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Studies on resonant power converters (RPCs) have received much attention due to the rapid
growth of their potential in modern power and renewable energy applications such as
photovoltaic, electric vehicles, wind, and fuel cells. Consequently, a significant number of
studies focusing on RPC topologies for renewable energy applications is available. Generally,
these studies have addressed several aspects, such as the development of their soft switching
feature, smooth waveforms, high power density, and high efficiency. With this in mind, the
present paper aims to review the development of the RPCs, challenges in their development,
and comparison between common topologies as highlighted in literature. In addition, the use
of RPCs in various applications of renewable energy is highlighted, focusing on some of the
recently utilized topologies based on their constructions and achievements. There are still
several issues and challenges in research that need to be considered for future improvement of
the RPC performance in renewable energy applications. The improvement may require
modifications on the circuit design or control strategies.
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1 INTRODUCTION

Electric vehicles (EVs), renewable energy systems (RES), smart grids, and solid-state transformers are
some of the instances of modern industrial applications of clean energy in power electronics that
have advanced rapidly over time. With this, much attention has been given to resonant DC–DC
converters due to their characteristics and proven efficiency compared to normal converters. These
resonant DC–DC converters, in particular, offer a better conversion rate, and can work at high
switching frequencies and achieve soft switching (SS); they also result in a considerable size reduction
in terms of the magnetic components of the system, such as the passive filters and transformers
(Outeiro et al., 2016a). All these are necessary to meet the demands of industrial applications of
power electronics applications. RPCs (resonant power converters) are also used. Furthermore, rather
than incorporating extra equipment for each switch, RPCs use another way to accomplish the SS
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requirements. RPCs specifically structure them as a Resonant
Tank Network (RTN) that consists of two, three, or more reactive
elements that are connected with a converter in a cascade
manner.

RTN might be classified according to their connection
mechanisms and the number of employed tank elements
(Outeiro et al., 2016a); however, the most prevalent 2-element
type of RTN is the series resonant converter (SRC) and parallel
resonant converter (PRC). An example of 3-element RTNs is the
series-parallel RCs like LCC and LLC, whereas LCLC is an
example of a multi-element RTN.

Furthermore, RPCs utilize other techniques to achieve the SS
requirements rather than to embrace the additional equipment
for each switch. Specifically, RPCs structure them as RTN using
two, three, or multi-reactive components that are interconnected
with the converter in cascade (Outeiro and Buja, 2015). Even
though single-stage RCs are well-known and advanced in
numerous applications, they still seem inappropriate for high
input voltage applications. The current load on switching devices,
in particular, has the potential to compromise and degrade both
reliability and efficiency (Lee and Moon, 2011); hence, multilayer
converters were developed, allowing the use of low-voltage
switching devices in high-voltage applications (Liu et al., 2017;
Salem et al., 2019).

Given the high interest on RPCs nowadays, the present paper
aims to review the construction, classification, and development
of RPCs and their applications. The paper also wishes to
introduce the latest RPC technologies as reported in existing
literature. The paper is organized in the following structure:
Section 2 highlights the structure and classification of RPCs.
Section 3 reviews the use of RPC in renewable energy
applications while Section 4 provides some recommendation
for future work on RPCs in renewable energy application.
Finally, Section 5 concludes the paper.

2 RESONANT POWER CONVERTERS

There are many soft-switching converters (SSCs) that have been
developed successfully in the last few decades. These converters
have enabled power semiconductor devices in switch-mode
power supplies (SMPS) to operate at preferred conditions,
consequently resulting in better performance, high power
density, and efficiency (Moradisizkoohi and Mohammed, 2017;

Geetha et al., 2018). In general, the SSCs can be grouped into
three different families according to their operating principles
(Outeiro and Buja, 2015): (1) quasi RCs (QRCs) and multi RCs
(MRCs) (Liu et al., 1987; Moradisizkoohi and Mohammed, 2017;
Geetha et al., 2018), (2) resonant-transition converters (RTCs)
(Tuomainen and Kyyra, 2005; Martins et al., 2006), and (3) RPCs.
Figure 1 shows the SSC family.

Of the three types, RPCs have received greater attention due to
the developments in their usage and the industrial application.
Efforts have been placed to further enhance the soft-switching,
smooth waveforms, and high efficiency of RPCs. RPCs are found
to be ideal for use in high-voltage applications. This is due to their
capacity to minimize switching losses and have low switching
stresses, low EMI, and high power density (Outeiro et al., 2014).
As a result, RPCs are the most preferred converters in industrial
high-power systems compared to the traditional converters due to
their features of working at high frequencies and achieving SS.
Meanwhile, studies have suggested that certain aspects of RPCs need
improvement, such as the wide load fluctuations, dependability, high
power density, fewer number of components, high efficiency, tiny
size, low cost, and light weight (Batarseh, 1994; Chien et al., 2013).
This particular section focuses on RPCs in terms of their structure
and number of reactive components.

2.1 Structure of Resonant Power
Converters
The structure of RPC is produced by cascading different stages as
depicted in Figure 2 (Outeiro and Buja, 2015).

2.1.1 Control Switching Network
The CSN is the layer for the conversion of the supplied DC power
into AC power. The CSN switches are programmed to quickly
switch ON/OFF based on the working frequency for the
generation of the output voltage or current that feeds the next
step (Salem et al., 2018). The CSN (Figure 3) is controlled to
produce a square voltage VS(t) where its frequency (fs) is equal/
close to the resonant frequency (fr). This can be expressed by the
Fourier series in Eq. 1. CSN is commonly used with either a half-
or full-bridge configuration, but the employed configuration is
determined by the required power. High-power applications are
mostly operated with the full-bridge inverter while half-bridge
configuration (with low voltage switch rates) is more ideal for
high input voltage systems (Outeiro et al., 2014).

FIGURE 1 | Soft-switching converter family (Salem et al., 2018).
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VS(t) � 4Vg

π
∑

n�1,3,5,...

1
n
sin(nωst) with n � 1, 3, 5, 7, . . . . (1)

Wide-band gap devices are used in resonant converters to
improve power density and efficiency. These devices have a
substantially higher figure of merit, allowing them to
significantly boost power density and efficiency. Silicon carbide
(SiC) devices can run at hundreds of thousands of frequencies to
achieve higher power densities. The size of the passive
components is reduced while operating at a higher switching
frequency. The ON state resistance of the SiC-based MOSFETs is
significantly lower than that of Si-based MOSFETs for the same
conduction current rating. As a result, the conduction losses of
the SiC-based MOSFETs are lower, making them more efficient.
Hence, these devices are thought to be a good choice for on-board
chargers (OBCs). Despite the benefits of SiC and GaN devices,
there are a few drawbacks, such as their high cost, difficult gate
driver design, and complex EMI protection design. Furthermore,
increasing the working temperature from 50 to 150° reduces the
efficiency of GaN and SiC by 4% (Deshmukh et al., 2022).

