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The inertia of fossil fuels in the commercial sector of the United States has maintained
its momentum throughout, and efforts to replace it with renewable energy has
continuously been made. This dynamic relationship is impacted by multi-economic
and political variables both in the domestic and international markets. In this paper, we
have explored the dynamic impact of total renewable energy consumption (RE) on the
decomposed wavelet frequencies of energy consumed by fossil fuels (FE) in the
commercial sectors of the United States economy. In particular, we have applied
wavelet coherence and quantile-on-quantile regression methodologies to evaluate
this relationship. The monthly data from the US Energy Information Administration over
a period of January 2001 to July 2021 was procured for the present study. Our
empirical findings based on wavelet coherence showed significant co-movements
between FE and RE with positive association in short-run while negative association in
long-run monthly frequency bands. For our five models based on quantiles and
decomposed wavelet frequencies of FE, four models show that renewable energy
consumption has an antagonistic relation with the FE in the commercial sector of the
United States.

Keywords: commercial energy, renewable energy, fossil fuel, wavelet coherence, quantile on quantile regression,
United States, energy consumption, sdg

INTRODUCTION

Carbon emissions have reached questionable levels globally (Garrett-Peltier, 2017). It has been
estimated that globally, energy requirements are going to increase by over 44% in the first three
decades of the century. Nevertheless, by 2030, 80% of the energy will still be non-renewable in nature
(Akorede et al., 2010). The United States, with close to 4% of the global population, contributes ~14%
of the global emissions (Dogan and Ozturk,2017). Development at this cost, scale, and style has a
tendency to jeopardize the environment (Ramzan et al., 2022).

In the United States, non-renewable energy is usually derived from non-replenishable sources such as
natural gas, coal, and petroleum, while renewable energy sources include replenishable sources such as
solar photovoltaic, biomass wood, biomass waste, hydropower, wind, nuclear, and geothermal.
Furthermore, the commercial sector can be classified as businesses and establishments that do not
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include non-manufacturing, e.g., restaurants, the service sector,
software firms, banks, education organizations, etc. (Agarwal et al.,
2010).

It is expected that towards the end of the 21st century, the
American commercial energy blend will have material
contributions from renewable energy (Klass,2003). The
National Energy Model is a powerful model that trails the
essential energy sources and their usage by families and
commercial establishments; this has been implemented in
Japan as well. The inspiration driving the advancement of this
energy economic model in America has been the need for a
system that would evaluate the consequences for the
United States economy of strategy changes in the utilization of
fuel sources from petroleum derivatives to renewables to
accomplish the objective of calibrating greenhouse gas over the
next 5 decades (Agarwal et al., 2010; Nakata, 2004). While
support from the government is the most import propellant
increasing investments in renewable energy, it is widely
accepted that government policies are never unidimensional
and have employment generation at their heart. Based on this
parameter, one has to see the development of jobs created by
industries supported by energy from fossil fuels and those using
energy from renewable sources. This becomes another reason
determining the dynamics between the two variables (Peltier
et al., 2014).

Table 1 shows that over the past 2 decades, the contribution to
the primary energy consumption in the commercial sector in the
United States has more than doubled from 2.5% in 2001 to 6.6%
in 2020; nonetheless, the contribution still remains abysmally low.
The CAGR in the renewable energy consumed by the commercial
sector over 2 decades is 5.66% in comparison to a 0.35% CAGR in
the total primary energy consumed by the commercial sector. At

this rate, the total renewable energy consumed by the commercial
sector can double in a little over 12 years. This growth will mainly
come from solar or wind, as most of the sites for hydropower have
been utilized (Cameron et al., 2001; Cai et al., 2018).

Similar studies in China have shown that the impact of
renewable energy on phasing out energy consumed by fossil
fuels depends on the subsidies provided by the government
(Cabré et al., 2018; Ouyang and Lin, 2014). Studies in India
on similar variables show that while the country had the potential
for renewable energy, government policy and support were
needed for renewable energy to make inroads in the non-
renewable energy territory (Solarin and Bello, 2021). In
smaller developing nations like Malaysia, despite having a
large hydropower potential, close to only 10% of the total
reserves have been harnessed. Even its large biomass reserve of
palm oil has not been harnessed (Ong et al., 2011). On the
contrary, in the USA’s neighbor, Mexico, the congress has
planned that the non-renewable energy source-based power be
restricted to 65% by 2024, 60% by 2035, and half by 2050 (Cai
et al., 2018; Vidal-Amaro et al., 2015). It is estimated that biomass
can reduce greenhouse emissions by close to 18% in Mexico
(Tauro et al., 2018). In developed nations such as Japan, where the
commercial sector consumes ~22% of the energy, renewable
energy contribution is less than 5% (Konstantin, 2017).

