
Economic Analysis of Transactions in
the Energy Storage Power Market: A
Life-Cycle Cost Approach
Shuangfeng Dai1, Ze Ye1*, Wen Wei1,2, Yali Wang1 and Fei Jiang3

1College of Economics and Management, Changsha University of Science and Technology, Changsha, China, 2College of
Economics and Management, Hunan University of Science and Technology, Yueyang, China, 3College of Electrical and
Information Engineering, Changsha University of Science and Technology, Changsha, China

Aiming at the impact of energy storage investment on production cost, market transaction
and charge and discharge efficiency of energy storage, a researchmodel of energy storage
market transaction economic boundary taking into account the whole life cycle cost was
proposed. Firstly, a peak-valley filling time division method based on equal capacity is
proposed, which effectively improves the peak-valley time division and the accuracy of ES
should scene switch. On this basis, a control strategy of “off-time reuse” is proposed to
give full play to the function of “one standby multi-purpose” of energy storage, which
improves the energy storage utilization rate and economic benefits. Secondly, an
economic boundary model based on the life-cycle cost of energy storage and the
evolution function of energy storage cost is constructed and solved by improved
genetic algorithm. Finally, the simulation results show that compared with mono-peak
control, the UTILIZATION rate of ES is increased by 16.25% and the investment recovery
life is shortened by 1.17 years with “off-time reuse” strategy. Compared with the fixed
division method, the investment recovery life of “peak clipping and valley filling” period
division method is shortened by 1.75 years. In 2022, compared with the critical value of
0.76 yuan/kWh for fixed charge-discharge efficiency and cost, the critical value of the life-
cycle cost model is 0.8 yuan/kWh, with an error of up to 5.26%.

Keywords: accumulation energy, peak shaving, idle hours reuse, cost evolution function, peak-valley price
difference boundary, genetic algorithm

1 INTRODUCTION

The peak valley difference of load increases significantly with the continuous increase in industrial
and residential load levels and the implementation of the “dual carbon” policy, which poses great
challenges to the peak regulation of power systems (Chen et al., 2021). In recent years, based on the
rapid response capacity of ES and the function of peak cutting and valley filling, it has been widely
used in assisting peak shaving in power systems (Aneke and Wang, 2016; Ould Amrouche et al.,
2016). As a result, the economic benefits of ES primarily come from the “peak-valley price difference”
of peak regulation. Therefore, how to construct the “peak-valley price difference” boundary value
model in electricity market transactions has become a research focus (Cao et al., 2021; Cai and Li,
2021).

Scholars have carried out a series of studies on the economics of ES in peak shaving. In literature
(El-Zonkoly, 2014; Chen and Song, 2015), according to the peak load shaving demand for the power
grid, the peak load filling function of ES and the advantages of market participation in the business
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model and economic scheduling of charge and discharge can
bring considerable benefits to the power system. It shows the
economic and technical feasibility of ES participating in peak
regulation. Literature (Sigrist et al., 2013) developed the economic
operation optimization model of a centralized, isolated system,
and evaluated the economic benefit and the effect of peak
regulation of ES systems. From a demand-side management
perspective, research (Fazelpour et al., 2013; Finn et al., 2012)
proposed that charging ES devices during off-peak load periods
can reduce charging costs and studied the charging and
discharging strategies of ES according to peak and valley
pricing. The literature (Zhang et al., 2020; Padmanabhan et al.,
2019) believes that accurate estimation of battery degradation
cost is one of the primary obstacles to batteries participating in
the energy arbitrage market. Therefore, a model-free deep
reinforcement learning method was proposed to solve the
battery degradation model and optimize the battery energy
arbitrage problem. Literature (Zhang et al., 2021) proposed a
bilateral auction model named the “Average Pricing Market”
mechanism, aiming to solve the problem of loss of energy
transaction income caused by the large difference between
time-of-use power price and grid purchase price. Meanwhile,
to handle the uncertainty in electricity price, a scenario-based
stochastic formulation was developed in (Krishnamurthy et al.,
2017) for battery energy arbitrage in both day-ahead and real-
time markets. To analyze the impact of ES on the Danish
electricity market, a schedule optimization model was
developed with the objective function of minimizing the ES
system’s operation costs (Dai et al., 2014). To solve the
charging economics problem, accurately forecast future power
prices, and reduce the ES charging cost using dynamic
programming theory (Fekri Moghadam et al., 2015). A supply
chain management method based on a low-carbon economy,
combined with game theory, is used to study the pricing of ES and
promotion plans. To analyze the interest relationship between ES
equipment manufacturers, ES equipment operators, and power
users, the literature (Song et al., 2019) used the game analysis
approach to determine the benefit equilibrium state for the three
elements. Research (Attarha et al., 2018; Jiang and Peng, 2021)
proposed an affinely adjustable, robust bidding approach for solar
power with battery storage to address the uncertainties of both
PV solar power production and electricity prices.

