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The general fractional conformable derivative (GCD) and its attributes have been described
by researchers in the recent times. Compared with other fractional derivative definitions,
this derivative presents a generalization of the conformable derivative and follows the same
derivation formulae. For electrical circuits, such as RLC, RC, and LC, we obtain a new class
of fractional-order differential equations using this novel derivative, The use of GCD to
depict electrical circuits has been shown to be more adaptable and lucrative than the usual
conformable derivative.
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INTRODUCTION

Fractional calculus (FC) is a natural evolution of regular calculus that includes noninteger-order
derivatives and integrals. FC has received considerable attention in the last 3 decades because it is an
effective and commonly used approach for better modeling and control of processes in many sectors
in science and engineering (Baleanu et al., 2010; Caponetto et al., 2010; Monje et al., 2010;
Golmankhaneh Alireza and Lambert, 2012; Valsa and Vlach, 2013; Bao et al., 2015; Hartley
et al., 2015; Kaczorek and Rogowski, 2015; Soltan et al., 2016). Because fractional derivatives
(FDs) are defined using integrals, they are non-local operators. As a result, FDs in time incorporate
information about the function at previous positions, resulting in a memory effect and nonlocal
spatial effects. In reality, they consider the background of the system as well as nonlocal scattered
effects, all of which are crucial for a more accurate and precise description and analysis of complex
and dynamic control systems. FDs and integrals are now defined in various ways (Capelas de Oliveira
and Tenreiro Machado, 2014). The references cited therein are examples of these concepts (Oldham
and Spanier, 1974; Miller and Ross, 1993; Samko et al., 1993; Podlubny, 1999; Uchaikin, 2013;
Caputo and Fabrizio, 2015; Atangana and Baleanu, 2016). One issue in this discipline is determining
which FD is used to replace the ordinary derivative in a particular scenario. The Riemann–Liouville
and Caputo FDs are the most frequently used definitions (Li et al., 2011). In addition, a two-scale FD
occurs see (Ji-Huan et al., 2021). Classical applications of FC, such as the autochrone issue, have
demonstrated its potential (Abel, 1839a). Other types of applications include the fractional diffusion
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equation (Wyss, 1986), models based on memory mechanisms
(Caputo and Mainardi, 1971), and new linear capacitor theory
(Westerlund, 1994). Teka et al. (2017) studied several elements of
the fractional-order faulty integrate and burn model offered by
sophisticated multiple timescale brain dynamics. The linearity
attribute is satisfied by all FD definitions. However, almost all FDs
lack mathematical features such as product rules and chain rules.
These among other irregularities have caused several issues in
real-world applications, limiting opportunities to investigate
fractional computations.

By contrast, the fractal concept has been extensively studied in
literature (Wang, 2022a; Wang, 2022b). For example, in Wang
(2022a), fractal calculus was used to illustrate a shallow water
wave with irregular borders, and He’s variational method was
used to successfully find its exact fractal solitary wave solution.
Numerical examples demonstrate the simplicity, efficiency, and
convenience of this method. Finally, we illustrate the physical
features of fractal solitary solutions using certain graphs. In
addition, the goal of this study () is to define the coupled
nonlinear fractal Schrödinger system using fractal derivatives
and to establish its variational concept using the fractal semi-
inverse approach.

Regarding fractal electrical circuits, one can cite recent
works (Banchuin, 2022). Banchuin (2022) derived fractal
integrodifferential equations for RL, RC, LC, and RLC
circuits subjected to zero-mean additive white Gaussian
noise specified on a fractal set.