Time and again, the fragility and the overdependence of the
American economy on non-renewable energy have been
highlighted every time there has been a crude oil crisis. While
the need for renewable energy is clearly understood and defined,
its efficiency when compared to non-renewable energy is a key
factor contributing to the dynamics between the two sources of
energy (Koroneos et al., 2003; Oró et al., 2015).

Another factor impacting the relationship and dynamics
between total renewable energy consumption and energy
consumed by fossil fuels is the need for dependable power
during working hours of the commercial sectors in the
United States. Solar and wind power are not dependable
sources of power, and the fluctuations in this type of
electricity generation may not be synchronized with the
continuous demand with the load dispatch centers (Perez
et al., 1990; Yang et al., 2008). The geophysical restraints of
renewable sources of energy become another factor impacting
their dynamics in comparison with the energy consumed by fossil
fuels (Shaner et al., 2018). To counter the solar cycles, more
blended co-generation plants need to be evaluated so as to
increase the efficiency and dependability of the renewable
energy sources of energy as compared to the non-renewable
energy sources (Dunham and Iverson, 2014; Gueymard and
Ruiz-Arias, 2016).

At the same time, many factors impact the shift or simply the
adoption of green energy in businesses in the United States, e.g.,
clean/green energy policies, tax structures and incentives for
using clean energy, and economic and political views of the
governing bodies (Pahle et al., 2016; Pfeiffer et al., 2016).
While analyzing the causal relationship between renewable
energy and fossil fuel consumption and growth, bidirectional
Granger causality was found to exist between commercial energy
consumption and real GDP (Alola and Yildrim, 2019).

TABLE 1 | Total primary energy consumed by the commercial sector.

Year Fossil fuel consumption
by the commercial

sector (%)

Renewable energy consumption
by the commercial

sector (%)

2001 97.5 2.5
2002 97.5 2.5
2003 97.3 2.7
2004 97.2 2.8
2005 97.0 3.0
2006 96.8 3.2
2007 96.9 3.1
2008 96.8 3.2
2009 96.6 3.4
2010 96.5 3.5
2011 96.2 3.8
2012 95.6 4.4
2013 95.6 4.4
2014 95.4 4.6
2015 94.8 5.2
2016 94.4 5.6
2017 94.2 5.8
2018 94.3 5.7
2019 94.2 5.8
2020 93.4 6.6

Source: https://bit.ly/33MpjA5

Frontiers in Energy Research | www.frontiersin.org March 2022 | Volume 10 | Article 8483012

Singh et al. Nexus Between RE and FF

https://bit.ly/33MpjA5
https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


Another key element determining the relationship between
the total renewable energy consumption (RE) and energy
consumed by fossil fuels (FE) is the infrastructure in buildings
housing commercial establishments. Sustainable grid
connectivity to support the two-way metering and the
dependability aspect of clean energy causes a shift from non-
renewable energy to green energy (Mbungu et al., 2020). Smart
grids also support the switch from FE consumption to RE (Hafeez
et al., 2018; Li and Dong, 2016).

Thus, we see that the factors impacting the relationship
between the total renewable energy consumption and energy
consumed by fossil fuels in commercial sectors in the
United States are impacted by numerous factors. While a push
from the government in the form of policy and subsidies remains
a primary propellent, the comparison of the efficiency of the two
sources becomes a major point of contention. Overcoming
geophysical restraints and evaluating various blends to
increase the dependability of renewable energy supply are
other key factor. A key gap that we observe is that of the
literature available; most of the studies on the dynamics
between RE and FE are focused on developing nations, India
and China in particular. Very few studies focus on the developed
nations, the United States in particular. At the same time, studies
focusing on the dynamics between the two variables in the
United States do not focus on the split of the energy
consumption. Negligible studies are available focusing on
energy dynamics in housing, commercial, and industrial
sectors separately. Such a study becomes imperative to
understand the microdynamics of the energy demand and
synchronize the growth and replacement of energy in this
segment with clean energy so as to make growth sustainable
and clean (Yi, 2014). In terms of the methodology used, we were
yet to come across a study analyzing the nexus between the
variables under study using the wavelet coherence and quantile-
on-quantile regression methods. The above observations
encourage us to evaluate the relationship between renewable
energy consumption and energy consumed by fossil fuels in
the commercial sector for the United States by applying
wavelet coherence and quantile-on-quantile regression.

