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With the continuous development of society and under the background of sustainable
development and resource conservation, the proportion of renewable energy in the global
energy structure is increasing. At the same time, wind power has been widely used in many
regions of the world because wind power technology is more advanced and mature than
other renewable energy sources. In addition, with a large number of wind turbines
connected to the grid, it not only helps automatic generation control (AGC) of power
systems but also brings new challenges and difficulties. In this study, a multi-source
cooperative control model of wind power participating in AGC frequency regulation is
established to solve the dynamic problem of power distribution from real-time total power
command to different AGC units. This study presents an optimal AGC-coordinated control
method based on the multi-objective mayfly optimization (MMO) algorithm, which makes
the fitting degree of power command output and actual output curve high and the
adjustment mileage payment minimum, so as to achieve the best AGC performance.
Finally, the simulation results show that this method can effectively decrease the total
power deviation and adjustment mileage payment in the multi-source-coordinated control
of AGC.

Keywords: frequency regulation, multi-objectivemayfly algorithm, wind energy, automatic generation control, multi-
source

1 INTRODUCTION

Nowadays, renewable energy such as wind power, solar energy, and tidal energy, are developing
rapidly, under the background of pursuing energy conservation, emission reduction, and sustainable
development (Zhang et al., 2015; Yang et al., 2020a; Yang et al., 2020b; Xiong et al., 2020; Zhang et al.,
2021a; Shetty and Priyam, 2021). Therefore, the world energy structure is changing to an energy
structure dominated by renewable energy (Yang et al., 2015; Dong et al., 2022). Wind power
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generation technology has been leading in the development of
renewable energy and has been widely used in all regions of the
world (Yang et al., 2018; Ye et al., 2018; Attig-Bahar et al., 2021).
In recent years, with the increasing popularity of wind power
generation, although wind power brings green and clean energy
for social development, wind power generation is greatly affected
by climate conditions and power output fluctuations, which
brings great pressure to the frequency control of power
systems (Bevrani et al., 2010; He et al., 2015; Wu et al., 2018;
Huang et al., 2021).

Generally, the task of automatic generation control (AGC) is
undertaken by hydro power plants and thermal power plants. Its
main control objective is to maintain the system frequency and tie
line power within the allowable error range (IbraheemKumar and
Kothari, 2005; Xu et al., 2016; Zhang et al., 2016; Rahman et al.,
2017; YiranMa et al., 2020). With the increasing proportion of

wind power in the power grid, it is inevitable for wind farms to
participate in the AGC process. Compared with traditional hydro
power units and thermal power units, wind turbines have higher
response speed and higher climbing speed (Yang et al., 2016;
Yang et al., 2017; Zhang et al., 2018; Lu et al., 2021). However,
wind power generation is vulnerable to weather, resulting in large
power fluctuations (Li et al., 2020). At present, the research on the
participation of renewable energy in AGC is mainly about the
design of controller and gain optimization, and the coordinated
operation of renewable energy and traditional hydro/thermal
power units is not considered (Suresh Kumar et al., 2017;

FIGURE 1 | AGC structure of the two-area LFC model.

TABLE 1 | Types of transfer functions for various units.

Type Transfer function G(s)

Non-reheat steam unit 1
1+T1s

Reheat steam unit 1+T2s
(1+T3s)(1+T4s)(1+T5s)

Hydro (1−T6s)(1+T7s)
(1+0.5T6s)(1+T−8s)

Wind turbine 1
1+T9s

FIGURE 2 | Dynamic response models. (A) Traditional units. (B) Wind
power units.
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Nizamuddin et al., 2018; Yogendra, 2018; Celik, 2020; Pillai et al.,
2020; An and Nishat, 2021; Arya et al., 2021; Gaber et al., 2022).
In Nizamuddin et al. (2018), a genetic optimization algorithmwas
used to obtain the optimal gain of AGC controllers. In Arya et al.
(2021), a control strategy of fractional connected fuzzy
proportional integral differential (PID) combination filter
controllers was proposed to solve the coordinated control
problem of AGC with multi-source participation. In Lal et al.
(2016), in the AGC system, a gray wolf optimization algorithm
was used to obtain the optimal gain of PID controllers of the AGC
system, so as to quickly attenuate the oscillation frequency of the
area and tie line power.

