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To meet the numerous application demands of lead-bismuth reactors, different design
optimization tasks need to be conducted on these reactors based on the existing reactor
core solutions. However, the design optimization of lead-bismuth reactors is a challenging
task because it is a complex, multi-dimensional, and nonlinear constrained problem. To
resolve these issues and improve the efficiency of design optimization, a new method,
called the KSM-OLHS-SEUMRE method, based on the Kriging surrogate model (KSM),
orthogonal Latin hypercube sampling (OLHS), and space exploration and unimodal region
elimination (SEUMRE) algorithm is proposed in this study. Based on this method, a design
optimization program of lead-bismuth reactors (DOPPLER-K) is developed, which realizes
functions like sample point generation, optimization analysis, pre-post processing of
reactor calculation, coupling of the Reactor Monte Carlo (RMC) calculation code and
the Steady-state Thermal-hydraulic Analysis Code (STAC). Further, taking lead-bismuth
reactors SPALLER-4 and URANUS as prototypes, the proposed intelligent optimization
method for preliminary design of lead-bismuth reactor core is verified. The results show
that this method can rapidly and accurately find the target scheme satisfying the
optimization conditions, and it is three orders of magnitude faster than pure Monte
Carlo calculation. Compared with the initial core scheme of URANUS, the optimization
rates of fuel loading, total core mass, active zone volume, and total core volume are
reduced by 10.8, 11.5, 18.1, and 17.1%, respectively. These results validate the feasibility
and efficacy of the proposed method for design optimization of lead-bismuth reactor core.

Keywords: lead-bismuth reactor, intelligent optimization, Kriging surrogate model, SEUMRE algorithm, orthogonal
Latin hypercube sampling

1 INTRODUCTION

Over the recent years, lead-bismuth reactors have received considerable attention from the major
nuclear energy countries owing to their unique characteristics such as long-life, miniaturization
ability, high flux, and natural circulation, which lead to outstanding advantages in the utilization of
nuclear energy (Wu, 2018). However, it may be noted that different technical indicators and reactor
core design schemes are required in various application scenarios and missions, thus numerous
design optimization tasks need to be conducted based on the existing lead-bismuth reactor core
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schemes. It is well known that since it involves coupled
calculation and analysis of physical/thermal-hydraulic
characteristics and strength of structural materials, the design
optimization of lead-bismuth reactor core is a complex, multi-
dimensional, and nonlinear constrained problem, and a large
uncertainty exists in the calculation results, which is caused by the
nuclear reaction cross section, approximation of calculation
model, etc. The existing traditional semi-empirical design
methods that rely on the designer experience cannot find the
optimal solution efficiently under the influence of multi-factor
coupling. On the other hand, the single heuristic optimization
algorithms, such as genetic algorithm, simulated annealing
algorithm, particle swarm algorithm, etc., need a large number
of stochastic samples andMonte Carlo calculations to support the

design optimization and suffer from the problems of slow
convergence and a trend of falling into local optimum
(Meneses et al., 2009; Khoshahval et al., 2011; Zameer et al.,
2014). Therefore, it is necessary to develop an intelligent
optimization method for preliminary design of lead-bismuth
reactor core with random effects, low computational cost, high
convergence speed, and strong optimization ability.

To solve these problems such as excessive calculation, slow
convergence, and large uncertainty in traditional Monte Carlo
computation and single heuristic optimization algorithm, the
surrogate modeling technique in which an approximate model
is constructed based on the experimental points to replace the
complex original model has been considered. The commonly
used surrogate models include the response surface method,
radial basis function interpolation, Kriging model, and so on
(Zhang, 2014). Among them, the Kriging surrogate model (KSM)
can not only fit a smooth curve closer to the original objective
function but also can be easily adapted to different variation
trends, and it covers the inherent uncertainty of objective
functions by selecting different regression models and related
functions (Kempf et al., 2012). Therefore, although the accuracy
of the KSM will decrease when solving the prediction of the
objective function with more than 8 design parameters, the
KSM is still used in this study due to its overall strong fitting
effect and the modeling method that can cover the inherent

A B

FIGURE 1 | Intelligent optimization method. (A) Flow chart of KSM-OLHS-SEUMRE method, (B) Functional modules of DOPPLER-K.

TABLE 1 | Commonly used correlation functions and their expressions.