DATA

The present study discusses the relationship between RE
consumption and FE in commercial sectors of the
United States by applying wavelet coherence and quantile-on-
quantile regression (QQR) methodologies. The sample dataset
considers monthly data collected between time periods January
2001 and July 2021. The description and source of data are given
in Table 2.

We aim to study the following in our present study:

(1) The correlation between the variables RE and FE by applying
bi-wavelet coherence.

(2) The dynamic impact of RE on decomposed wavelet
frequencies of FE by applying the QQR methodology.

METHODOLOGY

Multiscale Wavelet Decomposition
The wavelet methodology decomposes the time series into several
wavelet frequencies. These wavelets offer frequency
decomposition of the time series by preserving time location
and thus captures the complete information contained in time
series specific to location-scale domain (Ramsey, 1999).

Any function can be decomposed into father (ϕ) and mother
(ψ) wavelets (Ramsey, 2002). The father wavelets generate scaling
coefficients representing very long scale smooth components,
while mother wavelets generate differencing coefficients
representing the deviations from the smooth components.

For any function ϕ(.), the father wavelets are defined as
follows:

ϕM,n � 2−M/2ϕ(t − 2Mn
2M

)with∫ ϕ(t)dt � 1 (1)

with smooth coefficients defined as

sM,n � ∫f(t)ϕM,n (2)

Similarly, the mother wavelets are defined as follows:

ψm,n � 2−m/2ψ(t − 2mn
2m

) , m � 1, 2, . . . ,M with ∫ψ(t)dt � 0

(3)
with detail coefficients defined as

dm,n � ∫f(t)ψm,n, m � 1, 2, . . . ,M (4)

The function f(.) is defined as follows:

f(t) � SM +DM +DM−1 + . . . +Dm + . . . +D1

where

SM � ∑
n
sM,nϕM,n(t)andDm � ∑

n
dm,nψm,n(t), m � 1, 2, . . . ,M

The term Sm represents the cumulative sum of variations at
scale θm with changes in series atmth level wavelet denoted byDm

(Gencay et al., 2001; Ramsey 2002). The scaling and differencing
coefficients were calculated using the maximal overlap discrete

TABLE 2 | Variables and source of data covered.

S. no. Variable Variable description Units Source link

1 FE Energy consumed by fossil fuels Trillion BTU https://www.eia.gov/totalenergy
2 RE Total renewable energy consumption Trillion BTU
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wavelet transform (MODWT), as there is no restriction on the
sample size. Furthermore, theMODWTuses moving differencing
and average operator and preserves the sample size at each scale
of wavelet decomposition (Percival and Walden 2000).

The Daubechies least asymmetric filter of length eight [LA (8)]
is used to disintegrate the series into the wavelet coefficients Dm

with a resolution of data at scale 2m to 2m+1. The wavelet scales
θ1, θ2, θ3, θ4 are associated with oscillation of periods of 2–4,
4–8, 8–16, and 16–32 months, respectively. The long-term
movements are denoted by wavelet smooth S4.

Bi-Wavelet Coherence
The wavelet coherence is employed to analyze the periodic
phenomena in the presence of sudden changes in frequency
across time of a time series. It measures the level and extent
of co-movements between time–series pair, say Y and X, but in
time–frequency (location–scale) domain and is analogous to
traditional bi-variate correlation coefficient.

We define the bi-wavelet coherence as follows:

Ryx � ][ϱ(y, x)]��������������
][ϱ(y)].ϱ[ω(x)]√ (5)

R2
yx � Ryx .R

p
yx

where Ryx is the measure of wavelet coherence between the two
time–series Y and X with measure of squared wavelet coherence
given by R2

yx.
ϱ(y, x) is the cross-wavelet defined by the following:

ϱ(y, x) � ϱ(y)p�ϱ(x)
with corresponding wavelet transforms ϱ(.) and complex
conjugate wavelet transform ϱ(.). ] is the smoothening
operator with desired time–frequency resolution (Torrence
and Compo 1998). The wavelet coherence is a measure of the
cross-correlation between two time series and ranges
between 0 and 1, with values closer to 1 indicating higher
correlation.