When wind power is highly involved in AGC frequency
regulations, this study considers achieving the coordinated
control between wind turbines and traditional water/thermal
power units by reasonably distributing power output
commands. Aiming at minimizing power deviation and
regulating mileage, a multi-objective optimization model of
AGC multi-source cooperative control was established (Zhang
et al., 2021b; He et al., 2021; Li et al., 2021; Li et al., 2022). The
cooperative AGC process with the participation of multiple
frequency regulation power plants is a complex non-linear
problem (Mukherjee and Shiva, 2016; Pan et al., 2019). In
practical application, most AGC processes distribute power
only according to the adjustable capacity and the climbing
speed. When wind power participates in frequency regulation,
it does not make full use of the advantages of high response speeds
and climbing speeds of wind power and consider the
characteristics of large fluctuations of wind turbine’s output
power, so it is impossible to achieve the optimal control of
AGC systems. For the cooperative optimal AGC problem of
wind turbines and traditional frequency regulation units,
although the traditional mathematical optimization method
has high solution speed, it is difficult to obtain an optimal
solution because of its poor global search ability. In contrast, a
meta-heuristic algorithm is more flexible and has stronger global
search ability (Yang et al., 2019), such as the genetic algorithm
(GA) (Pajak et al., 2020) and the particle swarm optimization
(PSO) algorithm (Gu et al., 2022).

For the sake of improving the dynamic response ability of
AGC, the biological target of complementary control of energy
storage resources with high participation is established in He et al.
(2021). Zhang et al. (2021b) used an adaptive distributed auction
algorithm to optimize AGC scheduling commands to minimize
the deviation between power command output and actual output.
The optimal scheduling scheme is obtained by using the strength
Pareto evolutionary algorithm and gray target decision. The
simulation results show that this method can effectively reduce
power deviation and adjustment mileage payment. Li et al. (2022)
proposed a multi-agent deep learning algorithm to realize the
frequency regulation of power systems. The simulation results
show that this method can not only improve the control effect but
also reduce the adjustment mileage payment. In Li et al. (2021), in
order to reduce the random power disturbance in energy systems,
a multi-experience pool replay double delay deep deterministic
method gradient is proposed to reduce control deviation and
adjustment mileage payment.

This study presents a multi-objective mayfly optimization
(MMO) algorithm. This algorithm is used to optimize the
power command distribution link in the working process of
AGC, make full use of the advantages of high response speeds
of upper wind turbines, and weaken the disadvantages of large
fluctuations of wind turbine’s output, so as to achieve the
coordinated control problem between wind turbines and
traditional water/thermal power units (Bhattacharyya et al.,
2020; Zervoudakis and Tsafarakis, 2020). In addition, because
each control interval can only assign one AGC scheduling signal
to each unit, an appropriate decision method is needed to select
an optimal scheme from the Pareto solution set. In this study, the
gray target decision-making method is used to select the best
decision scheme, which is one of the effective methods to solve
the multi-objective optimization problem (Li et al., 2018; Liu
et al., 2019).

The contents of this article are as follows: the second section
introduces the multi-source-coordinated control model of AGC.
The third section introduces MMO. In the fourth section, the
simulation results and discussion of multi-objective mayfly
algorithm are given. The fifth section summarizes the work
results of this study.

2 AGC MULTI-SOURCE COOPERATIVE
CONTROL MODEL

2.1 AGC Framework
The two-area load frequency control (LFC) model adopted in
this study is shown in Figure 1. The AGC working process
mainly includes two links: controller and power distribution.
The controller usually adopts the PI control strategy. The
controller converts the real-time acquisition frequency
deviation and tie-line power deviation into regional control
deviation, and finally outputs the real-time total regulated
power ΔP; then it allocates ΔP to each AGC unit according
to the distribution algorithm. The focus of this study is the
allocation process of the second link. An MMO algorithm is
used to optimize the power allocation process and achieve the
optimal power allocation scheme.

In Figure 1, ΔPT is defined as the power exchange deviation of
the connecting line; Δf is defined as the deviation of real-time
frequency;ΔPout is defined as the practical adjusted power output;
and ΔPD is defined as power disturbance.