2.1.2 Resonant Tank Network
The RTN, also called a tuned circuit, resonant circuit, LC circuit,
or tank circuit, is the next level. It is made up of reactive elements
for the storage of vacillating energy at the circuit’s resonant
frequency. The RTN stage of RPCs is the most significant. In
the high-frequency RTN, a stage is made up of 2, 3, or more
elements. Capacitors (C) and inductors (L) are the devices for
passive energy storage and can be coupled in a variety of ways.
Electromagnetic interference (EMI) and harmonic distortion

(HD) are prevented by using these reactive components to
generate current signals and sinusoidal voltage (Salem et al.,
2018). This period can be selected by the frequency selective
network because it serves as an energy buffer between the load
and the CSN as seen in Figure 2. In resonance condition, the
capacitance and inductance have equal impedances, paving the
way for the generation of the resonant frequency (Salem and
Yahya, 2019). RTNs can be classified based on either the number
of utilized reactive elements in the RTN or the manner of
connection of the elements. The group that is based on the
connection mechanisms has three common representative
resonant circuits, which are SRC, PRC, and SPRC (Salem
et al., 2018). The second group that depends on the number
of the reactive elements is classified into two-element resonant
tank (second-order), three-element resonant tank (third-order),
and multi-element resonant tank (fourth-, fifth-order . . .). These
types have many topologies; as a result, the more members in an
RTN, the more topologies are possible. However, not all element
combinations can result in a resonant condition (Batarseh, 1994).
The appropriate design and selection of RTN elements, as well as
the appropriate selection of the control mechanism may conserve
SS over a large load range; it also ensures constant converter
output voltage, and improve power conversion capabilities and
efficiency (Outeiro et al., 2016a).

2.1.3 Diode Rectifier Network With Low Pass Filter
This is the final stage in the structure of the resonance power
converter. The input is a sinusoidal voltage and current
waveforms, produced at the resonant frequency in the
previous stage; this input works as a pass filter that eliminates

FIGURE 2 | Structure of a resonant power converter (PRC) (Outeiro et al., 2016a).

FIGURE 3 | Equivalent circuit of CSN (Alatai et al., 2021).
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the voltage harmonics of the core component generated by the
CSN at its output. Then, it feeds the conditioning circuitry (CC)
stage at its input as a pulse waveform. The CC stage consists of a
diode rectifier DR and a low-pass filter (capacitive and inductive)
LPF (Figure 4). The main function of the DR-LPF stage is to filter
and rectify the AC signal that comes from the resonance tank in
order to get the DC output signal that is required to supply the
load. A filter (capacitive and inductive) determines the sink
nature of the current/voltage of the load. The DR with both
types of filter (capacitive and inductive) has been highlighted in
several works (Outeiro et al., 2014; Salem et al., 2018).

2.2 Classification of Resonant Power
Converters
RPCs can be categorized based on the number of employed
reactive components in the RTN; the classes include 2
elements, 3 elements, and multi-elements (Figure 5).

2.2.1 Two-Element Resonant Power Converters
Topologies
The two-element RTN or the second-order RC is further
categorized into SRC (Figure 6A) (Ibanez et al., 2015;
Witulski et al., 1986; Salem et al., 2014) and PRC (Figure 6B),
(Lin et al., 2013; Saha et al., 2018). As seen in Figure 7, 2-element
RPCs are available in eight topologies that have simple circuit
structure and minimal components; their storage tank is made up

of just two elements for energy storage. As in Figure 7, the
topologies at the top (a–d) are ideal for voltage source inputs,
while the ones in the bottom (e–h) are ideal for current source
converters (Outeiro et al., 2016a). In SRC, the LC elements are
connected in series with the effective load resistance Re (Figure 6)
(the topology b). Consequently, increases in Re decreases the
current through the CSN and RTN switches, and vice versa. SRCs
exhibit lower EMI than the hard switched converters, which
significantly reduces the size and switching-related losses. Hence,
they offer high power supplies and achieved better conversion
efficiency (Abdul-Hakeem et al., 2018; Bhuvaneswari et al., 2018).

As indicated in Figures 7A,D,H, PRCs have one or both LC
elements parallelly connected with the effective load resistance,
Re. These converters are capable of generating a constant
regulated current that protects against short circuits. For a
PRC, the output voltage can be increased and decreased. The
output voltage of a PRC can be controlled from full load to no
load by operating at a frequency above resonance. Furthermore, it
is excellent for use in short circuits to the point that even when the
load falls, the conduction losses remain constant in the
semiconductor devices; the efficiency is also high for light
loads (Bhuvaneswari and Babu, 2016). Because of the low
switching losses of this converter, it is ideal for use in high-
frequency, high-power systems. PRC functions as a constant
source of current when the resonant and switching frequencies
are equal. However, at lower switching frequencies compared to
the PRC, it is more of a constant voltage source for the output

FIGURE 4 | (A) DR with capacitive LPF, (B) DR with inductive LPF (Outeiro et al., 2016a).

FIGURE 5 | Clarification of resonant power converters (RPCs) (Alatai et al., 2021).
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voltage and has wide load fluctuation. It is the best choice for
voltage regulators (Azura et al., 2014). At high input voltage,
PRCs exhibit a high switch off current and high circulating
energy, and those are the two major problems of PRCs
(Huang, 2014). The disadvantage of SRC is the sharing of the
input voltage between the load and the resonant impedance,
which results in a DC gain of less than one. SRC is known to
exhibit substantially higher nonlinear dynamics, which makes the
control more difficult. On the other hand, the SRC output voltage
cannot be adjusted when there is no load (Salem et al., 2017a). For
the PRC, the voltage gain might be greater than one when
compared to SRC. As a result, PRC has the ability to increase
voltage. The operating area of PRCs, on the other hand, is
substantially smaller. When the load is light, there is no need
for much frequency fluctuation to control the output voltage
(Huang, 2014). Also, based on Martinez et al. (2018), it was
confirmed that parasitic resistances presented in the windings of
the coupled inductors have a great impact on the voltage gain and
the efficiency. In particular, it was observed that a converter with
a large number of components increases the probability of
parasitic resistance’s negative effect on voltage gain and
efficiency. Also, by considering the analysis of power core loss
of the resonant inductor Lr function, it was noticed that the
volume, core cross-section area, number of turns, and the type of
copper used in high-frequency inductors and transformers are
the main impacts of copper losses. Thus, by using the proper

copper material with low inductance value, and reducing the size
of volume and cross-section area, the effect on efficiency and
voltage gain will be significantly decreased (Salem et al., 2022).

2.2.2 Three-Element Resonant Power Converters
Topologies
There are 36 topologies in the third-order resonant tanks (three-
element RTN) or higher-order resonant tanks. The three-
component RPC has one additional element than the two-
element RPCs. Figure 8 illustrates some three-element RTN
topologies (Severns, 1992), where resonant tanks A-1 to A-9
are composed of two inductors and one capacitor and RTNs B-1
to B-9 are composed of two capacitors and one inductor. These
topologies with third-order resonant tanks (Huang et al., 2011;
Tan and Ruan, 2016; Fei, 2018) have been suggested to eliminate
the disadvantage of two-element topology as they are seen as a
hybridization of the benefits of most 2-element RPCs (SRC and
PRC) (Salem et al., 2020). These 3-element RPCs have features
that make them suitable for both light and heavy load
applications (Beiranvand et al., 2011). Furthermore, they are
capable of efficiently transferring power from the source to the
end-users.