Correlation function Expression

Exponential function Rk(θk ,dk) � exp(−θkdk)
Gaussian function Rk(θk ,dk) � exp(−θkd2

k )
Linear function Rk(θk ,dk) � max{0, 1 − θkdk}
Cubic spline function

Rk(θk ,dk) �
⎧⎪⎪⎨
⎪⎪⎩

1 − 15ζk + 30ζ3k , 0≤ ζk ≤0.2
1.25(1 − 15ζk)3 , 0.2< ζk < 1
0 , ζk ≥ 1, ζk � θkdk
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uncertainty in the reactor calculation. To date, KSM has been
widely used in the design optimization of aerospace,
machinery, automobiles, and other fields, and it is now
being used in the reactor field as well. Zeng et al. (2020)
used KSM to provide a generalized framework for the core
optimization of sodium-cooled fast reactor, and Kempf et al.
(2012) used it to obtain the optimal geometric parameters for a
high-flux research reactor. Kim et al. used the KSM for shape
optimization of the inlet plenum and rising channels in the
pebble-bed modular reactor (Kim and Lee, 2009). Li et al.
studied the effects of flow and heat transfer factors in the rod
bundle of fast reactor assemblies on the thermal-hydraulic
characteristics through the Kriging technology (Song and

Yang, 2018). All the above studies verified the good
prediction accuracy and high computational efficiency of
the KSM. Thus, the optimization method combined with
KSM can be a feasible and effective approach for the design
optimization of a lead-bismuth reactor core.

In this study, an intelligent optimization method is proposed
for preliminary design of lead-bismuth reactor core, which is
based on the combination of KSM, orthogonal Latin hypercube
sampling (OLHS), and space exploration and unimodal region
elimination (SEUMRE) algorithm. This method is called the
KSM-OLHS-SEUMRE method. By coupling the reactor Monte
Carlo (RMC) code, a Monte Carlo code for reactor core analysis,
and the steady-state thermal-hydraulic analysis code (STAC), a

FIGURE 2 | Construction records of KSM, OLHS, and SEUMRE. (A) Fitting effect of KSM constructed by different regression models with Gaussian function, (B)
Fitting effect of KSM constructed by different correlation function with second-order regressionmodel, (C)MSE of KSM constructed by exponential/Gaussian correlation
function with second-order regression model, (D) Comparison between ordinary LHS and OLHS distribution, (E) Flow diagram of SEUMRE algorithm.
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design optimization program of lead-bismuth reactors based on
KSM-OLHS-SEUMRE (DOPPLER-K) has been developed.
Taking lead-bismuth reactors SPALLER-4 and URANUS as

prototypes, the proposed optimization method is verified
through a rapid search for target design schemes and core
parameter optimization.

FIGURE 2 | Continued.
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The rest of this paper is organized as follows. Section 2 provides
a brief introduction to the KSM-OLHS-SEUMRE method and the
DOPPLER-K software. The construction principles of KSM,
OLHS, and SEUMRE algorithm are described in Section 3. The
optimization verification results for SPALLER-4 and URANUS are
discussed in Section 4. Finally, the study is concluded in Section 5.

2 INTELLIGENT OPTIMIZATION METHOD

The intelligent optimization method constructed in this study
includes the KSM-OLHS-SEUMRE method (introduced in
Section 2.1) and DOPPLER-K software (introduced in Section
2.2). The construction principles of KSM, OLHS and SEUMRE

FIGURE 2 | Continued.
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involved in KSM-OLHS-SEUMRE method are described in
Section 3.

Different from traditional or single heuristic optimization
method, the optimization method adopted in this research firstly
uses KSM technology to replace the original Monte Carlo code with
slow calculation speed to predict the core characteristic parameters,
which not only greatly improves the calculation efficiency, but also
realizes the target prediction under the simultaneous coupling of
multiple core design parameters. Secondly, when multiple design
parameters influence at the same time and the design range is wide,
this method makes the optimization avoid the problem of local
optimum and difficult convergence in the traditional optimization
algorithm as far as possible through sequence iteration, preferential
addition point selection and SEUMRE space search technology to
improve the optimization search efficiency. Finally, through the
developed DOPPLER-K software, the automatic execution of
sampling, Monte-Carlo program calling calculation and target
optimization analysis can be carried out, which provides great
convenience to optimization designers.