2.2 Constraints
In the working process of AGC systems (Zhang et al., 2020), the
following two constraints need to be considered.

2.2.1 Power Balance Constraint
The total power output command of the control is equal to the
sum of commands received by all AGC units, as follows:

∑n

i�1ΔP
in
i (k) − ΔPc(k) � 0, (1)

where ΔPin
i is defined as the input instruction received by the ith

unit of the kth control interval and ΔPc is output of the controller.
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2.2.2. Generation Ramp Constraint
Different types of AGC units have different response time delays, as
shown in Table 1 (Yu et al., 2011). Wind energy does not have
generation ramp constraint (GRC), and the function of dynamic
response is shown in Figure 2. The actual regulated power output is
related to the Laplace inverse transfer function, which can be
expressed as follows:

ΔPout
i (t) � L−1{ Gi(s)

s(1 + Ti
ds)∑N

k�1[e−ΔT(k−1)sMin
i (k)]}, (2)

ΔPout
i (t) � ΔPout

i (t � k · ΔT), (3)
Min

i (k) � ΔPin
i (k) − ΔPin

i (k − 1), (4)
where Gi(s) is the energy transfer function, ΔT is the delay time
constant, and Min

i (k) is the adjustment mileage input.
Considering GRC and power limiter, the output of the control

can be shown as follows:

ΔPout
i (k) �

⎧⎪⎨⎪⎩ Pout
i (k − 1) + Rmin

i , ifΔPout
i (k)<Rmin

i

ΔPout
i (k), ifRmin

i ≤ΔPout
i (k)≤Rmax

i

Pout
i (k − 1) + Rmax

i , ifΔPout
i (k)>Rmin

i

, (5)

Rmin
i � { 0, ifMc(k)≥ 0

max[ − ΔPrate
i · ΔT,ΔPmin

i − ΔPout
i (k − 1)], ifMc(k)< 0 ,

(6)
Rmax
i � {min[ΔPrate

i · ΔT, ΔPmax
i − ΔPout

i (k − 1)], ifMc(k)≥ 0
0, ifMc(k)< 0 ,

(7)
where ΔPmin

i and ΔPmax
i are defined as minimum and maximum

adjust capacity, respectively; Rmin
i and Rmax

i are defined as the
minimum and maximum power regulation range; and ΔPrate

i is
the maximum ramp rate.

2.3 Objective Function
According to the two control objectives of this study, the fitting
degree of power command output and actual output curve is

higher and the adjustment mileage payment is smaller. Therefore,
the objective function can be as follows:

⎧⎨⎩minf1 � ∑N

k�1
∣∣∣∣∣ΔPc(k) −∑n

i�1ΔP
out
i (k + 1)

∣∣∣∣∣
minf2 � ∑n

k�1Ri

, (8)

where Ri is the adjustment mileage payment, as follows:

Ri � ∑N

k�1γS
P
i M

out
i (k), (9)

Mout
i (k) � ∣∣∣∣ΔPout

i (k) − ΔPout
i (k − 1)∣∣∣∣, (10)

where γ is defined as the price per mileage, SPi is defined as the
performance effect,ΔPout

i (k) is defined as the actual output of regulated
power, and Mout

i (k) is defined as the adjusted mileage output.

3MULTI-OBJECTIVEMAYFLY ALGORITHM

3.1 Movements of the Male Mayfly
For solving the LFC model, this study tries to make the search
ability stronger and use higher convergence speeds to find the
solution of the MMO; it can get more widely and more
uniformly distributed Pareto frontier, and based on the
office weight method, the design of gray target decision
objectively chooses compromise solution so that you can get
optimal economic conditions and have minimal power
response total deviation for power allocation schemes. The
clustering of male mayflies means that each male adjusts his
position according to his own and his neighbors’ appropriate
values. Suppose xt

i is the current position of the ith mayfly in
the search space at the time t, then by changing the position by
adding velocity vt+1i , it can be expressed as follows
(Zervoudakis and Tsafarakis, 2020):

xt+1
i � xt

i + vt+1i . (11)
Also, the speed of the male mayfly can be expressed as follows

(Zervoudakis and Tsafarakis, 2020):

FIGURE 3 | Optimization principle of MMO.

