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The global concerted effort toward achieving carbon neutrality has given impetus to the
accelerated growth of renewable energy sources with government patronage. The smart
grid has the mandate to integrate renewable energy sources adeptly toward meeting the
vision of carbon neutrality by 2050 in many countries. Solar energy generation has
emerged as one of the most viable options due to the rapid stride of innovations in
this domain as well as due to the decreasing trend of the cost of photovoltaic (PV)
technology. However, the uncertain sunlight leading to uncertain solar energy generation
with a low-capacity factor has been a challenge to maintain the legacy reliability of the
power system. Unlike a two-state model being used for analyzing conventional generators,
a multistate model has been proposed for incorporating the random variation of solar
energy generation correlating with random irradiance. An innovative approach for
formulating probabilistic modeling of solar energy is implemented to evaluate different
reliability indices such as loss of load probability (LOLP) and expected energy not served
(EENS). Different case studies with results prove the efficacy of the proposed probabilistic
model–based availability of solar power generation due to solar irradiance uncertainty
along with interaction with stochastic load model on smart grid reliability and carbon
neutrality.

Keywords: solar irradiation uncertainty, Weibull distribution, discrete stochastic load model, reliability, carbon
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INTRODUCTION

The contemporary electric power system is undergoing unprecedented changes with the
proliferation of distributed energy sources (DERs), inducted to mitigate the adverse effects of
fossil fuel–based generating units on the ecosystem (Alrashidi et al., 2021). However, the inclusion of
DERs (such as wind and solar) having stochastic nature poses many new challenges to the existing
smart grids (Jiang et al., 2021). The ever-increasing power demand requires a diverse combination of
renewable and conventional generation (Manohar et al., 2020), which further requires new
methodologies to incorporate the technological changes (Kumar, Mohanta, and Reddy 2015).
The existing methodologies must consider the intermittency associated with the non-
conventional generating sources and its impact on the reliability of the grid. Furthermore, the
replacement of conventional fossil fuel–based units with greener technologies must achieve carbon
neutrality (Gopakumar et al., 2014) without compromising the overall generation capacity. Solar
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energy has tremendous potential across the world as a viable
alternative to traditional energy sources to contribute toward
carbon neutrality.

Motivation
In order to extract a significant amount of power from solar
panels, considerable space is required (Tripathi et al., 2021), and
hence replacing a conventional generator with a single solar farm
may not be feasible. As a consequence, solar energy is captured at
numerous locations in a given region that receives an equivalent
amount of solar radiation.

The modeling of intermittency associated with distributed
power generation is a major challenge in analyzing the impact
on power system reliability. In contrast to the conventional
generating units, which are usually represented by a two-
probability state (up state and down state) model, solar energy
is associated with multiple probability states (Ostovar et al., 2021)
due to varying levels of irradiance at different intervals of time.
The multiple probability states of solar energy are approximated
using standard probability density functions (PDFs). However,
the pattern of solar irradiance varies with changes in season, and
hence it is difficult to determine the PDF to accurately represent
them (Sreenivasulu et al., 2021). Therefore, an accurate
generalized probabilistic model to represent the uncertainty
associated with solar power needs a careful approach. The
interaction of the probabilistic solar generation model with the
discrete stochastic load model (DSLM) is another important
aspect for the computation of the reliability of the electric
grids (Vardi, Zahavi, and Avi-Itzhak,1977). Conventionally,
the interaction of the generation model with the load model is
represented by the convolution process, which becomes complex
and time-consuming with an increase in the number of
generating units and multistate load model. The computations
can be drastically reduced if the interactions of the models are
analyzed in the frequency domain (Proakis and Manolakis,2021).

The motivation of this research is to model the uncertainty
and intermittency associated with solar irradiance, which can be
easily combined with load uncertainty and outage of conventional
generating units to obtain the reliability of the system with
reduced computations. The impact of the inclusion of solar
distributed generation (DG) on carbon emissions is also
investigated to achieve carbon neutrality.

Past Research
Many research studies have been proposed in the recent past for
reliability modeling of solar irradiance and integration of the solar
system with the conventional systems. The focus of this work was
to track the maximum irradiance for obtaining maximum solar
power (Yan et al., 2018; Li et al., 2021; de Vries, Loonen, and
Hensen 2021), assess reliability based on power loss due to
variable insolation (Pandit et al., 2021), determine the
reliability of electric vehicles (Hashemi-Dezaki 2019; Talukdar
et al., Deka, and Goswami 2021), and optimize the cost for
reliability evaluation (Ram, Bhandari, and Kumar 2021).
However, the major challenge for the present and upcoming
grid-connected solar DG system is to adequately supply the load
demand (Okundamiya 2021), which needs to be addressed. A