While the above literature review shows that prior studies have
made significant contributions to promoting ES’s participation in
power market services, there are still some problems: 1) At the
present stage, the benefits of energy storage’s participation in
electricity market services mainly depend on “peak clipping and
valley filling”, but there are few reports on how to determine the
peak and valley period, and the fixed peak and valley period is
basically used for calculation. However, in different seasons, load
curves are different, and the peak and valley period has deviation,
thus affecting the economy of ES auxiliary service. 2) At present,
fixed energy storage cost and charge-discharge efficiency are
mostly used to solve the economic boundary value of energy
storage, and the research on the evolution trend of energy storage
cost and charge-discharge efficiency is still in the initial stage.

To this end, themain contributions of this paper are as follows:
1) It proposes a peak-valley splitting method based on equal
capacity, which effectively improves the peak-valley splitting
and the accuracy of ES should scene switching. On this basis,
a control strategy of “off-time reuse” is proposed to give full
play to the function of “one standby multi-purpose” of energy
storage, which improves the energy storage utilization rate
and economic benefits. 2) Construct an economic boundary
value model based on the life-cycle cost and cost evolution
function of energy storage, which fully considers the cost
variation of energy storage and the charge and discharge
efficiency, and uses the improved genetic algorithm to solve.
To make it more in line with the actual project, for
investment enterprises to make decisions to provide more
reliable theoretical basis.

2 ECONOMIC MODEL OF ES IN
ELECTRICITY MARKET TRADING

The charging and discharging efficiency of ES varies with the
charging and discharging times and operating time. The
investment and construction costs of an ES power station
vary with the power station’s operating time, as does the cost
ratio. Therefore, this study proposes a life-cycle cost
economic model to accurately describe the economic
benefits of ES in electricity market transactions.

2.1 ES Cost Model
Based on the existing research on ES costs, a dynamic life-cycle
cost model is created by factoring in the natural aging of ES
batteries and the cost components in different stages of the
battery’s life. The definitions and calculating methods of each
component are as follows:

2.1.1 Power Station Investment Cost CIC

CIC � Cic + Cie + Cii + Cio (1)
where Cic is the construction cost; Cie is the cost of equipment
purchase; Cii is installation engineering fee, and Cio is other
expenses.

2.1.2 Operating Cost COC

COC � Coe + Coh (2)
where Coe is energy consumption and Coh is labor cost.

2.1.3 Maintenance Cost CMC

CMC � Cmr + Cml (3)
where Cmr is the cost of daily equipment maintenance and Cml is
the cost of scheduled maintenance.
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2.1.4 Replacement Cost
The actual service life of some batteries may be shorter than the
rated service life. Battery change is required to ensure the normal
operation of the system. The cost can be expressed as follows:

Cex � (1 − α)βnCe × EESS

η
(4)

where Cex is ES replacement cost, α represents the annual cost
reduction rate of each battery replacement, β is the number of
replacement, η is the charge and discharge efficiency.

2.1.5 Failure Costs CFC

CFC � (cfTm + λTf)N1 (5)
where cf is the average repair cost per failure per unit time, N1 is
the number of failures, Tm is the average repair time, λ is the
average penalty cost per failure per unit time, and Tf is the
duration of the fault.