Frontiers in Energy Research | www.frontiersin.org February 2022 | Volume 10 | Article 8489664

Liu et al. Multi-Objective Mayfly Optimization

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


vt+1ij � vtij + a1e
−βr2p(pbestij − xt

ij) + a2e
−βr2g(gbestj − xt

ij), (12)
where vtij is the velocity of the ith mayfly at time t in the jth
dimension, xt

ij represents the position at time t, a1 and a2 are
positive attraction coefficients of social effects, pbestij represents
ephemera history in place, and gbestj represents the best mayfly
location. The distance can be expressed as follows (Zervoudakis
and Tsafarakis, 2020):�������xi −Xi

��������
��������������∑n

j�1(xij −Xij)2√
. (13)

The best mayflies must constantly change their speed to
improve their global search, as follows:

vt+1ij � vtij + d p r, (14)
where d is the dance coefficient and r is the random number
between [−1,1].

3.2 The Movement of the Female Mayfly
Suppose yt

i is the ith mayfly at time t, whose position is updated
by increasing the speed (Zervoudakis and Tsafarakis, 2020), then
the following is obtained:

yt+1
i � yt

i + vt+1i . (15)
Since the process of attraction is random, the best females

should be attracted to the best males, the second best females
should be attracted to the second best males, and so on, based on
their fitness properties. Therefore, considering the minimization
problem, the velocity is calculated as follows (Zervoudakis and
Tsafarakis, 2020):

FIGURE 4 | Flowchart of MMO.

TABLE 2 | Transfer function parameters of AGC units.

Generation type Parameters (s)

Hydro T1 = 1, T2 = 5, T3 = .513
Coal-fired T4 = 5, T5 = .08, T6 = 10, T7 = .3
Wind turbine T8 = .01
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vt+1ij � { vtij + a2e
−βr2

mf (xt
ij − yt

ij), iff(yi)>f(xi)
vtij + fl p r, if f(yi)≤f(xi) , (16)

where rmf is the distance between the female and the male.
Crossover results in two offspring, which are produced, are as

follows:

offspring1 � L pmale + (1 − L) p female
offspring2 � L p female + (1 − L) pmale

, (17)

where L is a random number of a certain range.

3.3 Crowding Distance
The repository has the maximum size to store non-dominant
solutions. In order to sort mayfly and retain the best, a fast non-
dominated sort is performed using the crowding distance. The
crowding distance provides an estimate of the largest cuboid
enclosing a solution by calculating the Euclidean distance
between adjacent individuals, without including any other
solutions. Boundary solutions with lowest and highest
objective function values are always selected by giving an
infinite crowding distance value. In addition, the optimization
principle of MMO is demonstrated in Figure 3.

3.4 Design of Gray Targets Decision-Making
The Pareto solution set X based on MMO is a matrix with n rows
and m columns, and the absolute value of each solution in X can
be taken as one of the decision-making indexes, or as the unit
solution output of Pareto frontier, as shown below (Yu et al.,
2011):

X′(i, j) � ∣∣∣∣X(i, j)∣∣∣∣, i � 1, 2, .., n, j � 1, 2, . . . , N. (18)
In order to consider reducing the total power deviation and

adjustment mileage payment, two objective function values F1
and F2 were used as one of the evaluation indicators.

We considered adding an index D to limit the change of the
output of each unit, as follows (Yu et al., 2011):

Di �
�����������∑m

j�1X′(i, j)2√
. (19)

TABLE 3 | Main parameters of AGC units in area A of the two-area LFC model.

Unit no. Type Td (s) ΔPrate (MW/min) ΔPmax (MW) ΔPmin (MW)

G1, G2, G3 Hydro 5 150 20 −10
G4, G5 Coal-fired 60 30 50 −50
G6, G7 Wind turbine 1 — 15 −5

FIGURE 5 | Comparison of the Pareto front.

TABLE 4 | Comparison of performance metrics of algorithms.