Another benefit of 3-element RPCs is that the propagated
waveform is frequently sinusoidal, which means that the THD of
the output waveform is virtually zero. The EMI of a well-known
procedure for mono-frequency waveform transfer is generally

FIGURE 6 | AC equivalent circuits of two-element RPC topologies (Outeiro et al., 2016a).

FIGURE 7 | Two-element resonant tank network topologies (Salem et al., 2018).
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FIGURE 8 | (A) Topologies with 2L and 1C. (B) Topologies with 2C and 1L (Salem et al., 2018).

FIGURE 9 | (A) Topologies of 4-element resonant tanks (Salem et al., 2018). (B) Topologies of 5-element resonant tanks (Outeiro et al., 2016a).
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low (Luo and Ye, 2016). These topologies work with half-bridge
or full-bridge inverters. Compared to the conventional second-
order RPCs, the higher-order RPCs have more desirable
properties. Furthermore, the variety of resonant topologies
allows the designer to select the most suitable topology for
their application. The stable analysis of these converters,
however, becomes more complex because they are high-order
nonlinear systems (Batarseh, 1994). Three-element RCs have
been explored and tested in a variety of systems. Among them
are the LLC RC and LCC RPC, which are the most common 3-
element RTNs. Many other topologies have also been studied,
such as the CLL-RPC and LCL-RPC. Some of these topologies
will be thoroughly reviewed later.

2.2.3 Multi-Element Resonant Power Converters
Topologies
These are RTNs with four or more LC components; they exist in
about 98 different topologies, some of which are shown in
Figure 9A. (Batarseh, 1994). Five-element topologies exist in
hundreds of topologies as seen in Figure 9B. Compared to three-
element RPCs, multi-element RPCs have more benefits as most of
the benefits of the lower-order RPCs are also found in the multi-
element RPCs (Outeiro et al., 2016a). The RPC performance of
multi-element RPCs is relatively high; they also offer reduced
circulating energy and intrinsic current protection. Furthermore,
these converters can work with a short output circuit. Multi-
element RPCs can achieve zero current switching (ZCS) on the
primary side of the device and zero voltage switching (ZVS) on
the secondary side. These multi-element RPCs have a high power
density and are DC–DC converters with a high efficiency (Fu
et al., 2008). They achieve very low switching losses due to soft-
switching action. Furthermore, the injection of the third-order
harmonic improves the power process of these converters
compared to standard RCs. Hence, the RMS and peak
currents of the RTN are lowered, and the current and
conduction losses are reduced in the devices as well. Third-
order harmonics are also injected into the output voltage in
this topology to boost the RMS value (Fu et al., 2008).

Multi-element topologies have been reviewed in a number of
studies. The classification and a comparison of different
topologies of multi-element RPCs are presented in Huang
et al. (2011) and Outeiro and Buja (2015). The LCLC topology
of fourth-order RTs is presented in Ang (2006) and Outeiro et al.
(2016b). This topology combines the LLC and LCC properties. A
common application area of the LCLC RCs is in PV systems
where it is used in the maximum power point tracker (MPPT)
(Conesa et al., 2009); it is also used in electric vehicle charging (Lu
et al., 2015) and others. The LCLC RPC can also be used in high-
voltage, high-efficiency applications (Zhao et al., 2017a). In
Koscelnik et al. (2014), a review on multi-RPCs is presented
and three topologies have been selected: LCTLC, LCLCL, and
LCL2C2. However, the topology of LCL2C2 is still not extensively
investigated. The connection allows for multifunctional outputs
such as DC, AC with HF, or LF. The LCL2C2 topology is also
short-circuit proof; hence, LCL2C2 can be connected without a
transformer and still achieve a 97% conversion efficiency. The
system can also achieve THD approximately 4.5% and up to

93W/in3 power density (Dobrucky and Koscelnik, 2005). LCTLC
topology can achieve up to 94% power density and THD of less
than 5%; all these are in line with equipment requirements. At the
point of equal switching frequency values, the voltage transfer
function demonstrates that the resonant frequency gains equal
one; however, the converter is unaffected by the load size in this
situation. The same three topologies of multi-RPCs (LCTLC,
LCLCL, and LCL2C2) are described and analyzed in Dobrucky
and Koscelnik (2005). The multi-RPC is a viable alternative to the
existing DC–DC converters.

2.3 LLC Resonant Converter
This is one of the most common 3-element RPCs; they contain
three reactive elements, which are a series inductor, a parallel
inductor, and a series capacitor. The two inductors (Ls and Lp)
together with the capacitor (Cs) form a RTN. Figure 10A depicts
a circuit of the LLC RPC; it is seen as a normal SRC with an
additional inductor parallel Lp to the load (Yang et al., 2002;
Salem et al., 2018).

It is also worth highlighting that there is a topology similar to
LLC in the number and type of reactive element, that is, CLL
topology. Both topologies are found to have two inductors, and
one capacitor (2L + Cs), with a different arrangement in the
resonant tank. The series inductor in the CLL is connected to the
RTN’s output, whereas the series inductor in the LLC is
connected to the RTN’s input and is in series with the
capacitor. The CLL equivalent circuit, as seen in Figure 10B,
is made up of a capacitor Cs serially connected to the input
(which serves as both a resonance aid and a direct current
blocker), an inductor Ls serially connected to the load, and a
second inductor Lp parallelly connected between the inductor
Ls and the capacitor Cs. The CLL topology presents the same
behavior and shortcomings as in LLC but is able to integrate the
leakage inductance of the HF transformer in the RTN (Colak
et al., 2015; Outeiro et al., 2016a).

The LLC topology generates two resonant frequencies across
the whole operating scope, one of which depends on the series
inductor Ls and capacitor Cs and is called series resonant
frequency (frs), while the other is dependent on the three
elements Ls, Cs, and Lp together, and it is called
fundamental resonant frequency (frp) (Liu, 2017). frs and frp
are shown in Eqs. 2, 3 (Salem et al., 2018).

frs � 1
2π

�����
Ls.Cr

√ (2)

frp � 1

2π
�����������(Ls + Lp). Cr

√ (3)

AL � Ls

Lp
(4)

MV � 1����������������������������������
(1 + A)2[1 − (fr

fs
)2]2

+ [1
Q(fs

fr
) A

A+1 − fr

fs
]2√ (5)

The two resonant inductances AL are related as established in
Eq. 4; this is the most important concept when constructing the
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LLC converter. The relationship between the input voltage and
the output voltage is called the voltage-gain function, which
provides the basis of the LLC RPC design; it is derived using
Eq. 5. When it is operating at series resonant frequency, the LLC
and SRC exhibit similar characteristics. Under light load
situations, LLC functions more like PRC; however, it operates
similarly to SRC under heavy loads. At the system resonant
frequency, the peak gain occurs between the fundamental (frp)
and series (frs) resonant frequencies (Liu, 2017; Salem et al.,
2018).