2.1.6 Scrap Cost CDC

C · C · K · d (6)
d � 1 − Tp

������
Kd/K0

√
(7)

where Cdl is the scrap disposal cost, K0 is initial value, d is rate of
depreciation, Kd is surplus value at the end of T, and T is life cycle.

2.1.7 Cost Depletions CPC

CPC � μ(PC

ηc
p(1 − ηc) + PF

ηc
p(1 − ηf)) (8)

Where nc = nf is the charge and discharge efficiency, PC = PF is the
amount of charge and discharge each time, and μ is the unit price
of charge.

2.2 ES Revenue Model
The National Development and Reform Commission and the
National Energy Administration jointly issued the Notice on
Actively Promoting the Work of Wind Power and
Photovoltaic Power Interconnection without Subsidies on
9 January2001, proposing to accelerate the development of
wind and photovoltaic power interconnection. Based on the
antipeak-shaving characteristics of new energy, ES revenue
will primarily rely on “peak cutting and valley filling” to earn
the peak-valley price difference in the next few years. It earns
subsidies by working as a grid backup (auxiliary service)
during idle periods. Therefore, ES revenue is divided into
peak cutting and valley filling, as well as revenue from the
ancillary service market.

2.2.1 Revenue From Peak Cutting and Valley Filling
Peak cutting and valley filling mostly refer to ES charging during
off-peak load periods and discharging during peak load periods to
earn the grid price difference. Additionally, fuel costs and
environmental governance costs are reduced by reducing the
thermal power unit’s peak load. Therefore, the benefits of peak-
cutting and valley-filling are both direct and indirect.

2.2.1.1 Direct Benefits of Peak Cutting and Valley Filling

B1 � (ηfPD,t − PC,t)ΔtPprice (9)
where Pprice is the real-time peak-valley price difference of
power grid.

2.2.1.2 Direct Benefits of Peak Adjustment Compensation
In 2016, the National Energy Administration issued a notice
“about promoting the auxiliary electric ES to participate in the”
three north area peak service notice provisions: construction of
ES facilities, storage and joint participation in peak shaving or as
an independent subject in the peakload ancillary services market,
discharge power according to the power plant’s contract price
settlement. Compensation income is calculated as follows.

B2 � e∑N2

i�1
Ei (10)

where B2 is the annual peak adjustment compensation income, Ei
is the peak regulating electric quantity on that day, i.e., the
contract price, and N2 refers to peak adjustment days in a year.

2.2.1.3 Indirect Benefits of Sewage Costs

B3 � ∑K
k�1

ηfPD,tαkΔtPprice,k (11)

Here K is the total number of pollutants, αk is the emission
density of pollutant K, and price, k is the unit emission cost of
pollutant K.

2.2.1.4 Indirect Benefits of Fuel Costs
The function of “peak clipping and valley filling” of ES can
effectively reduce the peak load of thermal power units, thus
reducing the fuel cost. The equivalent benefit is as follows:

B4 � ∑N
i�1
EiPfuelCfuel (12)

where Pfuel is the generating capacity per unit and Cfuel is the unit
price of fuel.

The benefits of ES peak cutting and valley filling can be
summed up as follows:

Ixf � B1 + B2 + B3 + B4 (13)
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2.2.2 Ancillary Services Market Revenue
If ES is used exclusively for “peak cutting and valley filling,” ES
income will be reduced. Hence, to reflect the ES’s “one standby
multipurpose” function, this study proposes the technique of
“idle time reuse,” in which ES participates in auxiliary grid service
when it is not involved in peak regulation, acting as a backup
power source for the grid. At the moment, the income primarily
comes from the grid subsidy, which can be expressed:

Ity � ∑T
t�1
⎛⎝∑365

t�1
RePF

⎞⎠ (14)

where Re is the reserve compensation price of the ES, and PF is
spare the capacity.