significant amount of work has been reported for adequacy
assessment of wind farm integrated power system (Ak et al.,
2018; Zhu and Zhang, 2018); however, limited work has been
reported on adequacy of solar DG considering the intermittency
of solar irradiation. The power generated by a PV cell depends on
the intensity of solar irradiation, which further depends on the
location of the solar unit. The uncertainty of solar generation is
represented by probability density functions, which vary with the
change in seasons of the year (Vale 2015). Normal distribution
function (Kim et al., 2020) andWeibull distribution (Afzaal et al.,
2020) function have been used to represent the global solar
irradiation data. Hence, a common simplified model needs to
be developed to represent solar data to integrate the solar DGwith
the conventional reliability assessment schemes. The adequacy
assessment schemes also involve multiple iterations, which need
to be further addressed.

Reliability analysis of solar photovoltaic systems has been
reported in considering the components of the solar PV
systems (Pradeep Kumar and Fernandes 2017; Gautam and
Kaushika 2002). The methods take into account the solar PV
arrays and the grid-connected converter, but the solar irradiation
intermittency is not taken into account. Although intermittency
of solar irradiation has been taken into account by Yin, Molini,
and Porporato (2020), the research does not consider a
generalized model for it. The topological variations for solar
irradiation have been taken into account for reliability studies
in Carpio (2021); Almaktar, Elbreki, and Shaaban (2021), but the
methods for reliability evaluation are complex. The consideration
of irradiation uncertainty having multiple states in generation
makes the reliability evaluation process complex. The FFT-based
algorithm used in Lakshmi et al. (1995) is imperative to make the
computations simpler. Also, carbon neutrality with the inclusion
of solar DG needs to be taken into account (Kumar, Mohanta,
and Reddy 2015; Wyrwa et al., 2022).

Unique Contributions
Solar PV has been globally deployed; hence, the solar
irradiation uncertainty modeling in a generalized way can
facilitate significantly toward impact assessment on
reliability and carbon neutrality. The representation of solar
irradiation using different PDFs at different locations is
cumbersome, and hence a generalized model for the
representation of the probabilities of solar irradiation has
been developed. The model is also consistent with
topological variations so that interactions of a multistate
solar power model with the stochastic load model as well as
with the random outage probabilities of conventional
generating units are blended suitably using the frequency
domain approach for computation. The algorithm used for
generation planning considering carbon neutrality is
computationally efficient with lesser memory requirements.
In a nutshell, the unique contributions of the present research
as compared to the existing literature are as follows:

1) Development of a generalized probabilistic model for the
representation of solar intermittency taking topological
variations into account.
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2) Impact assessment of solar power generation uncertainty on
the reliability using smart grid discrete production simulation
(SGDPS).

3) Frequency domain approach for reliability evaluation using
efficacious interaction of the stochastic load model along with
binary state conventional generator outage model.

4) Assessment of net carbon neutrality by integration of solar PV
generation instead of coal-based generation.

The remainder of the study is organized as follows: Section 2
formulates a probabilistic model for solar power uncertainty; the
section proposes a generalized model for solar irradiation based
on Weibull distribution. Section 3 discusses the discrete
production simulation considering uncertainty in solar DG for
reliability analysis of smart grids. Section 4 analyzes the impact of
solar generation considered in the present work on carbon
neutrality and Section 5 provides a discussion on the results
of the proposed methodology.

GENERALIZED PROBABILISTIC MODEL
FOR SOLAR UNCERTAINTY
REPRESENTATION
Solar energy generation plays a quintessential role in achieving
carbon neutrality due to its availability in abundance. However,
the nature of solar energy is uncertain in nature, which needs to
be represented mathematically for the purpose of analysis in
generation planning for a more reliable and smarter grid. For
analyzing the impact of uncertainty related to the randomness of
solar irradiation, a suitable probabilistic distribution has been
chosen to truly reflect the stochastic nature of solar irradiation.
Such distribution is selected based on its appropriateness
corresponding to the time series data. The distribution gives
information about the probabilistic nature of the solar irradiation
in terms of probability of occurrence and distribution of
irradiation values at a particular site. In general, the
stochasticity of wind is depicted by the Weibull distribution.
However, because several distributions have been used to
represent solar irradiation, defining the distribution that is
capable of representing solar irradiation is challenging. Despite
the fact that Weibull distributions have produced better results
for time-series data sets, beta distributions are commonly used to
depict solar DGs (Afzaal et al., 2020). As a result, the Weibull
distribution is used to represent the data sets in this study.