Quantile-On-Quantile Regression
Methodology
Traditionally, the relationship between response (R) and
predictor (P) variables is studied by applying a linear
regression framework. In recent years, the quantile
regression analysis (QR) introduced by Koenker and
Bassett (1978) has become a popular tool in modelling the
time-varying degree and structure of dependence as they
provide more precise and accurate results as compared to
linear regression. Furthermore, the robustness of QR to
provide tail dependence information (i.e., upper and lower
tails) in addition to the median proves its advantage over
linear or non-linear regression analysis.

QR approach has one drawback, which is its inability to
capture the entire dependence structure. Hence, to overcome
this, quantile-on-quantile regression was introduced.

The QQR models the quantile of response (R) variable as a
function of quantile of predictor (P) and hence giving the
complete dependence structure (Sim and Zhou 2015). The
QQR methodology empirically justifies the conditional
quantile relationship between variables and can be
considered as an extension of QR in the non-parametric
set-up. It captures the possible non-stationarity in the
series and explains the entire dependent structure instead
of interpretation based on point estimation used in
classical linear regression, thus minimizing the loss of
information.

The QQR model for qq-quantile of response (R) variable as a
function of predictor (P) variable and lagged R is defined as
follows:

Rt � αq(Pt) + γqPt−1 + εqt (6)
where εqt is an error term with zero q-quantile. To examine the
dependence structure between q-quantile of R and p-quantile of P
(Pp), we linearize the unknown link function αq(.) using first-
order Taylor expansion as follows:

αq(Pt) ≈ αq(Pp) + αq′(P)(Pt − Pp) (7)
Following the method of Sim and Zhou (2015), Eq. 7 can be

rewritten as follows:

αq(Pt) ≈ α0(q, p) + α1(q, p)(Pt − Pp) (8)
Eq. 6 reduces to

Rt � α0(q, p) + α1(q, p)(Pt − Pp) + γ(q)Rt−1 + εqt (9)
Rt � α0 + α1(Pt − Pq) + γ(q)Rt−1

�
p

+εqt (10)

where γ(q) � γq, α0 � α0(q, p) and α1 � α1(q, p)
Part (*) in Eq. 10 denotes the qth conditional quantile of

response time series variable R and captures the relationship
between q-quantile of R and p-quantile of P as α0 & α1 are indexed
in both q and p. Hence, the complete dependence structure
between R and P is determined by the quantile-on-quantile
regression model through dependence between their respective
distributions.

The estimate of Eq. 10 is obtained byminimizing the following
equation:

minα0α1 ∑n
i�1
∅q[Rt − α0 − α1(Pt − Pp)

− γ(q)Rt−1]pQ(Gn(Pt) − p

h
)

where∅q corresponds to absolute value function, which gives
the q conditional quantile of R as a solution. Then the Gaussian
kernel Q (.) is conducted to weigh the observation according to
normal probability distribution based on bandwidth h. Based on
previous studies, a bandwidth of 5% (h = 0.05) was selected (Sim
and Zhou 2015). The empirical distribution function is estimated
as follows:
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Qn(Pt) � 1
n
∑n

k�1I(P̂k < P̂t)
The weights are reversely linked to the distance ofGn(Pt) from

p, where p is the value of distribution function corresponding
to Pp.

EMPIRICAL RESULTS

The descriptive statistics of variables—FE and RE—in the
commercial sector are given in Table 3.

As observed from the results of the Jarque–Bera test for
normality and the augmented Dickey–Fuller (ADF) test of
stationarity in Table 3, the variables FE and RE were observed
to be non-normally distributed and non-stationary and hence
were transformed. The first difference of FE (dFE) and the first
difference of natural logarithm of RE [ (RE)] were used for
analysis. The d[d (FE)] were further decomposed into wavelet
frequencies denoted by FE. d1, FE. d2, FE. d3, FE. d4, and FE. S4
corresponding to 2–4, 4–8, 8–16, and 16–32 months and the
long-term trend, respectively.