2.1 KSM-OLHS-SEUMRE Method
The design optimization of lead-bismuth reactor core generally
involves the establishment of a mathematical model, selection of
design variables, calculation of physical/thermal characteristic
parameters, and determination of the optimal scheme. Based on
this strategy and the construction principles in Section 3, the
optimization method KSM-OLHS-SEUMRE is developed. Its
flow chart is shown in Figure 1A, and the basic
implementation steps are as follows:

Step 1. Establish the mathematical model of the lead-bismuth
reactor core to be optimized, including design space and
variables, objective functions, and constraint conditions.

Step 2. Generate sample points of the mathematical model by the
OLHS technique.

Step 3. Calculate sample points to generate the training set based
on the physical Monte-Carlo/thermal-hydraulics
calculation code.

Step 4. Construct KSM based on the training set and evaluate the
objective values of the training set to find the optimal space.

Step 5. Predict the points of target/constraint functions and assess
them to select the optimal point verified by physical Monte Carlo/
thermal-hydraulics calculation code.

Step 6. Update the design space and KSM continuously based on
the principle of optimal point selection and SEUMRE algorithm
to improve the prediction accuracy and overall optimization
efficiency of the model.

Step 7. Perform iterative optimization to quickly approximate the
objective function and obtain the optimal convergence solution.

2.2 DOPPLER-K Software
Based on the KSM-OLHS-SEUMRE method, the design
optimization program of lead-bismuth reactors, called
DOPPLER-K software, which couples RMC and STAC and
realizes functions, such as sampling, modeling, and
optimization, has been developed in MATLAB. The functional
modules of DOPPLER-K software are shown in Figure 1B.

In the sampling module, all the design variables are sampled
and saved in the initial training set using OLHS after the user
defines the variables and initial design space.

In the physical calculation module, some characteristic
parameters of sample points are calculated by RMC (Kan
et al., 2015), a three-dimensional Monte Carlo neutron
transport code developed by the Reactor Engineering Analysis
Laboratory (REAL), Department of Engineering Physics,
Tsinghua University. These characteristic parameters, such as
effective multiplication factor (Keff), flux, power, and burnup, can
be used as objective functions or constraint conditions for design
optimization of the lead-bismuth reactor core.

In the thermal calculation module, thermal-hydraulic
characteristic parameters, such as the maximum fuel cladding
and pellet temperature, coolant velocity, based on the sample
points and reactor core power distribution are used as
the constraint conditions for the design optimization of
lead-bismuth reactor core. These parameters are calculated by
STAC (Zhao et al., 2020), which was developed by one of the
authors and includes the physical model of liquid lead/lead-
bismuth, calculation model of wall heat transfer and pressure
drop, and some models built for lead-bismuth reactor like single
channel, closed parallel multichannel, and hottest channel model.

As the coupling interface of sampling, physical/thermal-
hydraulic calculation, and optimization analysis, the pre and
post processing module automatically matches the reactor core
parameter values of sampling points to generate the input file,
reads the physical/thermal characteristic parameters of output
files after carrying out parallel calculations by calling RMC and
STAC automatically, and finally generates the training set or
accuracy verification conditions.

In the optimization analysis module, firstly, the KSM is
constructed by analyzing the structural characteristics of
known objective function values and quantifying their spatial
correlation. Secondly, the objective function values of new
valuation points are predicted based on the surrogate models
after determining the neighborhood range and searching for
neighborhood points. Finally, according to the principle of

TABLE 2 | Design parameters of SPALLER-4 and URANUS.

Design parameter SPALLER-4 URANUS

Reactor thermal power/MWt 4 100
Refueling cycle/EFPY 10 20
Fuel loading/kg 577.89 17,580
Fuel (Mass fraction of Pu) PuN-ThN (31/48) UO2 (9.55/17.09)
Coolant 208Pb-Bi 208Pb-Bi
Reflector 208Pb-Bi 208Pb-Bi
Shielding B4C B4C
Moderator BeO —

Fuel pin cladding HT-9 HT-9
Filling gas in the gap of pin He He

Frontiers in Energy Research | www.frontiersin.org March 2022 | Volume 10 | Article 8492296

Li et al. Multi-Objective Optimization for Flow Distribution

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


optimal point selection and SEUMRE algorithm, the sample
points are updated to revise the surrogate model and the
design space to approximate the target function iteratively
until the optimal solution is obtained.