Representation of Data Using Weibull
Distribution
It is vital to get the data in the time-series format in order to
describe the solar data using theWeibull distribution. The present
study utilizes the data from various locations in California, the
United States, because that state receives the maximum solar
irradiation all year round. Two locations, namely, farm 1 and
farm 2 were chosen to represent a distributed generation. Hourly
data of each location are considered for a duration of 2 years
(2018–2019) from 7:00 a.m. to 5:00 p.m. The data points can be

represented by Eq. 1. Here, I corresponds to irradiance data, (i �
1, 2, . . . , n) corresponds to the number of days, and (j �
1, 2, . . . , m) corresponds to the hour taken into consideration.
The sample irradiation values of farm 1 are presented in Table 1
for a duration of 2 years, where the duration of (7:00 a.m. to 8:00
a.m.) is represented by first hour, duration (8:00 a.m. to 9:00 a.m.)
is represented by second hour, . . .., and (4:00 p.m. to 5:00 p.m.) is
represented by 10th hour.

I �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
d11 d21 / dm1
d12 d22 / dm2
..
.

dij 1 ..
.

d1n / / dmn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (1)

f (I) � α

β
(I
β
)α−1

exp(−I
β
)α

(2)

xr � β[ln( 1
1 − r

)]1
α

(3)

The data given by Eq. 1 are a time-series data for a duration
of 10 h each day, and hence the data of the duration considered
(1 year) can be approximated to Weibull distribution f(I) as
given by Eq. 2 (Phan and McCool 2009). Here, α � (std/�I)
corresponds to the shape parameter of the distribution, β =
�I/Γ(1 + 1

α) corresponds to the scale parameter of the
distribution, �I corresponds to the mean of the solar
irradiation data, std is the standard deviation of the
irradiation data, and Γ is the gamma function. The PDF
plots for farm 1 and farm 2 considering 2 years of data are
shown in Figure 1. The rth quantile of Weibull distribution in
terms of the shape and scale parameters of Weibull
distribution is given by Eq. 3. Here, rth quantile represents
an irradiation value equal to or less than xr, and the xr values
for different quantiles are presented in Table 2.

The Weibull parameters of different farms have been
tabulated in Table 4. It can be observed from Table 2 that
the quantile which includes the maximum solar irradiation
value for farm 1 is 93.02%, and the quantile which includes the
maximum solar irradiation value for farm 2 is 89.13%. Hence,
it can be inferred that the solar data considered spans about
90% of the distribution, thus making Weibull distribution
suitable for solar irradiation. The Weibull parameter
fluctuates with change in location, even within the same
region, making it challenging to determine an appropriate
model to represent solar irradiation. A generalized model for

TABLE 1 | Representation of irradiance data (W/m taken for 10 h for 2 years
(730 days).

Hour
day

1 2 3 4 5 6 7 8 9 10

1 0 54 164 354 530 489 306 159 38 38
2 0 24 86 151 130 93 44 21 12 3

..

. ..
. ..

. ..
. ..

. ..
. ..

. 1 1 ..
. ..

.

..

. ..
. ..

. ..
. ..

. ..
. ..

. 1 1 ..
. ..

.

730 0 76 225 408 680 760 530 238 77 42
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solar irradiance would be useful for analyzing solar data at
various locations in practical applications. The approach is
useful in places where there is a shortage of historical data. The
purpose of the framework is to accurately determine the output
power of solar DGs installed in various geographic regions.
The PDF plot of two solar farms is shown in Figure 1 in terms
of the two-parameter Weibull distribution. This section
determines the probability distribution of solar irradiance in
terms of variance, which is obtained from the expected values
of the PDF plot. The combined PDF plot for farm 1 and farm 2
is shown in Figure 2, which is obtained by taking the average of
the probabilities of the two wind farms. The standard deviation
S(X) �

�������������
E(Xi − E(X))2

√
of the PDF can be obtained from the

expected value E(X) = ∑PiXi of the combined PDF. Here, Pi

corresponds to the probability of Xi (irradiance value) in the
combined PDF plot of the solar irradiation at different sites.

Based on the standard deviation S(X) obtained, the
generalized model considers solar irradiation values up to
(5σ), which accounts for very high irradiance despite their
low probability. The distribution is divided intoND number of

steps with a step size of (5σ/ND), and the midpoint of each step
MPSi(i � 1, 2, 3 . . . , ND) is given by (4). For example, if we
consider a 50-step model, then the size of each step is 0.1σ, and
the midpoint of steps MPSi are given as:
0.05σ, 0.15σ, 0.25σ, . . . , 4.95σ. If the number of 24-h solar
irradiation values obtained for a given time interval is Nys,
and Nbsi is the number of values in step i, then the probability
Pbi � Nbsi/Nys of step i.