The summary statistics as reported in Table 3 clearly show
non-normal distributions for the variables, and the results of BDS
test for non-linearity as stated in Table 4 indicate that the OLS
estimates will be unreliable and hence provide a good motivation
to apply a quantile-based approach to accommodate for the
heavy tails.

For our objective 1, the wavelet coherence methodology was
applied to study the co-movement between RE and FE in
commercial sectors of the United States.

The warmer (colder) colors, red (blue), indicate strong
(weak) significant co-movements between the series. The
estimates of wavelet coefficients are statistically

insignificant beyond the black line cone at 5% level of
significance. The lead/lag phase relations between the
series are indicated by arrow directions. Arrows pointing
towards the right (left) represent the series that are in-phase
(out-phase), indicating positive (negative) coherence/
correlation. Arrows pointing right-down or left-up
indicate that the second series is leading, while arrows
pointing left-down or right-up indicate that the first series
is leading.

From Figure 1, a significant coherence is observed in 1–2 and
2–4 frequency bands at few time-points, and variables are
observed mostly in-phase (positively correlated). Furthermore,
a huge island of significant coherence is observed in 4–8 and 8–16
frequency bands, indicating a long-term impact with variables
being out-phase (negatively correlated).

This time-frequency dependence between RE and FE in the
commercial sector is further studied in detail by applying the
QQR methodology (objective 2). The impact of RE on each
frequency bands of FE , FE. d1, FE. d2, FE. d3, FE. d4, and
FE. S4 is studied in detail by implementing the QQRmethodology
on each of the frequency bands.

Based on the QQR model expressed in Eq 10, the following
QQR fit models are considered in our present analysis to study
the effect of RE consumption on energy consumed by fossil fuel
bands (FE.d1, FE. d2, FE.3,FE.4, and FE. S4) in the commercial
sector:

M − 1: FE.d1t � α0(q, p) + α1(q, p)(REt − REp)
+ γ(q)FE.d1t−1 + εqt

M − 2: FE.d2t � α0(q, p) + α1(q, p)(REt − REp)
+ γ(q)FE.d2t−1 + εqt

M − 3: FE.d3t � α0(q, p) + α1(q, p)(REt − REp)
+ γ(q)FE.d3t−1 + εqt

TABLE 3 | Descriptive statistics.

Variable N Mean Std sk ku JB ADF

RE 247 14.85 5.65 0.69 −0.84 26.83a 1.32
FE 247 336.68 153.67 0.58 −1.12 26.60a −2.28a

(RE) 246 0.00 0.02 0.59 0.86 21.41a −22.7a

d (FE) 246 −1.76 91 0.21 −0.4 3.28 −7.71a

FE.d1 246 0.00 32.46 0.14 1.53 23.17a −28.48a

FE.d2 246 0.00 43.00 0.10 −0.45 2.69 −8.59a

FE.d3 246 0.00 69.36 −0.13 −1.35 19.3a −4.29a

FE.d4 246 0.00 22.02 −0.21 −0.19 2.31 −3.92a

FE.S4 246 −1.76 9.00 −1.76 3.98 28.3a −2.43a

ap-values significant at 5% level of significance.

TABLE 4 | BDS test of non-linearity of residuals.

Embedding dimension (m) RE FE

2 63.05* 36.99*
3 100.9* 54.74*
4 171.9* 80.67**
5 313.18* 127.52*

FIGURE 1 | Bi-wavelet coherence.
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M − 4: FE.d4t � α0(q, p) + α1(q, p)(REt − REp)
+ γ(q)FE.d4t−1 + εqt

M − 5: FE.S4t � α0(q, p) + α1(q, p)(REt − REp)
+ γ(q)FE.S4t−1 + εqt

The results of the QQR analysis can be summarized by two
parameters: α0 � α0(p, q) and α1 � α1(p, q), which is the
intercept term and the slope coefficient, respectively. The
results of intercept (α0) and slope coefficients (α1) for

quantiles between 0.05, 0.10, . . . , and 0.95 are presented in
Figures 2–6 for QQR model fit with bandwidth, h = 0.05. The
first column represents the QQR model fit of response variable
(R) on the predictor (P), the second column represents the
intercept α0, and the third column explains the slope
coefficients (α1) at quantile levels = 0.05, 0.10, . . . , and 0.95.