ΔPD Function IGD GD PD HV DM Spread Spacing T(s)

120MW NNIA Ave 7.23 2.03 3.27E+05 .481 .684 .425 6.04 7.21E−02
Std 3.84 0.57 7.42E+04 .004 .052 .076 1.06 1.53E−03

NSGA-II Ave 10.14 0.84 2.95E+05 .534 .653 .644 4.96 6.41E−02
Std 4.86 0.17 5.21E+04 .006 .037 .059 .69 2.35E−03

SPAR2 Ave 10.24 .89 2.53E+05 .534 .638 .447 3.62 6.53E−02
Std 5.23 .15 7.74E+04 .005 .054 .083 .79 1.14E−03

MMO Ave 9.54 .76 2.86E+05 .587 .734 .279 2.01 6.12E−02
Std 5.12 .24 3.93E+04 .006 .047 .069 2.06 2.41E−03

−120MW NNIA Ave 13.78 .78 2.74E+05 .441 .529 .665 5.44 7.14E−02
Std 10.75 .59 2.62E+04 .002 .053 .065 1.23 5.17E−03

NSGA-II Ave 13.89 .89 2.14E+05 .448 .543 .699 4.73 6.47E−02
Std 10.85 .12 3.38E+04 .006 .067 .051 1.05 2.24E−03

SPAR2 Ave 20.42 .85 1.41E+05 .441 .542 .471 2.96 6.17E−02
Std 23.76 .13 3.79E+04 .007 .214 .135 .87 2.12E−03

MMO Ave 12.15 .32 2.14E+05 .671 .715 .328 1.76 6.01E−02
Std 8.12 .14 4.38E+04 .004 .051 0.060 2.3 2.14E−03
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FIGURE 6 | Real-time optimization results under ΔPD = 120 MW. (A)
Overall power deviation. (B) Regulation power output obtained by MMO. (C)
Frequency deviation.

FIGURE 7 | Real-time optimization results under ΔPD = −120 MW. (A)
Overall power deviation. (B) Regulation power output obtained by MMO. (C)
Frequency deviation.
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Therefore, the effect sample matrix is expressed as follows (Yu
et al., 2011):

X″ � [X′ F1 F2 D]. (20)
The operator Zj is calculated as follows (Yu et al., 2011):

Zj � 1
n
∑n

i�1X″(i, j), j � 1, 2, . . . , m + 3. (21)

The decision-making matrix V is calculated as follows (Yu
et al., 2011):

vij � zij − xij

max{max
1≤i≤n

{xij} − zj, zj −min
1≤i≤n

{xij}}. (22)

Then the decision matrix can be obtained as follows:
V � (vij)n×(m+3). Here, v0j � max{vij|1≤ i≤ n}, j � 1, 2, . . . .,
(m + 3). Therefore, the selected bullseye vector is as follows: v0 �
{v01, v02, . . . , v0m+3}.

We calculated the weight yij and entropy Ej according to the
index value of each program, as follows (Yu et al., 2011):

yij � xij/∑n

i�1xij, xij ≥ 0, (23)
Ej � − 1

lnn
∑n

i�1yijlnyij , Ej > 0, (24)
ωj � (1 − Ej)/∑m+3

j�1 (1 − Ej), (25)

According to the bullseye vector v0 � {v01, v02, . . . , v0m+3}
(Huang et al., 2021), the bullseye distance of each program
can be expressed as follows (Yu et al., 2011):

di �
∣∣∣∣vi − v0

∣∣∣∣ � ∣∣∣∣∣∣∣∣
���������������∑m+3

j�1 ωj(vij − v0j)2√ ∣∣∣∣∣∣∣∣. (26)

The principle of screening programs is that the closer the
indicator is to the bullseye, the better the solution. In addition, the
flow chart of MMO is shown in Figure 4.

4 CASE STUDIES

In order to verify the effectiveness of MMO, the extended two-area
LFC model is tested in this study, and the multi-objective immune
algorithm with non-dominated neighbor-based selection is
introduced (NNIA) (Gong et al., 2014) along with the non-
dominated sorting genetic algorithm II (NSGA-II) (Deb et al.,
2002) and the improved strength Pareto evolutionary algorithm
(SPEA2) (Corne et al., 2001). In order to fairly compare the search
performance of each algorithm, the population size and maximum
iteration of all algorithms were set as N = 50 and kmax = 50,
respectively. Among them, the time cycle of frequency regulation
control is 4 s, and the price of frequency regulation mileage is 2
MW/$. In addition, transfer function parameters of each unit are
shown in Table 2, and main parameters of each unit are given in
Table 3. In addition, the simulation is executed on MATLAB/
Simulink 2019 using a personal computer with an IntelR Core™ i7
CPU at 2.2 GHz and 16 GB of RAM, and ode23 was selected as the
solver, the sampling rate was set to .001 s.