MPSi � 5σ
2ND

+ 5σ
ND

(i − 1) (4)

The generalized solar irradiation model can be used to
obtain the probability of a particular site if the mean (�I)
and standard deviation (std) of the irradiance of the data at
the site are known.

Generalized Solar Generation Model
The conventional generating unit is represented by a two-state
model, with the states representing zero power generation or
“down state” and rated capacity generation or “up state”.

FIGURE 1 | PDF of solar irradiation for two farms.

TABLE 2 | Quantile of Weibull for different farms and maximum irradiance value (W/m2) present in them.

Pth quantile Farm 1 Farm 2

10th 112.138 242.921
23rd 207.999 370.967
35th 292.165 468.233
51st 411.698 592.294
63rd 515.978 691.403
71st 598.899 765.747
84th 782.018 919.360
89.13th (Quantile which includes maximum solar irradiation for farm 1) 890.750 1,005.150
93.02th Quantile which includes maximum solar irradiation for farm 2) 1,008.105 N/A
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However, due to solar power intermittency caused by variation
of solar irradiation due to movement of the sun, it is pragmatic
to represent the solar power with a multistate model. The
multistate modeling helps to incorporate the random variation
of solar energy generation correlating with random irradiance.
Furthermore, the generation reliability analysis requires the
computation of power generated at a particular site with a solar
farm so as to check whether it meets the load demand. The
amount of power generated from a solar farm location varies
with the amount of solar irradiation. The solar power curve,
which is a correlation between solar irradiation and generated
power as shown in Figure 3, can be used to calculate the power
generated at a location. The power varies non-linearly when
the solar irradiation is less than a predefined set radiation point
Rsp (usually considered 150 W/m2). The power varies linearly
when the irradiation lies between Rsp and solar irradiation at a

predefined standard value in a given environment Rpse (usually
taken as 1000 W/m2). The generated power is the rated value
Pr beyond Rpse. This has been explained in Section 2.2.

Figure 4 depicts the process of constructing a standard solar
power model. The model requires solar data from a place with
similar mean and standard deviation solar irradiation
statistics. To develop a site-specific solar irradiation model,
the annual mean and standard deviation of solar irradiation for

FIGURE 2 | Combined solar irradiation PDF for two farms.

FIGURE 3 | Correlation of output power with solar irradiation.

FIGURE 4 | Flowchart for development of generalized solar
irradiation model.
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that location are needed. Finally, solar power generated at a
specific site for various irradiation values is calculated using
solar power curve data.

The hourly solar power generated Pshi(i � 1, 2, 3 . . . , ND) at a
particular site corresponding to solar irradiation value MPSi(i �
1, 2, 3 . . . , ND) is given by Eq. 4. Table 3 lists the values of solar
irradiation and equivalent output power for a solar DG
considering a rated power of 1500 MW and σ � 229.6488 for a
30-step model.

Pshi �

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Pr × MPS2i
Rpse × Rsp

; 0≤MPSi <Rsp

Pr × MPSi
Rpse

; Rsp ≤MPSi <Rpse

Pr; MPSi ≥Rpse

(5)

The power generated is zero for the duration for which solar
irradiation is not present, which has not been taken into account
for the power calculation state. The probability Pprz for zero
power output is obtained from Eq. 6, whereNz is the number of
data points for zero solar irradiation. Similarly, rated power
output is obtained beyond Rpse. Therefore, the probability of
step bands beyond it can be combined to obtain the probability
for rated power output Pprr given by Eq. 7.

Pprz � Nz

Nsy
(6)

Pprr � ∑Pbi, for MPSi ≥Rpse (7)

SMART GRID DISCRETE PRODUCTION
SIMULATION CONSIDERING STOCHASTIC
GENERATION FOR RELIABILITY ANALYSIS
Generation planning is an essential aspect of determining the
reliability of power delivered to the consumers. The incorporation
of solar PV-generating units and other renewable energy
resources in the generation has mandated the need for
efficient generation planning tools to account for generating
unit stochasticity. The algorithms of the existing planning
tools are incredibly efficient, and updating them to integrate
solar DG units enables the planning process smart for smart grids.
The present work considers the discretized version of load and
solar generation intermittency to formulate smart grid discrete
production simulation (SGDPS) with stochastic generation. The
DSLM is the kernel of SGDPS which immaculately integrates the
stochastic load and the generation model. DSLM is the
modification of the initial DSLM (load represented in terms of
time duration of its demand), which is shifted and modified to
account for uncertainty in a generation in terms of the load. If a
certain capacity of generation is removed from the existing
system, changes are affected in the load as generation follows
the load. Hence, this phenomenon is expressed by an equivalent
rise in load causing the shifting of the initial DSLM to obtain a
new DSLM. A typical DSLM is shown in Figure 5A. Point (l, n)
on the curve represents the time duration }n}, for which the }l}
MW of the load is exceeded and the point is represented as
n � F(l), that is, time is represented as a function of load. The
initial DSLM specifies the time duration for which a load is