For Model 1, the QQR slope coefficients were negative for
lower quantiles, [0.05–0.35], of renewable energy consumption
and for the quantile range [0.35–0.65] of energy consumed by FE.
d1, indicating that, as the renewable energy consumption

FIGURE 2 | Quantile-on-quantile regression(QQR) estimates for Model 1.

FIGURE 3 | QQR estimates for Model 2.

FIGURE 4 | QQR estimates for Model 3.
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increased, the energy consumed by fossil fuels decreased for lower
concentrations of renewable energy consumption in 2–4
frequency band. The coefficients were positive for all quantiles
greater than 0.7 of energy consumed by FE. d1 (Figure 2). For QR
regression fit, the slope coefficients were found to be negative in
quantile grid [0.2–0.7] and significant for the quantiles [0.35–0.5,
0.65]. A similar trend can be observed from Figure 1 of wavelet
coherence.

For Model 2, the QQR slope coefficients were negative for all
quantiles of renewable energy consumption and for quantile
range [0.4–0.55] of energy consumed by FE. d2, indicating
that, as the renewable energy consumption increased, the
energy consumed by fossil fuels decreased for all
concentrations of renewable energy consumption in the 4–8
frequency band (Figure 3). For QR regression fit, the slope
coefficients were found to be negative in the quantile
grid [0.05–0.95] and significant for the quantiles [0.4–0.6,
0.65]. A similar trend can be observed from Figure 1 of
wavelet coherence.

For Model 3, the QQR slope coefficients were negative for
almost all quantiles of renewable energy consumption and of
energy consumed by FE. d3, indicating that, as the renewable
energy consumption increased, the energy consumed by fossil
fuels decreased for all concentrations of renewable energy
consumption in the 8–16 frequency band (Figure 4). For QR
regression fit, the slope coefficients were found to be negative

in the quantile grid [0.05–0.95] and significant for all the
quantiles except at 0.75 and 0.95. A similar trend can be
observed from Figure 1 of wavelet coherence.

For Model 4, the QQR slope coefficients were positive for all
quantiles of renewable energy consumption and of energy
consumed by FE. d4, indicating that, as the renewable energy
consumption increased, the energy consumed by fossil fuels
increased for all concentrations of renewable energy
consumption in the 16–32 frequency band (Figure 5). For
QR regression fit, the slope coefficients were found to be
positive in the quantile grid [0.05–0.95] and non-significant
for lower and upper tails.

For Model 5, the QQR slope coefficients were negative for
most of the quantiles of renewable energy consumption and of
energy consumed by FE. S4, indicating that, as the renewable
energy consumption increased, the energy consumed by fossil
fuels decreased for all concentrations of renewable energy
consumption for long-term trend. For QR regression fit, the
slope coefficients were found to be negative in the quantile
grid [0.05–0.95] but non-significant.

The linear quantile regression model is defined as follows:

Rq
t � βq0 + βq1Pt + βq2R

q
t−1 + εqt (11)

where Rq
t is the qth conditional quantile of dependent variable,

the parameter βq0 � β0 is the intercept, and the regression
estimator βq1 � β1 is the function of q.

FIGURE 5 | QQR estimates for Model 4

FIGURE 6 | QQR estimates for Model 5.
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FIGURE 7 | Quantile regression analysis(QR) vs QQR estimates.
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The QQR estimates decompose QR estimates specific for
different quantiles of response variables. The QR approach
regresses the qth quantile of response variable, whereas the
QQR approach regresses the qth quantile of predictor variable
on the pth quantile of response variable, and as a result, its
parameters are functions of (q, p). Hence, the QQR method
conveys more information about the relationship between
predictor and response variable as compared to QR approach.

The following relationships hold for QR and QQR estimates:

β̂0 �
1
m

∑
p

α̂0 � �̂α0 and β̂1j �
1
m

∑
p

α̂1 � �̂α1

where j = 1, 2 and m and m are the number of points of the
quantile grid q = (0, 1).

Hence, the averaged QQR estimates should be equal to QR
estimates.

The graphs of comparison are presented in Figure 7, showing
the average QQR estimates of the slope coefficients ( �̂α1) and QR
estimates of the slope (β̂1j) for all the pairs over the quantile grid
[0.05, 0.10, . . . , 0.95].