To overcome these problems, Khalil et al. (2014) developed an
innovative approach that extends the standard limit definitions of
a function’s derivatives, termed as conformable FD. This
definition allows for expansions of some classical calculus
theorems required in fractional differential models, but not
allowed by existing definitions. Researchers are interested in
this conformable derivative because it appears to meet all of
the standard derivative criteria (Katugampola, 2014; Abdeljawad,
2015). Furthermore, computation with this new derivative is
considerably easier than that with existing FD formulations.
Consequently, this new definition is being used in a large
number of projects. (Hammad and Khalil, 2014; Atangana
et al., 2015; Al Horani et al., 2016; Zhao and Li, 2016; Cenesiz
et al., 2017). By contrast (Zhao and Luo, 2015; Li et al., 2020),
investigated an extension of the classical conformable FD. The
authors of (Zhao and Luo, 2015) defined a new type of FD known
as general fractional conformable derivative (GCD).
Furthermore, the authors demonstrated several unique results
for the diffusion equation solution (Li et al., 2020). Some further
additional efforts to the conformable derivative are recently done
by researchers, for example, Exact solutions of conformable time
fractional Zoomeron equation via IBSEFM (Demirbilek et al.,
2021), Fuzzy systems (Younus et al., 2021a; Younus et al., 2021b),
the Solutions of Fractional Cauchy Problem Featuring
Conformable Derivative (Yavuz and Özdemir, 2018) and
Fundamental Results of Conformable Sturm–Liouville
Eigenvalue Problems (Al-Refai and Abdeljawad, 2017). The
conformable derivative’s broad application is exemplified by
the large number of recent research publications, which
demonstrate the derivative’s importance in solving diverse

problems in science and engineering. Certain notions remain
unaddressed by the conformable derivative, and it represents an
unexplored subject of study.

Electrical circuits are modeled using mathematical
representations, whose requirement stems from the following
question: what is the best mathematical model that approximates
the real one? According to our findings, it has been proven in the
literature that conformable derivatives are preferable to integer-order
derivatives and other types of FDs. Thus, in our study, we provide a
general conformable derivative as a solution to describe electrical
circuits and prove that this choice is more flexible, providing a large
set of equations that simplify themodelization problem. The authors
of (Martínez et al., 2018) compared conformable derivatives with
other types of FDs. Thus, the fundamental contribution of our work
is the introduction of a novel GCD and comparison of our results
with those of (Martínez et al., 2018). Indeed, after interpretation and
analysis, we determined that our choice is not onlymore appropriate
but also offers a wider range of model alternatives.

The structure of this article is organized as follows.
Preliminaries presents the preliminaries. General Fractional
Conformable RC Circuit discusses the general fractional-
conformable RC circuits. General Fractional Conformable
LC Circuit introduces a general fractional-conformable LC
circuit. General Fractional Conformable RLC Circuit
describes a general fractional-conformable RLC circuit.
Finally, the conclusions are presented in Conclusion.

PRELIMINARIES

This section begins with a review of some theorems, definitions,
and lemmas (Samko et al., 1993; Podlubny, 1999; Hermann, 2011;
Hartley et al., 2015).

Definition 1. Let θ ∈(n, n + 1]. Assume a function ϕ, which is
defined in [0 b); then, the general conformable derivative of ϕ is
defined by:

Tθ,ψϕ(t) � lim
ε→0

ϕ([θ]−1)(t + εψ(t, θ)) − ϕ([θ]−1)(t)
ε

(1)

For all t> 0, where [θ] is the smallest integer greater than or equal
to θ, and ψ(t, θ) is a continuous non-negative function that
depends on t and satisfies

ψ(t, n + 1) � 1,

ψ(., θ1) ≠ ψ(., θ2), where θ1 ≠ θ2 and θ1, θ2 ∈ (n, n + 1) (2)
If Tθ,ψ exists, for every t ∈ (0, c) and for some c> 0, and
lim
t→0+

Tθ,ψϕ(t) exists, then:
Tθ,ψϕ(0): � lim

t→0+
Tθ,ψϕ(t) (3)

Remark 1. The general conformable derivative generalizes the
classical derivative (θ � 1) and the conformable derivative ψ(t) �
t1−θ (see (Lu et al., 2021)).

Remark 2. To further study the properties of the general
conformable derivative, we assumed that ψ(t, θ)> 0 for all t> 0,
and 1

ψ (., θ) are locally integrable.
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GENERAL FRACTIONAL CONFORMABLE
RC CIRCUIT

An RC circuit’s behavior is governed by the equation:

dV(t)
dt

+ 1
T
V(t) � e(t)

T
(4)

where T � RC, C is the capacitance, R is the resistance, e(t) is the
source, and the capacitor’s voltage is V(t).