TABLE 3 | Combined probability of solar irradiance and corresponding power for a 30-step model considering farm 1 and farm 2, having combined rated power
1500 MW andσ � 229.6488

Step
value

Irradiation value
(W/m2)

Corresponding
power (MW)

Probability Step
value

Irradiation value
(W/m2)

Corresponding
power (MW)

Probability

1 0.0833σ 5.2738 0.5252 11 1.7493σ 723.3937 0.0123
2 0.2499σ 47.4647 0.0168 12 1.9159σ 792.2884 0.0165
3 0.4165σ 131.8464 0.0123 13 2.0825σ 861.1830 0.0167
4 0.5831σ 241.1312 0.0119 14 2.2491σ 930.0777 0.0182
5 0.7497σ 310.0259 0.0118 15 2.4157σ 998.9723 0.0224
6 0.9163σ 378.9205 0.0118 16 2.5823σ 1,067.8670 0.0256
7 1.0829σ 447.8152 0.0099 17 2.7489σ 1,136.7616 0.0300
8 1.2495σ 516.7098 0.0110 18 2.9155σ 1,205.6563 0.0400
9 1.4161σ 585.6044 0.0122 19 3.0821σ 1,274.5509 0.0561
10 1.5127σ 654.4991 0.0139 20 3.2487σ 1,343.4456 0.0720

Step
Value

IrradiationValue
(W/m2)

Corresponding
Power (MW)

Probability — — — —

21 3.4153σ 1,412.3402 0.0478 — — — —

22 3.5819σ 1,481.2348 0.0045 — — — —

23 3.7485σ 1,500 0 — — — —

24 3.9151σ 1,500 0 — — — —

25 4.0817σ 1,500 0 — — — —

26 4.2483σ 1,500 0 — — — —

27 4.4149σ 1,500 0 — — — —

28 4.5815σ 1,500 0 — — — —

29 4.7481σ 1,500 0 — — — —

30 4.9147σ 1,500 0 — — — —
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present, D is the maximum time duration under which the
investigation is carried out, and lmax is the maximum
connected load to the system. The total energy under the
initial DSLM is given by Eq. 8.

EDL � ∑lmax

l�0
F(l) (8)

Incorporation of Random Outage of
Conventional Unit
The outage of the conventional unit is represented by a two-state
model. If the outage of each generating unit G1, with an outage
capacity U1, is treated as a single event, then the probability of
failure state is represented by forced outage rate (FOR) of the
generator having the value }q}. The probability of the generator
being in the normal state is by }p � (1 − q)}. The DSLM is
constructed by convolving all the generating units one at a time,
with the order of convolution based on the priority of operation.
The DSLM after consideration of outage of a single unit is
pictorially represented in Figure 5; here, DSLM(0)(l) is the
original load duration curve, and DSLM(1)(l) is the DSLM
after consideration of outage of one generating unit G1, with
an outage capacity of U1. The outage of the unit can be
mathematically represented by Eq. 9, which involves the
convolution of DSLM with the outage probability of the
unit. Here, p1 is the probability of G1 being in a normal
state, and q1 is the probability of outage of G1. In general,
the outage of unit Gi(i � 1, 2, 3, . . . , NG) with capacities Ui(i �
1, 2, 3, . . . , NG) can be represented by (9), which is a
convolution of DSLM and outage of a generator. Here, pi is
the probability of Gi being in a normal state, and qi is the
probability of outage of Gi. If the maximum capacity of the
generating units is UGT, then the final DSLM has a maximum
load of (lm + UGT). The present work considers DSLM and
probabilistic DSLM synonymously.

DSLMi(l) � DSLMi−1(l) ⊗ Gi

� pi × DSLMi−1(l) + qi × DSLMi−1(l − Ui) (9)

Inclusion of Solar Power Uncertainty in the
Probabilistic Simulation Model
The uncertainty of solar power generation is represented by
multiple power states, necessitating the use of the multistate
algorithm. If the uncertainty of the solar power is represented
byNκ states, then the probability of Pshi(i � 1, 2, 3, . . . , Nκ) solar
DG states are prsi(i � 1, 2, 3, . . . , Nκ). The power states of the
solar DG, where Psh] is the rated capacity of the solar DG, and the
probabilities of all the power states of the solar DG must
satisfy ∑prsi � 1

If the outage of NG conventional units has been taken into
account by convolving the initial DLSM with all the generating
units, then the final DSLM after convolution is DSLMNG . This
obtained DSLM needs to be convolved with the stochastic power
generating states of the solar unit. If the solar unit SGj is added to
the system, then for a generating state Pshi having probability prsi
is mathematically represented by the shifting of DSLM by Pshi to
the right. The final DSLM is obtained by convolving all the
generating states of solar DG with the previously obtained DSLM
and is given by Eq. 10.