The LLC RC has drawn much more attention because it gives
many advantages over conventional RPCs with two elements
(SRC and PRC). At the same time, it reduces their limitations.
LLC topology by using an inductor parallel to the resonant
capacitor can achieve no-load control, which is impossible to
achieve in the SRC (Outeiro et al., 2016a). In this converter,
however, excellent efficiency can be achieved when operating over
a wide load range (no load to maximum load), a wide input
voltage range, and a limited range of switching frequency, which
makes wide output regulation range. The primary and secondary
side rectifiers of an LLC can achieve ZVS and ZCS, respectively;
they can also achieve minimal voltage stress on the secondary
rectifier because this converter does not need to use secondary
filter inductor voltage stress.Hence, there is a possibility of
reducing the voltage stress on the diodes of the rectifier by
twofold compared to the output voltage. This converter can
also achieve ZVS + ZCS features with high efficiency in both
forward and backward modes (Bhuvaneswari and Babu, 2016;
Cao et al., 2019). ZVS and ZCS can also be realized over the full
operational range. Low switching losses are also recorded because
they use ZVS and ZCS. ZVS can also be performed with no load,
resulting in lower EMI losses. SS mechanisms are disabled,
resulting in a MOSFET switching transistor with a minimal
turn-off and low switch-off current losses. Both step-up and
step-down functions can be implemented with LLC RPC with an
additional wide range of input voltage via frequency control (Tian
et al., 2016; Cao et al., 2018).

An additional benefit of the LLC converter is that it is easy to
combine the magnetic components of this converter in one
magnetic core; only one capacitor filter is needed on the
secondary side, thereby reducing the complexity of the circuit
(Cao et al., 2018). LLC topologies have been used in both half-
bridge and full-bridge primary inverters; it has also been used
with the secondary side of either center-tapped or full-bridge
rectifiers (Huang, 2010). This converter provides high
performance and becomes a good option for high-voltage
applications. The topology is highlighted in many studies, for
example, the design of LLC topology, analysis, simulation, and
optimization of its parameters (Huang et al., 2016; Xu et al., 2017;
Rusu et al., 2019; Tian et al., 2020). These converters are mostly
preferred due to their higher energy conversion efficiency, high
power density, and LLC RPCs. Among the applications that
utilized LLC RPCs are electric vehicle battery chargers (Cetin
and Yenil, 2018; Wei et al., 2018), photovoltaic applications
(Rubino et al., 2013; Tayebi et al., 2018), induction heating
applications (Phadungthin and Haema, 2017), x-ray imaging
(Ou et al., 2019), and a novel hybrid full-bridge three-level
LLC converter that can be implemented for fuel cell power
systems (FCPSs) (Jin and Ruan, 2006). LLC RPCs can also be
used in computer systems as front-end power supplies; it can also
be used in other consumer devices like LCD, LED, and plasma
displays in TV and flat panels, as well as for high-power LED
lighting applications (Acar Vural et al., 2017; Ma et al., 2017). The
SS performance, increased efficiency, decreased electromagnetic
interference, and step-up voltage flexibility of LLC RPCs make
them ideal for use in high-voltage systems (Samsudin et al., 2017).

2.4 LCC Resonant Converter
The LCC RPC is also one of the most common three-element
RPCs. LCC topology contains three reactive elements, which are a
series inductor (Ls), a series capacitor (Cs), and a parallel (Cp)
capacitor. The two capacitors (Cs and Cp) and one series inductor
Ls together form a resonant tank RTN. Figure 10C depicts the
circuit diagram of the LCC RPC. These converters are regarded as

FIGURE 10 | Equivalent circuits of (A) LLC resonant converter circuit (Alatai et al., 2020); (B) CLL resonant converter circuit (Salem and Yahya, 2019); (C) LCC
resonant converter (Outeiro et al., 2016a); (D) LCL resonant converter (Alatai et al., 2021).
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conventional SRC with an extra capacitor that is parallelly
connected to the load; hence, it is commonly called a series-
parallel RC (SPRC) (Salem et al., 2018; Nielsen, 2013). The LCC
converter also has two resonant frequencies, which is due to the
arrangement of the three reactive elements in the RTN. The first
frequency based on the series elements (Ls, Cs) is called the series
resonant frequency (frs) and the second one is based on all three
tank elements (Ls, Cs + Cp), which is called the parallel resonant
frequency (frp), (Eqs. 6, 7); note that frs < frp. The LCC topology
is a combination of SRC and PRC characteristics. The series
resonant frequency frs assists in operation, but the parallel
resonant frequency frp dominates LCC. Subsequently, LCC
has the same limitations as the PRC (Bhuvaneswari and Babu,
2016). It is important to carefully select the ratio between the two
resonant capacitors (AC) in LCC converters to ensure that it suits
the required peak gain. Equation 8 is used to determine the
characteristics of the voltage gain of LCC converters with a
capacitance ratio of 1 (AC = 1), with the voltage gain to light
loads leaning toward the frp parallel resonant frequency, while
the converter behaves more like a PRC parallel resonant. The
peak voltage for high load conditions leans towards the frs and the
LCC converter characteristics tend to be similar to the SRC
characteristics, with a voltage gain closer to unity.
Accordingly, the LCC converter has similar characteristics to
the PRC converter, besides having the advantages of SRC
attributes. However, the resonant components must be
selected correctly (Outeiro and Buja, 2015).

frs � 1
2π

�����
Ls.Cs

√ (6)

frp � 1

2π

��������
Ls( CsCp

Cs+Cp
)√ (7)

MV � 1�������������������������������������
(1 + AC)2[1 − ( fs

frp
)2]2

+ [1
Q(fs

frs
) − AC

AC+1
frs

fs
]2√ (8)

The LCC converter is an effective topology for highly efficient
power converters, allowing wide operation with high
performance. Because of the low switching losses, the LCC
RPC can operate at higher switching frequencies while
retaining high and almost constant efficiency over the whole
load and input voltage range (Pawellek et al., 2011; Deepika and
Elakkiya, 2014). The LCC is also the better option for high output
voltages because of the presence of capacitor at the output
winding. At high voltage, the parasite capacitances in windings
and diodes usually cause ringing problems and additional power
loss but not in the LCC topology. The parasitic capacitances are
eliminated by the output capacitor (Nielsen, 2013). In the LCC
converter, a large input voltage range is possible, but it will then
suffer from high RMS currents over the whole input voltage
range. Therefore, the resonance capacitors must be carefully
chosen and must be special types to withstand high AC
currents. In addition, high frequency of switching at low load
may cause EMI problems (Nielsen, 2013). The high-magnitude
current and the high frequency of resonant capacitors (Cr) entail
that they must exhibit a low dissipation factor (DF). Electrolytic

and multilayer X7R ceramic capacitors, for example, have a high
DF; hence, they are not recommended. The low DF of the NP0
ceramic capacitors makes them employable despite their limited
capacitance range. Capacitors consisting of metallized
polypropylene film are commonly utilized in RPCs. These
capacitors have a very low dielectric constant (DF) and can
handle high-frequency current. It is advised that before
selecting voltage rating, it should be derated based on the
selected switching frequency (Huang, 2010). The topology of
the LCC varies from that of the LLC by the order of both resonant
frequencies. As such, LCC cannot work with an open circuit or
short circuit in a safe manner (Outeiro et al., 2016a). Similar to
the LLC converter, LCC converters have been studied extensively.
Among the highlighted aspects are the design optimization,
analysis of operation modes, and performance behavior (Liu
et al., 2018; Chen et al., 2020). LCC RPC has been used and
experimented in several industrial systems, among them, in
battery chargers for PV systems (Rakhi et al., 2014), furnace
power supply during electron beam melting (Haifeng and Peng,
2017), x-ray applications (Pernía et al., 2017), and xenon flash
lamp simmer circuit (Song et al., 2019).

