900 r/min. This is completely different from the
21,193 sets of experimental data collected at seven speeds. This is
because theoretical analysis has limitations in constructing a true
nonlinear mapping relationship between the inlet temperature
and outlet temperature. Figure 12 shows the comparison of
isentropic efficiency-limiting values. From the figure, the
theoretical analysis of the MAPE at 870–2900 r/min is
7.73×107%–1.43 × 1010%.

TABLE 4 | Optimal operating parameters.

Speed (r/min) Tin (°C) Tout (°C) _m (kg/s) pin (MPa) pout (MPa) _W (W)

870 28.52 29.62 0.07 0.18 0.98 120.55
1160 30.11 32.25 0.06 0.19 1.21 223.6
1450 29.34 29.36 0.10 0.19 0.91 129.1
1740 28.62 31.52 0.09 0.18 0.84 177.89
2030 29.17 30.5 0.066 0.19 1.28 202.44
2320 28.48 30.19 0.12 0.17 1.15 289.4
2610 27.36 30.01 0.11 0.18 1.25 239.01
2900 38.86 40.83 0.32 0.27 1.15 369.02

TABLE 5 | Differences between theoretical analysis modeling and machine learning modeling.

Theoretical analysis modeling Machine learning modeling

Basic
concept

According to the theoretical calculation equation and REFPROP, the
changing relationship between operating parameters and performance is
constructed

Wavelet transform is combined with the neural network. The neuron activation
function is replaced by the nonlinear wavelet function

Key
equation

ηs � hs,out−hin
hout−hin (9) Wavelet basis function: y � cos(1.75x)e−x2

2 (10)
Output layer calculation equation: y(k) � ∑l

i�1wikh(i) k � 1,2,/,m (11)
Here,wik is the weight from the hidden layer to the output layer. h(i) is the output of
the i hidden layer node. l is the number of hidden layer nodes. m is the number of
nodes in the output layer
The correction of the wavelet network can be expressed as
1) Calculate the network error
e � ∑m

k�1yn(k) − y(k) (12)
Here, yn(k) is the desired output. y(k) is the prediction output of the wavelet neural
network
2) Modify the weight of the wavelet neural network and the coefficient of basis
function

w(i+1)
n,k � wi

n,k + Δw(i+1)
n,k (13)

a(i+1)k � aik + Δa(i+1)k (14)

b(i+1)
k � aik + Δb(i+1)

k (15)
Here, Δw(i+1)

n,k � −η ze
zw(i)

n,k

(16)

Δa(i+1)k � −η ze
za(i)k

(17)

Δb(i+1)
k � −η ze

zb(i)
k

(18)

Here, η is the learning rate
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It can be found that the prediction of the isentropic efficiency
and optimal operating parameters by machine learning is
significantly better than theoretical analysis in terms of
accuracy and objectivity.

4.3.4 Optimal Operating Parameters
The operating parameters corresponding to the maximum
isentropic efficiency are shown in Figure 13. We want to
analyze the position of the optimal operating parameters
within the experimental boundary by optimizing the results
so as to analyze the coupling relationship between the limiting
value of the isentropic efficiency and the optimal operating
parameters. The blue bar shows the range of experimental
values of operating parameters at different speeds. The red
line is the position of the optimal operating parameters at

FIGURE 11 | Comparison of optimal operating parameters under all working conditions.

FIGURE 12 | Comparison of maximum isentropic efficiency under all
working conditions.

FIGURE 13 | Distribution of the optimal key operating parameters.
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different speeds. From Figure 13A, the optimal mass flow rate is
maintained in a low range within the operating parameter
boundaries; as the speed increases, although the optimal
mass flow rate has been maintained in the low range within
the operating parameter boundaries, it generally shows a
tendency to move to the middle. It can be seen from
Figure 13B that the optimal outlet pressure is maintained in
a high range within the operating parameter boundaries under
different working conditions. With the increase of speed,
although the optimal outlet pressure position fluctuates
slightly, it has been maintained in the high range of the
operating parameter boundaries. In the high-speed range, as
the speed increases, the optimal outlet pressure changes mildly.
It can be seen that there is no unique set of speed and optimal
operating parameters to make the isentropic efficiency reach the
limiting value in the full working conditions. However, there is a
relatively stable outlet pressure in the high-speed range to make
the isentropic efficiency reach the limiting value.