DSLMj(l) � ∑Nκ

i�1
[prsi.DSLMj−1(l − Pshi)] (10)

Equation 10 reduces to Eq. 9 if Nκ � 2, and for j � 1,
DLSMj−1 is taken as the final DSLM obtained by convolving
all the conventional generating units with initial DSLM. The
pictorial representation of convolution of all the conventional
generating units to obtain DSLMNG and its convolution with
probabilistic solar DG power model is shown in Figure 6.

Reliability Evaluation Using Frequency
Domain Approach
Convolution of generating units with initial DSLM in the time
domain necessitates several iterations, and the number of data
points after convolution rises. This increases the memory

FIGURE 5 | DSLM incorporating random outage of a generator.

FIGURE 6 | DSLM considering outage of all the conventional generators
and solar DG.
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requirements of the processor, and massive computations make
the processor slow. If the time domain signals are converted to the
frequency domain, the large number of addition and
multiplications reduces to point by point data multiplication
(Proakis and Manolakis 2021). The data are converted from
the time domain to the frequency domain using a fast Fourier
transform (FFT) algorithm. FFT requires the initial DSLM
data and the data related to the uncertainty of the generating
units to be sampled, and the number of sampling points must
satisfy Nsamp � 2c, where C is an integer. A discrete time-
domain signal s(z) can be represented by }Nsamp} impulses
scaled by a factor }am(m � 1, 2, 3, . . . , Nsamp)} and uniformly
shifted by a factor }Δz}, given by (11). The signal is converted
to the frequency domain using (12), where W � ej2π/Nsamp ,
n � (1, 2, 3, . . . , Nsamp), and m � (1, 2, 3, . . . , Nsamp). The
signal is converted back to the frequency domain using
inverse FFT (IFFT) given by Eq. 13. The number of
sampling points is chosen based on Nsamp ≥ T0

T (21)
(Lakshmi et al., 1995), where T0 � lm + (UNG + Psh]) to
consider sampling based on maximum loading, and the
sampling interval T is chosen as 1 MW. When the number
of generating units and states increases, the computational
time and memory requirements for the frequency domain drop
significantly.

s(z) � ∑Nsamp−1

k�0
ak × δ(z − k.Δz) (11)

S(n) � ∑Nsamp−1

k�0
akW

−nk (12)

yk � ∑Nsamp−1

n�0
S(n)Wnk

s(n) � ∑Nsamp−1

k�0
yk × δ(z − Δz)

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(13)

Evaluation of Reliability Indices
The DSLM obtained after all the units have been convolved with
the initial DSLM shifts the initial DSLM based on the maximum
generating capacity of the system. If the system has }λ} number
of generating units with a total generating capacity (Ut), then the
final DSLM after convolving all the generating units isDSLMλ(l).
The peak load in the final DSLM is equal to (lmax + Ut); the
reliability indices, namely, loss of load probability (LOLP) and
expected energy not served (EENS), which can be obtained from
the final obtained DSLM, are given by Eqs 14, 15. The proposed
methodology first requires solar data to formulate a generalized
solar generation model so that a multistate generation model for
any site can be obtained using mean and standard deviation. The
obtained data are convolved with the DSLM obtained by
convolving the conventional generating units with the initial
DSLM. Finally, the reliability indices are obtained to
determine the reliability of the system. The proposed
methodology is shown in Figure 7.

LOLP � DSLMλ(lmax + Ut) (14)

EENS � ∑lmax+Ut

Ut

DSLMλ(l) (15)

IMPACT ASSESSMENT OF SOLAR
GENERATION ON CARBON NEUTRALITY

Since the beginning of the industrial revolution, carbon dioxide
emissions, mostly from the combustion of fossil fuels, have risen
substantially. CO2 emissions vary depending on the type of fossil fuel
utilized to generate power. Burning coal produces more CO2 than
burning natural gas or oil to produce the same amount of power.
Achieving net-zero emissions (carbon neutrality) by 2050 is a
colossal task, especially in the face of rising economic and
population expansion. It calls for unwavering support from all
the countries to massively generate power from natural sources
of energy such as wind and solar energy. The enormity of the
changes required to achieve worldwide net-zero emissions by 2050 is
beyond the capabilities of the government energy or environment
ministries, as well as individual countries. It will entail an
unparalleled level of global collaboration (IEA 2021). The
countries, in an effort to reduce carbon emissions, are actively
encouraging and providing incentives for the installation of wind
and solar power plants at the places of potential to deliver. Among
clean energies, renewables such as solar energy, wind power, and
ocean energy are some of the most important and efficient means to
achieve carbon neutrality (Wang et al., 2021). These renewable
technologies provide around half of the emission savings to 2030
in the net-zero emissions.