3 CONSTRUCTION PRINCIPLES OF
KRIGING SURROGATE MODEL,
ORTHOGONAL LATIN HYPERCUBE
SAMPLING, AND SPACE EXPLORATION
AND UNIMODAL REGION ELIMINATION

3.1 Construction Principle of Kriging
Surrogate Model
Kriging is a regression algorithm for spatial modeling and
prediction of random fields based on the theory of
correlation functions and structural analysis. In contrast
to other interpolation algorithms, the KSM is an optimal
unbiased estimation technique, which is composed of a

global trend function F(β, x) and a random distribution
departure Z(x). Its mathematical expression is as follows
(Jin et al., 2000):

y(x) � F(β, x) + Z(x) � βpf T(x) + Z(x) (1)
Here, F(β, x) = βpfT(x), where β is the coefficient of the

regression function fT(x), and Z(x) indicates that the local error
approximation is the key to the accuracy of this model. The
characteristics of Z(x) are given as follows:

E[Z(x)] � 0 (2)
Var[Z(x)] � δ2 (3)

Cov[Z(xi),Z(xj)] � δ2R(c, xi, xj) (4)
In other words, the mathematical expectation of random

distribution bias is zero, and the variance δ2 is minimum, which
can be calculated by Eq. 4, where Cov[Z(xi),Z(xj)] is the
covariance of the random deviation and R(c, xi, xj) is the
correlation function, representing the spatial correlation between
any two points. R(c, xi, xj) is expressed as follows:

R(c, xi, xj) � ∏n

k�1Rk(θk,
∣∣∣∣∣xki − xkj

∣∣∣∣∣) � ∏n

k�1Rk(θk, dk) (5)
Where n is a variable number, θk is the proportionality factor, and dk
is the Euclidean distance between two points. It can be seen from
these above definitions that the key to the accuracy of KSM is
the selection of the correlation function. The commonly used
correlation functions include exponential, Gaussian, linear, and
cubic spline functions, whose expressions are listed in Table 1
(Zhang, 2014).

FIGURE 3 | Original core (A,B), fuel assembly (C), and fuel rod (D) of SPALLER-4.

TABLE 3 | Range of design parameters for SPALLER-4.

Design parameter Range

Thickness of solid moderator/cm [0, 20]
Mass fraction of Pu in fuel/% [25, 50]
Fuel pin radius/cm [0.2, 0.6]
Height of core active zone/cm [30, 150]
Pitch to diameter ratio (P/D) [1.01, 1.5]
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TABLE 4 | Accuracy verification results of KSM for predicting Keff and burnup.

Contrast group 1 2 3 4 5

Thickness of solid moderator/cm 4.655,531 4.822,177 4.990,846 4.589,912 4.782,832
Mass fraction of Pu in fuel/% 47.202,398 45.410,111 48.931,457 48.822,818 46.664,652
Fuel pin radius/cm 0.291,086 0.277,635 0.260,789 0.211,688 0.217,254
Height of core active zone/cm 112.165,889 115.235,329 118.186,032 103.660,647 116.591,780
Pitch to diameter ratio (P/D) 1.371,007 1.377,327 1.411,726 1.353,392 1.354,788
Third year Keff

Prediction by KSM 1.050,181 1.035,229 1.032,517 1.016,440 1.024,406
Calculation by RMC 1.050,343 1.035,223 1.033,391 1.017,445 1.023,389
Relative error/% −0.015,427 0.000,602 −0.084,557 −0.098,739 0.099,373

Burnup/(MW·d·kg−1)
Prediction by KSM 22.947,678 24.660,966 26.864,599 46.352,778 39.158,879
Calculation by RMC 22.796,000 24.446,000 26.894,000 46.544,000 39.396,000
Relative error/% 0.665,370 0.879,352 −0.109,323 −0.410,841 −0.601,890