Rosales et al. followed a comprehensive method for
constructing fractional differential equations in Rosales
et al. (2011), achieved in earlier investigations (Rosales
et al., 2012; Gómez et al., 2013) using the Caputo fractional
derivative. It comprises the following presentation of the
elements zt and zx with appropriate dimensions (Rosales
et al., 2011):

d

dt
� 1

z1−αt

dα

dt
,
d

dx
� 1

z1−αx

dα

dx
(5)

where α ∈(0, 1] is the derivative order.
Transformation (5) describes the electrical circuits RC, LC,

and RLC. Thus, they obtained the following transformation for an
RC circuit:

d

dt
→ 1

T1−α
dα

dt
� t1−α

T1−α
d

dt
(6)

Inspired by the method used in Martínez et al. (2018), we
introduce the following transformation for GCD:

d

dt
→ 1

ψ1(T, α)
dα

dt
� ψ1(t, α)
ψ1(T, α)

d

dt
(7)

where ψ1(t, α) is a continuous nonnegative function that depends
on t and satisfies (2).

Replacing the GCD in Eq. 4, we obtain:

1
ψ1(T, α)

dαV(t)
dtα

+ 1
T
V(t) � e(t)

T
(8)

Then,

dV(t)
dt

+ a

ψ1(t, α)
V(t) � a

ψ1(t, α)
e(t) (9)

where a � ψ1(T,α)
T .

Consider e(t) � e0, where e0 is a real constant, and the initial
condition V(0) � 0. We get:

V(t) � e0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ − e
−a∫t

0

1
ψ1(s,α)ds + 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (10)

Remark 1. If we consider ψ1(t, α) � t1−α, we obtain the same
result as in Martínez et al. (2018) (the classical conformable
fractional derivative) with the following solution:

V(t) � e0
⎡⎢⎢⎢⎢⎢⎢⎢⎣ − e

−1
α( t

T)α

+ 1
⎤⎥⎥⎥⎥⎥⎥⎥⎦ (11)

When e(t) � e0cos(ωt) the oscillatory source with ω is the
angular frequency. We obtain:

dV(t)
dt

+ a

ψ1(t, α)
V(t) � a

ψ1(t, α)
e0 cos(ωt) (12)

For the simulation, we chose the same parameter values as the
ones in Martínez et al. (2018): R � 10MΩ, C � 46 nF and
f � 60Hz. When the source e(t) � e0 � 1V, one can select
ψ1(t, α) � t1−α((1 − α)g2(t) + 1), where g(t) � 

30
√

sin(t). The
simulation results are as follows:

FIGURE 1 | Evolution of V(t) with α � 0.8.

FIGURE 2 | Evolution of V(t) with α � 0.7.

FIGURE 3 | Evolution of V(t) with α � 0.6.
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As shown in Figures 1–4, with the chosen function
ψ1(t, α) � t1−α((1 − α)g2(t) + 1), it has been discovered that
the general conformable derivative approaches the steady state
faster than the conformable derivative.

Now, in the case when e0 � e0cos(ωt), one can select
ψ1(t, α) � t1−α((1 − α)g2(t) + 1) where g(t) � 

0.01
√

1
e−t. We

obtained the following simulation results for different values of α.
Based on Figures 5–8, with the chosen function

ψ1(t, α) �

0.01

√
1
e−t, it can be observed that when the value of

α is reduced, the oscillations with GCD drop more quickly than
with the classical conformable one.

FIGURE 4 | Evolution of V(t) with α � 0.5.

FIGURE 5 | Evolution of V(t) with α � 0.7.

FIGURE 6 | Evolution of V(t) with α � 0.6.

FIGURE 7 | Evolution of V(t) with α � 0.4.

FIGURE 8 | Evolution of V(t) with α � 0.2.
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GENERAL FRACTIONAL CONFORMABLE
LC CIRCUIT

We assume an LC circuit that does not have a driving force.
When the capacitor is originally charged and subsequently
closed, the current in the circuit and the charge on the
capacitor fluctuate between the positive and negative
values. The voltage variation in the charge of the capacitor
with respect to time is specified by a smooth second-order
linear differential equation as follows:

d2V(t)
dt2

+ 1
LC

V(t) � 0 (13)

The typical solution will then be:

V(t) � V0cos(ωt0) (14)

where ω2
0 � 1

LC is the circuit angular frequency, and V0 is the
initial voltage at t � 0.