As observed from Figure 7, the estimates of QQR and QR
regression were found to be similar for all the models, indicating a
good fit and validity of our QQR methodology.

DISCUSSION

As discussed above, the collected monthly data on FE is
decomposed into five frequency components using wavelets.
The summary statistics reported in Table 3 indicate non-
normality for the variables and motivate us to rely primarily
on a quantile-based approach. Furthermore, the BDS test of non-
linearity as reported in Table 4 indicates that the ordinary least
estimates (OLS) will not be reliable to detect the relationship
between FE and RE. The co-movements as indicated by Figure 1
show that the two variables are in-phase (positively correlated) in
the short run, while they are out-phase (negatively correlated) in
the long run at 5% level of significance. The impact of RE on the
decomposed frequencies of FE is observed to be negative and
significant at the 5% level of significance in most cases as can be
observed from the results of quantile regression and quantile-on-
quantile regression fit models 1–5.

For shorter frequencies (2–4months), a negative and significant
impact of RE was observed in the quartile range [0.35–0.5].
Furthermore, for longer frequencies (4–8 and 8–16months), a
similar negative and significant impact of RE was observed on FE.
A positive correlation was observed between RE and FE in 16–32-
month frequency band but was observed to be insignificant. In the
long-term, a negative impact of RE was observed on FE but was
insignificant, indicating that increased RE consumptionwill not cause
a deterioration in FE in commercial sector in the long run. Our results
highlight the importance of not only studying the entire conditional
distribution of FE (based on quantile regression) but also looking at
the various frequencies.

The quantile-on-quantile regression gives further insights into
the analysis whether there is also a role for various levels of RE in

the conditional distribution behavior of FE and its various
frequencies. The results of intercept and slope coefficients are
depicted in Figures 2–6 using three-dimensional graphs. We
observe that quantile regression results carry over to the
quantile-on-quantile regression results for shorter as well as
longer frequencies of FE with the relationship being mostly
negative with RE. In long-term frequency band, a significant
negative coherence is observed between the two variables,
indicating that the renewable energy consumption has a
significant negative impact on energy consumed by fossil
fuels in the commercial sector. Furthermore, the validity of
quantile-on-quantile regression fits was checked with that of
quantile regression estimates. The similarity in the trend of plots
of intercept and slope coefficients of quantile regression vs
averaged quantile-on-quantile regression estimates presented
in Figure 7 depicted the goodness of fit of quantile-on-quantile
regression methodology.

CONCLUSION AND POLICY IMPLICATION

There is no taking from the fact that based on the data shared in this
study and the analysis presented, the usage of renewable energy has
been comparatively small in the United States in comparison to the
non-renewable fossil fuels in the commercial sector in United States.
Notwithstanding the realities that exhibited advancements for using
RE assets are plentiful, fossil energy utilization keeps on expanding at
a scale that cannot be supported in the US, and sustainable
commitments to energy efficiency are yet to catch the pace they
need to catch. It is but inevitable that the replenishment of fossil fuels
is not possible; however, in the short and medium run, the actual
implication of this adage is far from visible in the United States
in terms of the quantum and pace that are required to maintain
the sustainability of the environment. The best propellant for
this could be the retail price of fossil fuels becoming exorbitantly
high excessively and irreversibly in the hands of the commercial
consumer.

The present study investigated the implications of renewable
energy consumption on the fossil fuel-based energy in the
commercial sector in the United States using monthly frequency
data for a period of January 2001–July 2021. We applied wavelet
coherence and quantile-on-quantile regression methodologies on
decomposed wavelet frequencies of FE to assess the relationship
between the latter and that of various quantiles of RE. Based on
empirical results, we arrive at the conclusion that a positive
association in the short run while a negative association in long-
run monthly frequency bands was observed between FE and RE.
Furthermore, the results from quantile-on-quantile regression
analysis indicated that as the renewable energy consumption
increased, the energy consumed by fossil fuels decreased in four
out of five assessed models.

In terms of recommendations, government recommendations
and policy incentive-based measures are the mainstay of pushing
renewable energy in the commercial sector in the United States.
Novel ideas such as the nearly zero energy buildings (NyZEB)
(Visa et al., 2014) can be made mandatory for commercial sector
in the United States. Smart grids will enable load dispatch centers
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to normalize the non-dependability of renewable energy sources
such as solar and wind.
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