A

B

C

FIGURE 4 |Optimization verification results of SPALLER-4. (A)Comparison of Keff and burnup obtained based on KSM and RMC, (B)Core structure of SPALLER-
4 to be optimized, (C) Iterative graph of fuel loading optimization for SPALLER-4.
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To select the best combination of regressionmodel and correlation
function to construct KSM, the selection of regression model was first
carried out. As shown in Figure 2A, the comparison of the fitting
effects of KSM constructed by the combination of zero-order, first-
order and second-order regression models with Gaussian correlation
functions shows that the fitting effects of KSM constructed by the
second-order regression model are more smooth and consistent.
Then, the second-order regression model is combined with the

exponential, Gaussian, linear and cubic spline correlation
functions to construct the model for comparison of fitting
effect. As shown in Figure 2B, it can be seen that the fitting
effect of Gaussian and exponential function is the best. Since the
fitting effects of Gaussian and exponential correlation functions
are consistent, the mean square error (MSE) is used for
experimental comparison. As shown in Figure 2C, the MSE
of KSM constructed by Gaussian function is slightly smaller
than that of exponential function, which is relatively better.
Consequently, the second-order regression and Gaussian
correlation function are used to construct the KSM in this study.

3.2 Construction Principle of Orthogonal
Latin Hypercube Sampling
The selection of sampling points is vital for evaluating the target
objects and constructing the surrogate model. Since the sampling
points should be selected to represent almost the entire design
space and their number should be as less as possible to avoid
redundant calculation, it is particularly significant to pick a
sampling method with both orthogonality and uniformity.

Based on the ordinary Latin hypercube sampling (LHS)
(Pebesma and Heuvelink, 1999), OLHS evenly divides the
sampling space into N grids to ensure that there is at least one
sample point in each grid, which effectively avoids the uneven
distribution of sampling results when sampling fewer points
by LHS and facilitates spatially balanced sampling. A
comparison between LHS and OLHS distribution is given
in Figure 2D.

TABLE 5 | Optimization results of core design scheme for SPALLER-4.

Design parameter Optimal scheme

Thickness of solid moderator/cm 4.573
Mass fraction of Pu in fuel/% 49.869
Fuel pin radius/cm 0.200
Height of core active zone/cm 100.082
Pitch to diameter ratio (P/D) 1.313
Initial Keff 1.028,058
Third year Keff

Prediction by KSM 1.005,741
Calculation by RMC 1.005,189
Relative error/% 0.054,959

Burnup/(MW·d·kg−1)
Prediction by KSM 53.702
Calculation by RMC 53.799
Relative error/% −0.002

Refueling cycle/EFPY 3
Fuel loading/kg 81.414
Maximum temperature of fuel cladding/K 643.162
Maximum temperature of fuel pellet/K 1,133.073

FIGURE 5 | Original core (A,B), fuel assembly (C), and fuel rod (D) of URANUS.

Frontiers in Energy Research | www.frontiersin.org March 2022 | Volume 10 | Article 8492299

Li et al. Multi-Objective Optimization for Flow Distribution

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


3.3 Construction Principle of Space
Exploration and Unimodal Region
Elimination
A large number of statistical sampling and calculations are
required to ensure the accuracy of KSM when the object to
be optimized has a strong degree of non-linearity and a wide
range of design variables. Thus, to improve the efficiency of
optimized search, the SEUMRE algorithm is introduced to
rapidly find the global optimum solution by updating the
optimal region repeatedly and iteratively.

The flow diagram of SEUMRE algorithm is shown in
Figure 2E. First, the design space is divided into different
spaces after generating the training data in the initial design
space and assessing the objects/constraints, and the most
promising space is determined. Next, the surrogate model is
constructed to predict the points and select the local optimal
point to obtain the next promising space. Finally, the above steps
are repeated for iterative search until all the spaces are traversed
and the global optimal solution is acquired (Younis and Dong,
2010).

4 OPTIMIZATION VERIFICATION
EXAMPLES AND RESULTS

The critical reactor core usually requires thousands of kilograms
of fuel because of the small fuel fission cross section under fast-
spectrum conditions. The fast-spectrum lead-bismuth reactor is
generally heavy and expensive due to a large amount of fuel
loading and high-density of lead-bismuth. Therefore, the
minimum fuel loading of reactor core is considered as the
optimization goal, and lead-bismuth reactors SPALLER-4
(independently developed by one of the authors) and

URANUS (Lee, 2017; Kwak and Kim, 2018; designed by Seoul
National University, South Korea) are taken as prototypes. The
design parameters of the two reactors are listed in Table 2. Two
optimization models are established after a certain simplification
process. Different design variables and constraints are set for the
two models to find the optimal reactor core scheme and optimal
parameters through the intelligent optimization method
(introduced in Section 2), and they are verified by the RMC code.