2.5 LCL Resonant Converter
The LCL RPC is considered a conventional SRC with an extra
inductor in parallel (Lp) with the primary side of the high-
frequency (HF) transformer or secondary side. However, the
placement of the parallel inductor (Lp) on the secondary side
will allow maximum usage of the magnetizing and leakage
inductances of the HF transformer. This parallel inductor and
the inductor (Lp) can also be integrated into the transformer.
Moreover, the value of inductor required on the secondary side is
smaller than required on the primary side. The rectifier bridge also
has a small equivalent inductance at the input. Hence, this topology
is also called “modified SRC” or “LCL-type SRC”. The LCL RTN
circuit is depicted in Figure 10D (Bhat, 1994; Bhat, 1997). The
RTN of an LCL converter comprises two resonant frequencies: frs,
which is produced by the resonant elements Ls and Cs, and frp,
which is determined by all tank components. If the switching
frequency is greater than the resonance frequency and the gain is
less than 1, the LCL converter will operate like a traditional SRC
(Salem et al., 2017b). The operation of this converter for the entire
load and specified supply voltage changes is within the lagging PF
mode (Bhat, 1995). This converter mainly suffers from the
magnetizing and leakage inductances of high-frequency
transformers that serve as components of the resonant circuit.
Hence, the parallel inductor is mostly small-sized, making the
magnetizing inductance only profitable when Lp is placed on the
secondary side. This circumstance can considerably lower the
converter weight, size, and cost. Obviously, the magnetizing
inductance is enough to be considered the parallel inductance
(Almardy and Bhat, 2011; Almardy and Bhat, 2015), and the
voltage of the output rectifier is attached to the output voltage.
Additionally, the converter relies on SS when used for inverter
switches based on switching frequency range. In comparison to the
usual SRC- and LCC-type converters (Almardy and Bhat, 2011),
the needed switching frequency variation for the wide changes in
load and supply voltage is small. A slight increase in the switching
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TABLE 1 | A comparison between the most common three-element topology (LLC, LCC, and LCL).

Comparative
points

LLC LCC LCL

Advantages ■ It can achieve ZVS across the whole
operating range. It achieves low MOSFET
turn-off current, meaning that the switching
loss is low

■ The LCC is a better option for high output
voltages, due to the parallel capacitor. Also,
the parasitic capacitances are eliminated by
the output capacitor (Nielsen, 2013)

■ This converter can be operated above
resonance for the entire load and at specified
supply voltage variations (Bhat, 1995)

■ Provides very high efficiency over a wide input
voltage range and load variation range (Cao
et al., 2019)

■ Ability to operate above and lower resonate
frequency

■ The HF transformer has a magnetizing
inductance that can be exploited as part of the
resonant circuit (Almardy and Bhat, 2011;
Almardy and Bhat, 2015)

■ The voltage stress on the rectifier diodes can
be minimized, and ZCS is achieved for the
rectifier diodes, no reverse recovery loss of
the rectifier (Cao et al., 2019)

■ At low di/dt, the antiparallel diodes turn off and
fails to generate reverse-recovery current
spikes. Hence, it is safe to be operated above
resonant frequency (Outeiro et al., 2016a)

■ The use of the magnetizing inductance of the
transformer to enhance the conductivity of the
RTN enables the LCL RPC to produce high gain
output voltage with a wide ZVS range (Salem
et al., 2017c)

■ The ripple of the input current and output filter
is low (Jin and Ruan, 2006)

— —

■ Can work in both step-down and step-up
modes (Azura et al., 2014)

— —

■ Its bidirectional design allows operation in
both forward and backward modes and still
achieve a good output power (Bhuvaneswari
and Babu, 2016)

— —

■ The integration of the magnetic components
into one magnetic core can be done with
ease. The transformer’s leakage inductance
can also be utilized

— —

Disadvantages Difficult to achieve startup and short-circuit
protection because of the flat gain above the frs.
Hence, it is impossible to operate the LLC
topology safely with an open circuit when the
frequencies are close to frs; it can also not be
safely operated with a short circuit when
frequencies are close to frp (Fu et al., 2008;
Outeiro et al., 2016a) (Pridala et al., 2018)

LCC operation with a short or open circuit is not
safe (Outeiro et al., 2016a). Two large and
expensive independent physical capacitors are
required due to the high AC currents (Outeiro
et al., 2016a). The efficiency level is just
marginally higher at low input compared to high
input voltage (Pawellek et al., 2011)

One major drawback of LCL type SRC with
inductive filter is that high voltage stresses on the
output rectifier is observed (Bhatt, 2017)

• Resonance capacitors must with stand high
AC currents and must be specific types
(Nielsen, 2013)

Load variations It has a wide load variation range. Up to 20% of
the full load to full load (Salem et al., 2020)

It is not suitable for wide load variation, but it has
a wider gain range

It has a wide load variation range by 50% (Salem
et al., 2017c) and from 100% to 20% of the full load
(Bhatt, 2017)

Voltage gain It has a high voltage gain, with a recorded
voltage gain equal to 5 in Salem et al. (2020) and
6.25 in Bhuvaneswari and Babu (2016). An LLC
converter can have a very high voltage gain of
more than 10 (Kumar et al., 2018a)

LCC has the ability to provide a wider voltage
gain compared to LLC and LCL (Outeiro et al.,
2016a)

It has the ability to achieve high gain, as it was
recorded equal to 3 in Salem et al. (2017c) and
Bhatt (2017)

Efficiency The efficiency of the proposed LLC converter in
Salem et al. (2020) is 96.2%within the operating
frequency range. A theoretical peak efficiency of
97.7%was obtained at full load (Cetin and Yenil,
2018). The prototype study showed a
conversion efficiency of 96% (Cao et al., 2019)

The peak efficiency in different loading
conditions reached 94.8% (Ramezani et al.,
2019)

An LCL converter efficiency of 94.2% was
achieved at full load (Du and Bhat, 2016) while the
dual-tank LCL-type DC–DC converter achieved
94.3% efficiency using Si MOSFETs for the full load
(Bhatt, 2017)

The maximum efficiency of the bidirectional
three-phase LCC RC was about 92.2% during
step-down mode and 91.7% during step-up
mode (Ahn et al., 2019)

The measured efficiency for the dual-tank LCL-
type DC–DC converter using SiC MOSFETs is
97.1%, for the full load (Bhatt, 2017)

Applications LLC is applied in electric vehicle battery charger
applications (Cetin and Yenil, 2018; Wei et al.,
2018), in photovoltaic applications (Rubino
et al., 2013; Tayebi et al., 2018), in induction
heating applications (Phadungthin and Haema,
2017), and in x-ray imaging (Ou et al., 2019). It is
suitable for fuel-cell power systems (Jin and
Ruan, 2006). Besides, it is also widely adopted