4.1 Algorithm Performance Test
In order to test the adjustment ability of the algorithm when it
encounters load disturbance, load disturbance of ΔPD = −120MW
is adopted. In addition, Figure 5 compares the Pareto front

FIGURE 8 | Adjustment mileage payment under four
perturbations cases.

TABLE 5 | Result comparison of online optimization under different disturbances.

ΔPD Method |ACE| (MW) |Δf| (Hz) CPS1 (%) Deviation (MW) Accuracy (%) Payment ($)

Avg Max Avg Max Avg Min

120 MW PROP .78 12.17 3.45E−04 4.13E−03 199.99 199.82 570.08 81.41 179.58
MMO .62 10.06 3.02E−04 3.48E−03 199.99 199.81 353.32 81.95 190.08
SPEA2 .72 11.16 3.15E−04 4.03E−03 199.99 199.82 379.62 81.54 184.65
NSGA-II .74 12.25 3.41E−04 3.78E−03 199.99 199.82 384.65 81.53 186.66
NNIA .73 12.11 3.23E−04 3.89E−03 199.99 199.82 412.36 81.63 188.47

−120 MW PROP .72 7.19 4.84E−04 5.89E−03 199.99 199.82 416.14 80.19 160.47
MMO .68 7.03 4.47E−04 5.69E−03 199.99 199.92 352.36 82.85 186.87
SPEA2 .71 7.11 4.62E-04 5.71E−03 199.99 199.82 378.62 81.94 171.59
NSGA-II .71 7.04 4.68E−04 5.73E−03 199.99 199.92 388.14 81.84 176.61
NNIA .71 7.06 4.78E−04 5.79E−03 199.99 199.92 394.41 80.54 178.62
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obtained by each algorithm. It can be seen that the solutions obtained
by NNIA deviate from the ideal Pareto frontier. In addition, the
Pareto front obtained by NNIA, NSGA-II, and SPEA2 has poor
performance. MMO can obtain the most evenly distributed and
extensive Pareto front under power disturbances.

Table 4 shows that after running each algorithm 10 times,
inverted generational distance (IGD), generational distance
(DG), pure diversity (PD), hyper volume (HV), diversity
metric (DM), breadth, spacing, and average running time T(s)
were used (Deb and Jain, 2002; While et al., 2006; Wang et al.,
2017), so as to compare the search performance of each
algorithm; hence, it can be seen as follows:

(1) Among the GD average values of all algorithms, MMO has the
smallest value, so its convergence performance is the best. It is
worth noting that the GD average for MMO is only 42%, 90%,
and 85% of the NNIA, NSGA-II, and SPAR2, respectively;

(2) The average DM and HV values of MMO are significantly
higher than those of other algorithms, which prove that MMO
has a good performance of Pareto front. In particular, the
average DM for MMO was 1.07, 1.12, and 1.15 times higher
than the NNIA, NSGA-II, and SPAR2, respectively;

(3) MMO has the minimum universality and average spacing,
which can prove that the distribution of Pareto front
obtained by MMO is the most uniform and extensive. In
particular, the spacing average for MMO is only 33%, 40%,
and 55% for NNIA, NSGA-II, and SPAR2, respectively;

(4) MMO has the minimum average running time, so it can
converge to the Pareto front the fastest, to respond to the
power regulation command in the shortest time.

4.2 Step Load Disturbance
In order to further verify the effectiveness of MMO and gray
target decision method, load disturbances of ΔPD = 120 MW and
ΔPD = −120 MW are used to test and compare with the
proportion method (PROP). Therefore, the output of the ith
unit in the kth control cycle is calculated as follows:

ΔPout
i (k) � ⎧⎨⎩ ΔPc(k) · ΔPmax

i /∑ng

i�1ΔP
max
i , if ΔPc(k)≥ 0

ΔPc(k) · ΔPmin
i /∑ng

i�1ΔP
min
i , if ΔPc(k)< 0

.