4.1 SPALLER-4 Model
The original structure of SPALLER-4 is shown in Figure 3.
Considering the limited reactivity adjustment capability of the
control rod system and the corrosive effect of lead-bismuth on
materials, the SPALLER-4 optimization model can be described
as follows:

minFs(xs, ys, ls, ms, ns) s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1.005≤KBOC ≤ 1.030
1.0≤KEOC

3 EFPY � RC
873K≤Tc,max

1773K≤Tf,max

3m/s≤ Vc,max

(6)

where minFs(xs, ys, ls, ms, ns) is the minimum fuel loading
under the simultaneous influence of five variable parameters.
The constraints of the model include KBOC (Keff at the beginning
of the cycle), KEOC (Keff at the end of the cycle), RC (refueling
cycle), Tc,max (maximum temperature of cladding), Tf,max

(maximum temperature of fuel pellet), and Vc,max (maximum
coolant velocity).

4.1.1 Sample Generation
Considering that the increase in the initial reactivity and breeding
ability and the decrease in the neutron leakage and parasitic
absorption can effectively reduce the fuel loading, and the size of
core and lattice affects the fuel loading by changing the neutron
energy spectrum and neutron leakage (Michael and Pavel, 2005;
Zhang et al., 2020). And basing on the prototype value of the core
and the design parameters’ values of the classic liquid metal
cooled reactor core such as ALFRED (Grasso et al., 2014),
ELECTRA (Suvdantsetseg, 2012) and CEFR (Yang and Guo,
2020), the design variables and their ranges are set as shown
in Table 3. 480 initial sample points are randomly sampled by

TABLE 7 | Accuracy verification results of KSM for predicting Keff and burnup.

Contrast group 1 2 3 4 5

Fuel pin radius/cm 0.728,693 0.737,298 0.738,832 0.740,970 0.737,436
Height of core active zone/cm 164.311,938 157.445,331 156.993,296 153.933,096 157.438,697
Pitch to diameter ratio (P/D) 1.320,736 1.320,794 1.321,136 1.320,508 1.320,326
Twentieth year Keff

Prediction by KSM 1.000,957 1.000,382 1.000,515 0.999,350 1.000,614
Calculation by RMC 1.001,767 1.000,720 1.000,924 0.999,935 1.000,317
Relative error/% −0.080,889 −0.033,774 −0.040,893 −0.058,523 0.029,713

Burnup/(MW·d·kg−1)
Prediction by KSM 44.079,677 45.274,617 45.226,628 43.583,013 45.264,459
Calculation by RMC 44.410,000 45.271,000 45.213,000 43.554,000 45.256,000
Relative error/% −0.743,804 0.007,989 0.030,142 0.066,614 0.018,690

TABLE 6 | Original value and initial optimal range of design parameters for
URANUS.

Design parameter Original value Initial optimal range

Fuel pin radius/cm 0.72 [0.4, 1.0]
Height of core active zone/cm 180 [50, 200]
Pitch to diameter ratio (P/D) 1.35 [1.01, 1.5]
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FIGURE 6 |Optimization verification results of URANUS. (A)Comparison ofKeff and burnup obtained using KSM and RMC code, (B)Core structure of URANUS for
optimization verification, (C). Iterative graph of fuel loading optimization for URANUS, (D) Final optimal design space for URANUS.

Frontiers in Energy Research | www.frontiersin.org March 2022 | Volume 10 | Article 84922911

Li et al. Multi-Objective Optimization for Flow Distribution

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


OLHS in these ranges and calculated by physical and thermal
calculation modules of DOPPLER-K.

4.1.2 Prediction Accuracy of Kriging Surrogate Model
To ensure the prediction accuracy of KSM, the accuracy of
surrogate model is verified in each iterative optimization step.
Five groups are randomly selected from the training set as the
contrast group and are compared with the values calculated by
RMC code, and the remaining groups are used as the training set
to fit and construct the KSM.

Table 4 and Figure 4A show the accuracy verification results
of KSM for predicting third year Keff and burnup at full power
operating conditions in the optimal design space, which contains
155 groups in the final training set. It can be seen that the relative
errors between the predicted Keff and burnup by KSM and the
calculated values by RMC are within ±0.1% and ±1%, respectively.
This indicates that when a certain amount of training data is
ensured, KSM has a high accuracy for linear or nonlinear, directly
or indirectly correlated target prediction, which is affected by
multiple parameters at the same time. Compared with the RMC
code, the calculation time is greatly reduced.