LCC RPC is suited for high-voltage applications
(Abdul-Hakeem et al., 2018) and has been used
in battery chargers for PV systems (Rakhi et al.,
2014), in furnace power supply during electron
beam melting (Haifeng and Peng, 2017), in x-ray
applications (Pernía et al., 2017), and for xenon
flash lamp simmer circuit (Song et al., 2019)

This type of converter is good for use in low-
voltage, high-output current systems, and it can be
used in power systems and telecommunication
(Bhat, 1994). It is good for applications such as
space and radar high-voltage power supplies and
it can also be used with a stand-alone wind
generator (Bhat, 1997). Besides, it was applied
and succeeded to achieve improvement in some

(Continued on following page)
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frequency above the required level for full load operation will main
the converter efficiency and confer other desirable features on the
converter (Bhat, 1994); there will also be a decrease in the peak
current passing through the switches as the load current reduces
(Bhat, 1995; Almardy and Bhat, 2011). The LCL converter rely on a
wide range of ZVS to achieve high gain output voltage by
enhancing the RTN conductivity using the magnetizing
inductance. This converter combines variable frequency and
fixed frequency (duty-cycle) management to enable it to handle
a wide range of load variations (Salem et al., 2017c). The LCL-type
SRC has enhanced power densities and numerous desirable
properties; hence, it is ideal for use as stand-alone generators
and in space and radar high-voltage power supplies (Almardy
and Bhat, 2015). It is also usable in electronic systems and power
supplies (Bhat, 1994). Besides, it has been applied in high voltage
systems and electric vehicle battery chargers (Gautam and Bhat,
2012; Salem et al., 2017c). The LCL RPC has been analyzed,
designed, and published in several research works
(Harischandrappa and Bhat, 2014; Du and Bhat, 2016; Almardy
and Bhat, 2019).

2.6 Comparison Between Three-Element
Resonant Power Converters Topologies
Resonant converters with three-element RTN have been widely
studied and experimented in many industrial applications,
among them are LLC, LCC, and LCL, which are the three
configurations compared in Table 1.

3 RESONANT POWER CONVERTERS FOR
RENEWABLE ENERGY SOURCES

Some of the applications of RPCs include grid-connected renewable
energy converters such as solar, fuel cells, wind, and electric vehicle
charging systems via wired or wireless power transfer. The
integration of RES to grid requires high-efficiency converters with
little current ripple. The fundamental requirement for power
processing from RES is DC–DC converters. Among the various
options for the DC–DC converter, RPCs can be a major contender
due to their high efficiency and power density that can be achieved
via SS at the high operating frequencies, low MI, and robustness
(Outeiro et al., 2016b; Salem et al., 2018). As a result, RPCs are
mostly used in PV systems (PVS), wind energy conversion systems
(WECS), fuel cell systems (FCS), and grid connection interfaces.

3.1 Wind Energy Conversion Systems
The study by Fan et al. (2013) compared the performance of LCC
RPC with that of the hard-switched full-bridge converter (HSFB)
as a linkage to a wind energy electrical source (WECS). The study
found the LCC RPC to be more efficient at above half load
condition than the HSFB converter. The possibility of using an
LCC RPC forWECS is demonstrated by the achieved experimental
data. Another study by Moury and Lam (2015) proposed two
modular MV step-up DC–DC converters for MVDC grid in wind
energy systems; the system incorporates numerous modules of
step-up resonant circuits and high-gain, high-frequency rectifiers.
The suggested converters demonstrate the ability to obtain
substantial voltage gain with a high-frequency transformer with
a unity turn ratio while minimizing the power switch-related
voltage stress. A highly efficient solution was proposed by
Dincan et al. (2019) for wind turbines linked to MVDC
networks; the primary side of the proposed system has SRC
with LC tank. The architecture was proposed as a unique
solution for DC–DC topologies with medium frequency, high
voltage gain, and high power. The study by Shu et al. (2017)
presented a system for offshore wind farm distribution that
consisted of two transformers (one main and one auxiliary),
two full-bridge inverters that share a bridge leg, and a voltage-
doubler rectifier. A prototype was developed and used to
demonstrate the design and working principle of the proposed
converter. The SRC proposed by Dincan et al. (2018) has a
resonant tank on the high-voltage side; the system was
proposed as a solution for high-voltage DC wind turbines; the
low transformer size and its high efficiency allow the control of the
output power and improve efficiency.

3.2 Fuel Cells
This technology is chosen because of the benefits associated with
resonant conversion, notably the minimization of switching
losses. The inverter’s turn-on losses are low because the
switches are ZVS switched on. As a result, the switch off and
conduction losses are considered for each IGBT; these were
23 W at full load and 17 W at 25% of the condition for the
employed topology (Salem et al., 2022). The study by Outeiro
and Carvalho (2013) presents a concept for the design of a
DC–DC RPC for use in PEM fuel cell systems. Another work by
Jin and Ruan (2006) describes a unique H-FB TL LLC converter
for use in FC power systems. The suggested converter exhibited
a high efficiency over a broad range of input voltage, as well as a

TABLE 1 | (Continued) A comparison between the most common three-element topology (LLC, LCC, and LCL).

Comparative
points

LLC LCC LCL

in other applications, such as for front-end
power supplies in computer systems and
consumer electronic devices such as LCD,
LED, and plasma displays in TV and flat panels,
as well as for high-power LED lighting
applications. (Acar Vural et al., 2017; Ma et al.,
2017). It is also suitable for high-voltage
applications (Samsudin et al., 2017).

applications such as high-voltage application and
electric vehicle battery charger application (Salem
et al., 2017c).
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low input current ripple and an output filter. The use of an LLC
RPC in a FC-based power system was presented by Boscaino
et al. (2014); the system can be used in FC automobiles. The
entire system exhibited excellent conversion efficiency due to
the SS features of LLC RPC. In the work by Buccella et al. (2015),
a nonlinear LLC RPC model was proposed in combination with
an observer-based controller. The output stabilizing capability
of the proposed system was demonstrated over a range of load
variations; the system was found better than the conventional
PID controller.