We can write the time general fractional conformable
transform using Eq. 7.

d2

dt2
→ ψ2(ω0, 2α) d

2α

dt2α
� ψ2(ω0, 2α)ψ2(t, 2α)

d2

dt2
(15)

Then, considering this relationship, we derive its
corresponding general conformable differential equation for (14):

ψ2(ω0, 2α)ψ2(t, 2α)
d2V(t)
dt2

+ ω2
0V(t) � 0 (16)

d2V(t)
dt2

+ ω2
0

ψ2(ω0, 2α)ψ2(t, 2α)
V(t) � 0 (17)

The relevant general conformable differential equation for a
harmonic source with angular frequency is given by:

ψ2(ω0, 2α)ψ2(t, 2α)
d2V(t)
dt2

+ ω2
0V(t)

� 1
ψ2(ω0, 2α)ψ2(t, 2α)

V0 cos(ωt) (18)

Remark 2. If consider ψ2(t, 2α) � t2−2α, we obtain the same result
as in Martínez et al. (2018) (the classical conformable fractional
derivative).

The values considered for the frequency, capacitance, voltage,
and inductance are f � 60Hz, C � 47 μF V0 = 1V, L � 10 μH
respectively.

The numerical results of the general conformable differential
equation are plotted for different values of ψ2. We can select
ψ2(t, 2α) � t2−2α((2 − 2α)g2(t) + 1). Two expressions of
g(t), g1(t) �


30

√
sin(t) and g2(t) �


10

√
e−t, can be written.

FIGURE 9 | Evolution of V(t) with α � 0.98.

FIGURE 10 | Evolution of V(t) with α � 0.9.

FIGURE 11 | Evolution of V(t) with α � 0.85.
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The following simulation results were obtained by considering
the existence of a harmonic source with angular frequency.

According to Figures 9–12, if we select g1(t) �

30

√
sin(t),

the amplitudes expand, and the waves shift in comparison to the
classical conformable situation. If g2(t) �


10

√
e−t, the opposite

is noted.

GENERAL FRACTIONAL CONFORMABLE
RLC CIRCUIT

In the case of the fractional conformable derivative, the equation
of the series RLC circuit with the driving force is presented as
follows (Martínez et al., 2018):

d2V(t)
dt2

+ 2ξωα
0t

α−1dV(t)
dt

+ ω2α
0 t2(α−1)V(t)

� V0ω
2(α−1)
0 t2(α−1) cos(ωt) (19)

where ξ � R
2


C
L

√
is the damping factor.

Based on the preceding considerations, the general
conformable fractional differential equation is as follows:

d2V(t)
dt2

+ 2ξ
ω0ψ1(t, α)

ψ1(ω0, α)ψ2(t, 2α)
dV(t)
dt

+ ω2
0

ψ2(t, 2α)
V(t)

� V0cos(ωt)
ψ2(t, 2α)

(20)

Remark 3. By considering ψ1(t, α) � t1−α and ψ2(t, 2α) � t2−2α,
we obtain Eq. 19.

FIGURE 12 | Evolution of V(t) with α � 0.8.

FIGURE 13 | Evolution of V(t) with α � 0.98.

FIGURE 14 | Evolution of V(t) with.α � 0.9.

FIGURE 15 | Evolution of V(t) with α � 0.85.

FIGURE 16 | Evolution of V(t) with α � 0.8.
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Assume ψ1(t, α) � t1−α((1 − α)f2(t) + 1), where f(t) �

30

√
t−1

and ψ2(t, 2α) � t2−2α. Considering the same parameters as in the
previous case, we obtain the following simulation results of Eq. 20
for different values of α.

According to Figures 13–16, if we consider ψ1(t, α) �
t1−α((1 − α)f2(t) + 1), where f(t) �


30

√
t−1 and ψ2(t, 2α) �

t2−2α, by decreasing α, the oscillations increase with the
conformable derivative and the response time also increases.
However, for the general conformable derivative, we obtain
the opposite.

CONCLUSION

The fractional derivative of the electrical circuits is a
mathematical modelization. The necessity for this presentation
arises from the following question: What is the best mathematical
model that approximates the real one? It has been established in
the literature that employing conformable derivatives is more
appropriate than using integer-order derivatives as well as other
types of fractional derivatives. Thus, our study presents a general
conformable derivative as a solution to represent electrical
circuits. We demonstrated that this choice is more flexible and
provides a broad set of equations that make the modelization
problem easy to deal with. Authors in Martínez et al. (2018)
employed conformable derivatives and compared them to other
types of FDs. Thus, the primary contribution of our work is to

introduce a unique GCD and compare our findings with those of
(Martínez et al., 2018). With interpretation and analysis, we
discovered that our selection is appropriate and provides a
broad range of model possibilities.
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