(27)
It can be seen from Figure 6A that MMO can well coordinate the

power output among all units.WhenΔPD = 120MW, the total power
deviation obtained is obviously low. The overshoot of the total power
command is reduced, and the total power output curve ismuch closer
to the total command curve. It makes the systemmore stable and can
quickly recover the disturbed power system. In addition, Figure 6B
shows the power response curve of each unit. Wind power resources
have a higher response speed, while hydro power resources have a
higher output. Under the mutual cooperation of all resources, the
disturbed power system can be well restored. Figure 6C shows the
frequency deviation controlled by MMO and PROP. It can be found
that MMO has a strong multi-objective search ability, which can
further effectively reduce the frequency deviation of the system.

In addition, Figure 7 shows the system response when the
disturbance is −120WM. It can be seen that the error between

the total input power and the total output power can be reduced
underMMOadjustment, and the peak of frequency deviation can be
slightly reduced. In this case, the recovery ability of the system under
different disturbances is further verified. It can be seen that the wind
turbine has a high response speed, which makes up for the slow
response speed of hydro power and thermal power resources. Under
the optimization of MMO, the frequency deviation of the system is
further reduced. It is worth noting that the hydro power unit has the
best peak shaving capacity, and its response speed is slightly lower
than that of the wind turbine, but it can maximize the power gap.

Figure 8 shows the variation of frequency adjustment mileage
expenditure under different perturbations. Based on Figures 6–8,
it can be seen that MMO can significantly improve power quality
on the premise of taking into account the frequency regulation
mileage expenditure. Thus, MMO can significantly increase the
frequency regulation capability of their systems at a slightly
higher price for frequency regulation miles.

Finally, the comparison of the two kinds of Table 5 conditions of
online optimization results shows that the method can effectively
reduce power response total deviation, reduce the average as |Δf| and
|ACE|, and effectively improve the dynamic response performance
of the system. Particularly, area control error (ACE) of MMO is only
79.48%, 81.11%, 84.78%, and 84.93% than that of PROP, SPEA2,
NSGA-II, and NNIA, respectively, in ΔPD � 120MW. In addition,
|Δf| of MMO is only 92.36%, 96.75%, 95.51%, and 93.51% than that
of PROP, SPEA2, NSGA-II, and NNIA, respectively, in
ΔPD � 120MW. Payment of MMO is only 105.84%, 102.94%,
101.83%, and 100.85% than that of PROP, SPEA2, NSGA-II, and
NNIA, respectively, in ΔPD � 120MW. Deviation of MMO is only
61.98%, 93.07%, 91.85%, and 85.68% than that of PROP, SPEA2,
NSGA-II, andNNIA, respectively, inΔPD � −120MW. Particularly,
Payment of MMO is only 116.45%, 108.90%, 105.80%, and 104.61%
than that of PROP, SPEA2, NSGA-II, and NNIA, respectively, in
ΔPD � −120MW.

5 CONCLUSION

This study proposes a multi-source optimal cooperative
frequency regulation strategy based on MMO. The main
contributions can be summarized as follows:

(1) The strategy can effectively reduce the total power deviation
and optimize the allocation of various frequency regulation
resources under the premise of optimal economic benefits.
Particularly, the power deviation, average |Δf|, and |ACE|
obtained by MMO reduce to 38.1%, 7.6%, and 20.5%,
respectively, compared with PROP in ΔPD � 120MW;

(2) TheMMO can obtain themost evenly distributed and extensive
ideal Pareto front in the shortest time, while the gray target
decision method based on the entropy weight method can
objectively select the compromise solution, giving full play to
the advantages of various frequency regulation resources;

(3) For extension of two regional load frequency control model
test, the result shows that |ACE|, average |Δf|, and total
power deviation decreases, to obtain the best efficiency and
improve dynamic response performance, proving that the
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strategy can effectively solve the multi-objective optimization
problem.

In order to further improve economic benefits and system
response speed, a renewable energy system equipped with an
energy storage system will be studied in the future.
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