3.3 Electric Vehicles
RPCs are widely used in electric and hybrid electric vehicle (HEV)
charging systems that require wired or wireless charging of the
batteries. Wired EVs charging (Fang et al., 2015) and plugged-in
EVs (Deng et al., 2014) require the introduction of RPCs to reduce
size and achieve high efficiency. The study by Musavi et al. (2013)
proposed a high-performance (H-P) LLC converter for use in a 2-
stage battery charging system. The converter eliminates the low-
and high-frequency ripple on the battery, thereby improving the
battery life without expanding the charger’s size. Different studies
(Hua et al., 2016; Dalala et al., 2018; Kim et al., 2019; Subramaniam
et al., 2019) have suggested other topologies that utilize RPCs for
wired charging systems. In order to minimize costs while
increasing vehicle performance, high-efficiency and high-power
density battery charger designs are becoming increasingly critical
in EVs (Emadi et al., 2008) for the improvement of vehicle
performance and reduction of cost (Yilmaz and Krein, 2013).
The on-board battery charger’s design allows the possibility of
charging the battery of vehicles from any power outlet. This end-
user flexibility has encouraged interest in EVs (Whitaker et al.,
2014). The optimization of the operation region of an LLC RPC for
on-board battery charging system has been assessed in Cetin and
Yenil (2018). The design optimization considers a wide range of
load conditions and output voltage regulation, both of which are
necessary for lithium-ion battery charging applications. At full
load, the theoretical peak efficiency of the system was
approximately 97.7%. There are numerous DC–DC RPCs for
on-board battery charging systems in EVs (Lee, 2015; Çetin,
2017; Shen et al., 2018). Another charging system for electric
andHEVs is the wireless power transfer (WPT)method, which has
become an alternative to wired charging systems (Kan et al., 2017).
The currently existing WPT systems are those for electric,
electromagnetic, and magnetic power transfer. For the magnetic
coupling system, RPCs are used to achieve high power
transmission and maximum efficiency at close distance. Studies
have documented the use of RPCs in WPT for EVs and HEVs (Li
et al., 2015; Samanta and Rathore, 2015; Na et al., 2019).

3.4 Induction Heating
The popularity of RPCs for IH has increased tremendously due to
its efficiency, quick heating, precise power control, and safety
compared to the conventional heating systems. RPCs are the
main component for achieving the expected performance in
such systems (Salem et al., 2018). For this purpose, half-bridge,
full-bridge, and multi-inverter have been utilized as resonant
inverters. The study by Haema and Phadungthin (2018)

suggests the creation of an LLC resonant inverter (RI) for use
in saw blade induction heating. The use of half bridge RI in the saw
blade IH application is aimed at the provision of good power
supply for IH, with suitable output power and great efficiency. The
development of a high-frequency full-bridge series RI for use in
induction-heating cooking equipment has been described by
Bhaskar and Vishwanathan (2012). The system is simple in
design and operation, and it is also quite inexpensive. The work
of researchers in Kumar et al. (2018b) proposed a full-bridge
parallel RI (FBPRI) for industrial IH applications that improves
the performance and efficiency of the traditional IH systems using
a pulse density modulation (PDM) technology. The suggested
technique ensures the achievement of ZVS/ZCS condition and
lower switching losses under various loads. In the IH system
described in Neogi et al. (2019), a high-frequency series RI
(HFSRI) was used. The reliability of the proposed system was
validated through a stability study of the high-frequency inverter
circuit that forms the core of the IH system. It was proven that
systems with higher stability are more reliable. A multiphase RI
with vertical coupled coils was presented by Gomes et al. (2020) for
use in IH systems; the phase-shift control strategy of the proposed
system improves the power capability of the system.

3.5 Photovoltaic Systems
The RPCs are widely used in PVs due to their high power density
and efficiency. The SS techniques in such systems reduce the
switching losses significantly (Outeiro et al., 2016b). In Ragab
et al. (2017), a full-bridge LLC RPC has been proposed for a grid-
connected double-stage photovoltaic (PV) system to step up the
output voltage of the PV array. The proposed converter has the
advantages of wide input regulation capability and SS, which allows
for high-frequency and high-efficiency operation compared to
traditional isolated converters. A half-bridge series-parallel RPC
(HBSPRPC) was proposed by Rakhi et al. (2014) for a PV system
and secondary battery interface. The design of the converter was
aimed at keeping the battery free of high- and low-frequency
current ripples. A study by Vakacharla and Rathore (2019)
presented a stand-alone SS current-fed LCC-T RPC for the PV/
FC system. The suggested converter can achieve SS over a great
range of input and load variations, higher gain, continuous input
current with minimum ripples, lower harmonic content, higher
efficiency, and higher power density. In LaBella and Lai (2014), a
novel isolated hybrid RPC was presented for PV applications with
numerous operating modes (Buck, pure series resonant RC, and
boost mode); these modes were implemented using a simple
topology with few components. The power conversion efficiency
of the proposed converter is high over a wide range of input-
voltage and output-power. Several RPC topologies for grid-linked
PV systems have been proposed in Zhao et al. (2017b), Altin et al.
(2019), Jean-Pierre et al. (2019), and Tayebi et al. (2019).

3.6 Some Recently Proposed Resonant
Topologies for RESs
Independent converters have the primary function of
maximizing power extraction from renewable energy sources
(such as wind or solar) under varying environmental conditions.
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Multi-input converters have been proposed to reduce the
required number of components via sharing the output stage
of many converters. However, under specific load levels, most of
the works provided mostly lose soft-switching functions in the
power switches. Hence, an asymmetrical PWM (APWM) multi-
input isolated RC is presented for a 1-kW PV-wind integrated
system by Jean-Pierre et al. (2019) (see Figure 11); the aim of
this proposal is to realize soft-switching for varying load
circumstances, as well as to offer isolation in the power
electronics interface.

Each module has an APWM LCC resonant isolated converter
with a series resonant capacitor (Cs) and a series resonant
inductor as its input stage (Ls). High-frequency rectification is
provided by two diodes (Ds1 and Ds2) at the output of the high-
frequency transformer. In each module, the parallel diode and the
output inductor (Lf) are shared between all the input modules,
with Lo operating in continuous conduction mode (CCM) to
supply steady current to the output. This converter ensures
individual and simultaneous activity of the input sources, but
this is dependent on the source availability. To achieve ZVS turn-
on in all switches, the LCC resonant circuit must be driven above
resonance in each module. The turn-off switching losses can be
reduced by adding a tiny snubber capacitor across each switch.
The connection of an AC input (single-phase or three-phase) to
an AC voltage normally requires the inclusion of a power factor
correction (PFC) front-end stage to reduce the input-sourced
current harmonics. On the other hand, the two-stage method
tends to increase the number of controllers, the overall number of
circuit components, and the circuit cost. The connection of the
input module to an AC voltage demands the integration of the
APWM RC in each module with the front-end PFC converter
using switch M4, which is shared by the APWM RC and PFC
stage. The testing and verification of the system was verified and
tested with a switching frequency of 70 kHz and a voltage output
of 100 V. To simulate five series-connected solar panels, the
converter’s first module was connected to a 175-V DC source
(each 35 V). A 1-kW permanent magnet generator with a 300-V

rated voltage was connected to the second module. At full load,
the converter achieved 92.2% conversion, and at 20%, it
achieved 89.6%.

For multi-energy integration systems, bidirectional RCs are
considered a better option. Examples of this configuration
include battery storage, UPS, motor drives, and vehicle to grid
(V2G) applications. Their performance in high-frequency solid-
state transformers is also satisfactory. To expand the number of
connected devices using a single converter, several upgrades and
modifications have been made. Multiport converter topologies
have been developed as a result of this demand. Several RC
configurations have been integrated with PV systems and
battery storage as multiport structures. The study by Lam and
Jain (2014) described a half-bridge LLC RC in which two inputs are
coupled to one PV and one battery storage system. A non-isolated
resonant multiport switching capacitor was presented by Nasiri
and Jean-Pierre (2020) for renewable energy and battery storage.