4.1.3 Optimization Results
According to the original design parameters, the core structure of
SPALLER-4 (shown in Figure 4B) to be optimized is constructed
after some simplification. After calculating 480 groups of initial
training sets by the RMC code, the intelligent optimizationmethod is

used for iterative optimization. 1,060,000 groups of schemes are
predicted by KSM in each iteration, and a total of 175 iterations are
carried out. After verification by RMC, six groups of solutions meet
the optimization constraints, and the final two iterative schemes
meet the convergence conditions (shown in Figure 4C). In the entire
optimization process, 655 groups of training data are calculated.

Table 5 shows the final optimal design scheme, which is
verified by RMC. This scheme meets all the constraint limits
of initial Keff, refueling interval, steady-state thermal safety
conditions, etc. The minimum fuel loading is 81.4135 kg,
which is significantly lower than the original fuel loading. At
the same time, the relative error between the predicted value by
KSM and the calculated value by RMC is within the accuracy
range, and the search speed of the target scheme is much higher
than that of the traditional Monte Carlo calculation and the
single heuristic optimization algorithm.

4.2 URANUS Model
To verify the feasibility of the proposed intelligent optimization
method in practical engineering, a core optimization model is
established based on the lead-bismuth reactor URANUS (shown
in Figure 5). In this section, a three-dimensional and six-
constraint optimization problem is solved with Ubiquitous,
Robust, Accident-forgiving, Nonproliferating and Ultra-lasting
Sustainer (URANUS) model for demonstrating the validity of the
proposed model in parameter optimization. The optimization
model can be described as follows:

min Fu(xu, yu, lu) s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1.005≤KBOC ≤ 1.035
1.0≤KEOC

20 EFPY � RC
773K≤Tc,max

1273K≤Tf,max

3m/s≤ Vc,max

(7)

TABLE 8 | Initial and final optimal range of design parameters for URANUS.

Design parameter Initial optimal range Final optimal range

Fuel pin radius/cm [0.4, 1.0] [0.7, 0.8]
Height of core active zone/cm [50, 200] [150, 185]
Pitch to diameter ratio (P/D) [1.01, 1.5] [1.28, 1.41]

TABLE 9 | Optimized design parameters for URANUS.

Design parameter Initial value Optimized value

Fuel pin radius/cm 0.72 0.731,415
Height of core active zone/cm 180 155.583,777
Pitch to diameter ratio (P/D) 1.35 1.289,290
Initial Keff 1.028,859 1.030,741
Twentieth year Keff

Prediction by KSM — 1.000,729
Calculation by RMC 1.003,136 1.000,958
Relative error/% — −0.022,884

Burnup/(MW·d·kg−1)
Prediction by KSM — 46.577,347
Calculation by RMC 41.524 46.553,000
Relative error/% — 0.0522,990

Refueling cycle/EFPY 20 20
Fuel loading/kg 17,580.09248 15,681.069,740
Total mass of core (including reflector)/kg 175,459.3633 155,309.949,600
Volume of active zone/m3 5.213,753 4.269,707
Average volume power density of active zone/(W·cm−3) 19.18,004 23.420,813
Total volume of core (including reflector)/m3 8.573,414 7.105,878
Maximum temperature of fuel cladding/K 600.6,219 604.170,155
Maximum temperature of fuel pellet/K 770.3,892 796.058,922
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where min Fu(xu, yu, lu) is the minimum fuel loading under
simultaneous influence of three variable parameters. The
constraints of the model include KBOC, KEOC, RC (refueling
cycle), Tc,max (maximum temperature of cladding), Tf,max

(maximum temperature of fuel pellet), and Vc,max (maximum
coolant velocity).

4.2.1 Sample Generation
Similar to the optimization steps of SPALLER-4 model, the
optimization variables of URANUS and their range are listed
in Table 6. Further, 216 groups of initial sample points are
randomly sampled by OLHS in these ranges and calculated by
physical and thermal calculation modules of DOPPLER-K.