The impact of solar generation on carbon neutrality is assessed
using the following equation:

Ep(Total CO2 emissions) � Opp∑N
i�1
Hi p EFi (16)

whereOp is the total electricity generation output of the grid inMWh.
It is equal to the product of installed capacity in MW, capacity factor,
and 8,760 h/a. EFi is the emission factor for specific technology and
fuel type expressed in t CO2e/MWh,Hi is the percentage contribution
of technology i, and N is the number of different technologies.
Depending upon the type of fuel used for generating power, the
emission factor varies. The emission factor depends on the energy
released when fuel is burnt. To analyze the emission factor for
different fuels, the amount of CO2 released per unit of energy
output or heat content is calculated. With the use of fuel having a
lower emission factor, carbon emissions can be significantly reduced
by the generating units to achieve carbon neutrality.

CASE STUDIES AND DISCUSSIONS

The impact of solar power generation on the reliability of the
conventional system is tested and validated on the IEEE-RTS
system (Grigg et al., 1999), which has been widely used for testing
and validating various reliability algorithms. The system comprises 32
generating units with a total generation of 3405MWgeneration and a
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connected load of 2805MW. The original system has been modified
to accommodate the solar DG in the system. A 155MWcoal unit has
been replaced to include a 1500MW solar farm in the system to
represent a capacity factor (equivalent generating capacity/actual
capacity of the plant) of 0.1033; the generating capacity of all the
connected generators is listed in Table 4. The modified IEEE-RTS
used in this study also includes the different generators along with

their capacities. The generating units used are mainly nuclear, coal/
steam, oil/steam, and hydro, along with their generation capacities.

Solar energy has a significant role in reducing the global carbon
footprint.Table 5 enlists the carbon dioxide emissions from themajor
carbon emitting generating sources and solar PV system. The carbon
emissions from each of these sources are calculated for equal
generation capacities, and during calculations, it is assumed that
the thermal and oil power plants operate at their rated capacity
with a capacity factor of “1”. The thermal and oil units operate for
24 h, whereas the solar PV system generates power depending on the
availability of the sun, which is taken as 10 h in the present study.
Table 5 also enlists the emission factor of various fuel types
(Environment 2022). It can be observed that the emission factor of
the thermal unit is maximum due to the fact that it utilizes coal as a
fuel, and because the emission factor of the oil unit is also considerable.
The carbon emission factor of the solar PV system is very less when
compared to coal and oil units, and hence it can serve as a major
alternative source of generation in order to reduce the carbon
emissions. Considering the operating scenario in the present work,
the carbon emissions in ton CO2 equivalent is tabulated in Table 5,
calculated from Eq. 16. It can be observed that the emissions from the
thermal unit is 117.724 × 106 t CO2 eq., which is very high; the CO2

emission from the oil unit is reduced to 93.67, but is still significant.
Hence, the major CO2-emitting source, which is the thermal unit,

FIGURE 7 | Reliability evaluation process considering outage of generating units and intermittency of solar generation.

TABLE 4 | Type of generator with their capacities connected in modified
IEEE-RTS.

Type of generating unit Capacity (MW)

Nuclear 400 × 2
Coal/Steam 350 × 1
Oil/Steam 197 × 3
Coal/Steam 155 × 3
Oil/steam 100 × 3
Coal/Steam 76 × 4
Hydro 50 × 6
Oil/CT 20 × 4
Oil/Steam 12 × 5

Solar Weibull Parameter Farm 1 Farm 2 1,500
α = shape 1.4705 2.1458
β = scale 518.0048 693.2635
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needs to be replaced with the solar unit in order to achieve carbon
neutrality. The present work does not consider the replacement of the
nuclear unit as it is a large unit serving base load. The replacement of a
thermal unit with a solar unit reduces the CO2 emissions to 22.630 t
CO2 eq., thus playing a major role in achieving carbon neutrality.

The two farms mentioned in Section 2 represent distributed
generation, and the solar data have been obtained from National
Solar Radiation Database (2021), through which data can be
obtained for any geographic site. The solar irradiance data
collected for 2 years from the particular site with solar farms are
used in this study for the distributed stochastic load model (DSLM).
The solar irradiance data have been represented in hours and days as
rows and columns, respectively, with a local standard time from 7:00
a.m. to 5:00 p.m. for each day.Table 1 shows the data represented in
matrix form with rows as the number of hours from 1 to 10 and the
number of days from 1 to 730. Table 2 shows the rth quantile of the

Weibull distribution for farm 1 and farm 2. From this, it can be
inferred that for the 63rd quantile, the scale parameter is equal to the
Weibull distribution factor for both farms 1 and 2. The maximum
solar irradiation for farm 1 occurs at 89.13th quantile, its Weibull
distribution factor corresponding to 890.750, and for farm 2, it
occurs at 93.02th quantile and its value corresponds to 1,005.150.