Figure 12 shows a multiport RC design with a PV system,
battery energy storage, and utility grid as the three primary
components. A common DC bus Vdc is shared between the
PV and battery energy storage systems; it serves as the input or
output of the RC depending on the operation mode. The
configuration of the battery energy storage was done using a
bidirectional buck-boost converter that is connected in parallel to
the PV; this configuration forms the two bidirectional converter
ports at node A. Through the voltage source inverter, the utility
grid serves as the other port of the converter. The high-frequency
transformer transports power from node A to node B. The
renewable energy source is designated by the letterVpv, which
stands for the PV system’s voltage. The input capacitor is Cpv, the
battery storage voltage is Vbat, and the bidirectional buck-boost
converter’s inductance is Lbat. Vdc and Vo can be used as either
the input or output DC voltage of the LLC RC based on the
operating mode. Cdc and Co constitute the DC bus capacitor. To
obtain the MPPT, the current in the energy storage system of the
battery is regulated. The grid-connected 3-phase voltage source
inverter may transmit power either from the PV and battery

FIGURE 11 | Multi-input LLC isolated resonant converter for hybrid wind–solar energy system (Lam and Jain, 2014).
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storage to the grid or from the grid to the battery storage. The
power can come from a combination of solar panels, battery
storage, and/or the grid. As a result, this converter arrangement
can operate in two different modes: forward and backward. The
validation of the system was done using LLC RC, Buck-Boost
converter, and voltage source inverter (VSI) with switching
frequencies of 20–60, 30, and 10 kHz, respectively; the grid
voltage and frequency of Vg, fg 230 V/50 Hz were also
utilized. A stable power flow was maintained between the
ports; the main voltage values at each port was kept constant
regardless of the operation mode. This system can use only one
transformer to combine two sources and offer galvanic isolation
to the grid (Namadmalan et al., 2020).

A dual-active bridge SRC (DAB-SRC) is a common structure
for the regulation of bidirectional power flow in high-power
devices such as fast charging of EVs (Kala et al., 2017). Figure 13
depicts an EV charging stage using DAB-SRCs to enable V2G
bidirectional power flow capability (Jebaselvi et al., 2013). DAB-
SRC also has the advantage of being able to be deployed in a

modular framework without the requirement for additional
input or output filters.

This approach has the major problem of tuning the power
and frequency of the power converters using minimum phase
displacement or circulating current (Lin and Chu, 2016). This
problem was addressed by proposing a self-tuning approach
with fast dynamics and no tolerance sensitivity. This approach
was used recently to tune the power and frequency of wireless
charging of EVs using the IPT technology [137]. The study by
Jin et al. (2014) relied on the self-tuning loop’s parameters to
obtain the design parameters for the DAB-SRC, such as DC-
link voltages, minimum and maximum transferred power,
switching frequency bandwidth, and temporal displacement
between the two active bridges. This basic design increased the
performance of bidirectional DAB-SRCs utilizing the self-
tuning approach; this is due to the establishment of an
intrinsically constant time delay between the two active
bridges from light load to full load; hence, ZVS was
obtained for all the switches.

FIGURE 12 | Multi-port LLC resonant converter for PV, ES, and utility grid integration (Nasiri and Jean-Pierre, 2020).

FIGURE 13 | An electric vehicle (EV) charging station with n-number of charging stages and m-number of paralleled DAB-SRCs (Namadmalan et al., 2020).
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The depiction of the fast charger system is shown in
Figure 14. AC/DC rectifier, full-bridge LLC RC, and a light
electric vehicle (LEV) battery. The DSP (TMS320F28335) was
utilized to control and sense the system voltage and current in
the fast charger. The MOSFET gate (Dalala et al., 2018) is the
switching component of the LLC converter. The switching stress
can be reduced by adopting a soft start to lower the inrush
current at the initial start. System control was achieved using
pulse frequency modulation (PFM) and PI control. A different
control mechanism for lowering charging time is required in the
case of an LEV battery with LIB and SC. This system’s input and
output voltages are roughly 250–300 VAC (voltage alternating
current) and 25.6–33.6 VDC (voltage direct current),
respectively. The SC output voltage is approximately 048 V
while the control current for the system is 30 A.

In the ZVS region, this fast-charging device uses an LLC RC
with SS features. Air and environmental pollutants have reduced
the use of lead-acid batteries. Hence, this LEV system with a Li-
ion battery (LIB) of 800Wh and SC of 50Wh is considered a fast-
charging scheme as the charging time is about 1 h. Furthermore,
in the CC mode, the highest output current (30 A) conversion
efficiency was 96.4%.

4 CHALLENGES AND FUTURE WORK
RECOMMENDATIONS

The rapid growth of power electronics devices and technology has
increased the application of RES in power grid. This has led to
concerns about the power quality, intermittent nature, reliability,
and protection of energy transmitted to the grid. As a result, many
grid regulations and standards exist for grid-connected RES to
preserve grid power quality (Jebaselvi et al., 2013; Kala et al.,
2017). From the present literature review, some research areas,
and future challenges in the PRCs and their renewable energy
systems (RESs) applications are highlighted:

• The intermittent nature of the power provided by grid-
connected RES is one of the major challenges. The
worldwide energy share of renewables is expected to rise
even further in the future. As a result, researchers should

pay more attention to the issue of injected power
fluctuations in the grid.

• RPCs have found wide application in various power
conversion systems recently. This is mostly owing to its
attractive features, such as higher power density and
efficiency in comparison to traditional PWM converters.
However, there are still a number of issues and research
challenges in the field of RPCs that must be addressed to
improve their performance. It may require making
modifications either on the circuit design or control
strategy to eliminate them, and thus improve the
performance of these converters.

• The LLC RPC is a promising converter and has several
advantages that enable it to perform better than other RPC
topologies. As a result, it has become a popular power source
for a variety of applications. The LLC RPC, however, has a
number of challenges, including start-up, SR driving
mechanism, short-circuit protection, magnetic design,
and EMI noise reduction (Huang, 2014; Outeiro et al.,
2016a; Outeiro et al., 2016b; Cao et al., 2018; Rusu et al.,
2019). This necessitates further investigation.

• High-voltage systems are better operated using multi-
phase and multi-level RPCs. However, when compared
to SLCs, there are notable restrictions, such as output
current imbalances between phases, difficulty in the
analysis of the control systems and operating modes, as
well as the need for numerous electromagnetic
components and switching devices. As a result, they
have become unworkable in terms of size and cost (Jin
et al., 2014; Lin and Chu, 2016; Salem et al., 2018).

5 CONCLUSION

RPCs have been investigated in many aspects in this paper; this
review covered the significant development of RPCs as a
solution to the problems of EMI and switching losses.
Resonant converters were also classified from numerous
perspectives in this review. In addition, the highlighted
topologies were compared in various aspects such as merits,
drawbacks, and efficiency. In terms of applications, this article
focused on renewable energy systems that utilized RPC. This

FIGURE 14 | The fast charger for light electric vehicle LEV using an LLC resonant converter (Kim et al., 2019).
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review also covered most of the notable studies on RPCs, which
have been utilized in renewable energy sources, with the hope of
providing insight into the current challenges of RPCs in
renewable energy applications.
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