4.2.2 Prediction Accuracy of Kriging Surrogate Model
The accuracy verification results of KSM for predicting 20th
year Keff and burnup at full power operating conditions in the
optimal design area, which contains 45 groups of training sets,
are shown in Table 7 and Figure 6A. It is clear that the relative
errors between the predicted Keff and burnup by KSM and the
calculated values by RMC are within ±0.1% and ±1%,
respectively.

4.2.3 Optimization Results
According to the original design parameters, the core structure
of URANUS (shown in Figure 6B) to be optimized is
constructed after some simplification. After calculating 216
groups of initial training sets by the RMC code, the intelligent
optimization method is used for iterative optimization.
Further, 1060000 groups of schemes are predicted by KSM
in each iteration, and a total of 37 iterations have been carried
out. After verification calculation by RMC, 29 groups of
solutions meet the optimization constraints, and the final
two iterative schemes meet the convergence conditions
(shown in Figure 6C). At this time, the final optimal range
of design parameters is shown in Figure 6D and Table 8.
Compared to initial design space, the range of optimal space is
reduced. In the entire optimization process, 253 groups of
training data are calculated.

Table 9 presents a comparison between the initial and
optimized schemes. Compared with the initial model under
the same constraint limits, the optimized core fuel loading,
total mass, volume of active zone, and total volume are reduced
by 1,899 kg, 20,149 kg, 0.944,047 m3, and 1.467,536 m3,
respectively, and the reduction rates are 10.8, 11.5, 18.1,
and 17.1%. This verifies the efficacy of the proposed
intelligent optimization method for preliminary design and
optimization of lead-bismuth reactor core.

5 CONCLUSION

In this study, an intelligent optimization method, which included
KSM-OLHS-SEUMRE method and DOPPLER-K software, was
developed for addressing the problems of multiple physical
parameters, multiple variables, multiple constraints, a large
amount of calculation, and low speed in the design

optimization of lead-bismuth reactors. Lead-bismuth reactors:
SPALLER-4 and URANUS, were used as verification examples to
find the optimal scheme and optimal parameters. The entire
calculation process could be automatically completed by the
developed software. The main results of the study are
summarized as follows:

1) KSM has a high prediction accuracy. According to the KSM
prediction results for the two optimization examples, it can
be concluded that when a certain amount of training data is
given, the KSM has a high accuracy for the prediction of
multi-constrained, linear or nonlinear, directly or
indirectly related objective functions. Meanwhile,
compared with the RMC code, which needed
approximately 6.5 h to calculate a group of schemes, the
KSM only needed more than 2 min to predict 1,060,000
groups of data under the same computer hardware
conditions. Therefore, the KSM-based intelligent
optimization method can greatly shorten the calculation
time and improve the efficiency of preliminary design
scheme search and optimization.

2) The proposed method is feasible, efficient, and effective for
preliminary design and optimization of lead-bismuth reactor
core. The optimal design scheme of SPALLER-4 was obtained
using the five-variable and six-constraint model, which
indicated that the intelligent optimization method is fast
and efficient for the optimal scheme search under the
influence of multi-factor coupling. The optimization of
URANUS was conducted using a three-variable and six-
constraint model, and the optimization rates of fuel
loading, total core mass, active zone volume, and total core
volume were found to be 10.8, 11.5, 18.1, and 17.1%,
respectively, which suggested that the proposed method is
effective for parameter optimization of the lead-bismuth
reactor core.

3) Comparing the optimization results of SPALLER-4model and
URANUS model, it can be seen that the dimension of design
variables will affect the training amount required to ensure the
accuracy of Kriging surrogate model. The more design
variables there are, the more training volume is required.
While the number of objective/constraint functions does not
affect the training number. In addition, to a certain extent, the
search efficiency and optimization effect of the target scheme
are also affected by the initial design variables, the initial
optimal range and constraints. Therefore, the intelligent
optimization method constructed in this study can better
improve the optimization effect after reasonably and
comprehensively selecting design variables and setting
design scope.

Overall, to achieve different reactor design objectives, the
proposed intelligent optimization method can rapidly
identify the key design parameters and influence laws.
Furthermore, through the rapid estimation of the reactor
by this method, the optimal design space and preliminary
design scheme of parameters matching the objectives can be
obtained to provide reference for the detailed reactor
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scheme. Thus, the proposed method opens a new route for
the design optimization of miniaturized and lightweight
lead-bismuth reactors in remote areas or marine
environment in the future.
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