It can be seen from Table 4, Figure 13, and the operating
parameter boundaries that in the low-speed range, it is easier to
obtain higher isentropic efficiency by maintaining a low outlet
temperature and high outlet pressure. In the high-speed range, it
is easier to obtain higher isentropic efficiency by maintaining
moderate inlet temperature, moderate outlet temperature, lower
inlet pressure, higher outlet pressure, lower mass flow, and
moderate power consumption.

This is because the low inlet pressure and high outlet pressure
can form a large pressure difference. As the pressure difference
increases, the more effective the work, the higher will be the
isentropic efficiency. For the hydraulic diaphragm metering
pump, the outlet pressure has little effect on mass flow. The
ideal flow rate can be obtained by adjusting the speed. The
pressure difference and mass flow rate jointly determine the
power consumption of the hydraulic diaphragm metering
pump. The higher temperature difference between the inlet
and outlet of the working fluid pump will lead to the increase
of exergy destruction of the pump, which is not conducive to
higher isentropic efficiency.

5 CONCLUSION

This study introduces the scatter plot analysis method to
analyze the time-varying characteristics of the key operating
parameters of the hydraulic diaphragm metering pump. Then,
using the bilinear interpolation algorithm, the coupling
characteristics and nonlinear change trend between the key
parameters and the isentropic efficiency are analyzed. A
hybrid model of the machine learning-fitting algorithm is
constructed to solve and verify the actual matching
correlation equation of the key operating parameters. In
addition, a machine learning framework with an intelligent
algorithm is constructed. Through the theoretical analysis
model, the validity of the framework is compared and
verified. Finally, the isentropic efficiency limiting and
optimal cycle parameters are evaluated. The main
conclusions are summarized as follows:

1) It is reasonable to integrate machine learning, intelligent
algorithm, and data-driven to build a machine learning
framework with an intelligent algorithm and then optimize
the maximum isentropic efficiency. The RMSE is 1.8 ×
10−3–3.8 × 10−2, and the model has excellent robustness
and generalization ability. In addition, the prediction and
optimization capabilities of the machine learning framework
with the intelligent algorithm for isentropic efficiency are
significantly better than the theoretical analysis in accuracy
and objectivity.

2) There is no unique set of speed and operating parameters to
make the isentropic efficiency reach the maximum value
under all working conditions. By reasonably adjusting the
operating parameters, the isentropic efficiency can reach a
larger value under different working conditions. Through
reasonable optimization, the limiting value of isentropic
efficiency is stable between 70.22 and 74.67% under full
working conditions.

3) The outlet pressure and mass flow rate can be used as time
series variables. The constructed machine learning-fitting
algorithm hybrid model can accurately solve and verify the
actual matching correlation equation of the key operating
parameters. The actual matching correlation equation of the
operating parameters between the outlet pressure and mass
flow rate is as follows:

_m � 2 − 2 cos[10 arcsin(2pout) − 9] + 10−1 sin[10 arcsin(2pout)
− 9].

4) Among the outlet pressure, mass flow rate, inlet pressure, inlet
temperature, outlet temperature, and power consumption, the
outlet pressure has the greatest impact on the isentropic
efficiency. Although under full working conditions, there is
no unique set of speed and operating parameters to make the
isentropic efficiency reach the limiting value. However, there
is a relatively stable outlet pressure in the high-speed range to
make the isentropic efficiency reach the limiting value.

This work mainly focuses on the influence of thermodynamic
cycle parameters on the isentropic efficiency of the working fluid
pump. In our future work, we will pay more attention to the
influence of transient pulsation of mass flow on the power output
of the expander.
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