The present work takes into account a 30-step model to consider a
step size of around 50MW, so that the power states are obtained with
sufficient accuracy. The combined probability of farm1 and farm 2 for
various irradiation values has been presented in Table 3; the power
corresponding to various irradiation states has also been mentioned.
Both farm 1 and farm 2 have a combined rated power of 1500MW
and a standard deviation of 229.6488. FromTable 3, it can be inferred
that with an increase in solar irradiation, the probability decreases. The
corresponding power increases gradually, and for the step value of 20,
it settles at 1,343.4456MW. With further increase in the step value

TABLE 5 | Total CO2 emissions for different units.

Fuel type Equivalent capacity Emission factor (KgCO2/MWh) Operating hours Total CO2 emissions
(x106 t CO2 equivalent

Thermal 155 86.7025 24 117.724
Oil 155 68.9935 24 93.67
Solar 155 40 10 22.630

FIGURE 8 | DSLM for IEEE-RTS and modified RTS.

TABLE 6 | Reliability indices for the proposed system.

Type of
system

Capacity of
solar DG

added (MW)

Solar penetration
percentage

Capacity factor
of solar DG

LOLP EENS (GWh/yr)

IEEE-RTS Nil N/A N/A 0.009556 11.4240
Modified IEEE-RTS 500 13 0.3100 0.2875 41.0293
Modified IEEE-RTS 950 22 0.1630 0.1658 23.6814
Modified IEEE-RTS 1,500 31.57 0.1033 0.1053 14.7390
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beyond the 23rd step with a power magnitude of 1500MW, the
probability remains constant at zero. The load data for a year
considering the time in weeks have been taken from Grigg et al.
(1999), and the initial DSLM plot representing the peak load for
different weeks in a year is shown in Figure 8.

The DSLM plot for IEEE-RTS is shown in Figure 8,
considering the convolution load and outage of all the
generating units. The maximum value of load after convolving
all the generating units is 6255 MW, and the LOLP and EENS
obtained from DSLM are 0.009556 and 11.4240 (GWh/yr),
respectively. It can be observed from Figure 9 that after
considering the outage of generating units, the load curve has
shifted, which signifies an increase in energy at the load side with
an outage of generating units. The DSLM with the removal of the
155 MW generating unit and addition of 500 MW solar DG is
shown in Figure 9. It can be observed that the modification of
DSLM further shifts to the right, and the maximum load of the
DSLM is 6600 MW. Inclusion of 500 MW generating unit results
in a penetration of 13% of the solar generation, which results in a
LOLP of 0.2875 and an EENS of 41.0293, as listed in Table 6. The
results show that the solar DG penetration of 13% results in the
decrease of reliability of the system. With a penetration of 31.5%,
the LOLP improves to 0.1053 and the EENS improves to 14.7390
(GWh/yr), which is considerable. The inclusion of 1500 MW
solar DG results in a capacity factor of 0.10. The result shows both
quantitative and qualitative contributions of the solar

photovoltaic systems. From the aforementioned results, it is
evident that with an increase in solar DG penetration, the
LOLP and the EENS improve, resulting in an increase in the
reliability of the system. LOLP and EENS are important factors
for reliability assessment. This further proves that by replacing
the conventional units with the solar DGs, carbon neutrality can
be achieved, thus lowering the amount of CO2 emissions.

CONCLUSION

Solar energy has a massive potential around the world for minimizing
carbon emissions. In an urge to decrease the carbon footprint on the
environment, the usage of solarDG is increasing. In order to assess the
impact of solar power generation in the current energy scenario, it is
imperative to model the stochastic nature of solar irradiation. The
proposed work quantifies the stochastic nature of solar irradiation. A
generalized model to represent solar irradiation has been developed
based on Weibull distribution for reliability purposes. Based on the
model, a discrete production simulation model has been developed to
represent solar DG. The algorithm has been tested onmodified IEEE-
RTS and the results prove that with a penetration of 31.57% of solar
generation, the reliability of the system is close to the base RTS system
in terms of EENS. The carbon neutrality based on penetration of
renewables has been quantified and thus, replacing the conventional
thermal unit with renewable energy from solar is highly indispensable
and crucial for lowering CO2 emissions and decarbonizing energy
systems to achieve carbon neutrality.
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