2.2.3 Delay Grid Investment Construction Income
As the load increases, new equipment is needed to upgrade the
distribution network. By constructing ES power stations on the
grid side that can release power during peak load, it is possible to
reduce the load rate of substations and the capacity demand of the
distribution network, thereby replacing the traditional power
network expansion scheme.

Idelay � Cinv × Pm × (1 − 1+it
1+r)n

n
(15)

where Pm is the capacity delayed power grid expansion due to ES
investment and construction, that is, the rated power of ES, and
Cinv is the cost of building additional capacity for the unit, RMB
ten thousand/MW, it is the rate of inflation.

Summing up the above, dynamic lifetime Net Present Value
(NPV) can be represented as:

NPV � ∑4
k�1

⎧⎨⎩BkV0k − CDCkV1k − CIC

−∑k
k�2

(CPC + COC + CMC + CFC + Cex)kV0k

⎫⎬⎭ (16)

Bk � Ixf + Ity + Idelay (17)
V0k � ((1 + r)g(k) − 1)/(r(1 + r)g(k)) (18)

V1k � 1/(1 + r)f(k) (19)
where k is the total number of stages in the life cycle, which
includes the construction period, trial run period, stable period,
and decline period. CIC occurs primarily in the construction
period, COC, CMC, CFC, CPC, and Cex occurs in the trial
operation period, stable period, and decline period. CDC occurs
during a recession; Bk is ES revenue. V0k is the coefficient of the
sum of the present values of stage K.V1k is the discount coefficient
of residual value at the end of stage K. r is the social discount rate.
g(k) is the duration of phase k. f (k) is the operating life of the
storage stage K before operation.

2.3 Economic Evaluation Index of ES
The following economic evaluation indexes are constructed to
better evaluate the feasibility of the proposed method.

2.3.1 Payback Period
Project investment PP is the time required for a project to recover
its initial investment in full. The longer the PP, the higher the
investment risk.

If the investment project has the same net cash flow each year,
the calculation formula of PP is

PP � CF0

(CI − CO)t (20)

where PP is the static investment payback period, (CI–CO)t is the
net cash flow in year T, CI is cash inflow, CO is cash outflow, and
CF0 is the initial investment. If the net cash flow of the investment
project is not equal each year, the PP calculation formula is as
follows:

PP � (T − I) + A

(CI − CO)t (21)

where A is the unrecovered investment at the end of t-1, and T is
the year when cumulative net cash flow was positive for the
first time.

The dynamic PP calculation formula must meet the following
requirements:

∑Tp

t�0
(CI − CO)t(1 + i0)−t � 0 (22)

where i0 is the discount rate, usually the industry benchmark rate
of return.

2.3.2 Net Present Value
NPV is the sum of the present value of the discounted project at
the beginning of maturity. It is a method for evaluating
investment proposals; if the NPV is positive, the investment
scheme is acceptable; if the NPV is negative, the investment
scheme is theoretically unacceptable.

2.3.3 Implied Rate of Return
The Internal Rate of Return (IRR) is the actual expected rate of
return of a project investment. The bigger the IRR, the better the
investment. IRR is calculated as follows:

∑n
t�0

(CI − CO)t
(1 + IRR)t � CF0 (23)

3 PEAK-VALLEY PERIOD DIVISION
METHODANDCONTROLSTRATEGYOFES

3.1 ES Control Strategy
This effectively improves ES efficiency and income. This study
proposes a control strategy based on “idle time reuse,” in which
ES participates in the power grid dispatching as reserve resources
to increase its income during the idle phase. It fully uses the ES
function of the “one standby multipurpose” mode. The working
state division of ES in a day is shown in Figure 1.
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3.2 Peak-Valley Period Division Method
of ES
Currently, research on “peak cutting and valley filling” for ES is
highly advanced. However, most of them are based on
fixed peak and valley periods and peak and valley values,
but peak and valley periods vary slightly throughout
seasons. As a result, this study proposes a variable power
“peak clipping and valley filling” method for determining
the peak and valley period and subsequently improving the
accuracy of the model.

The mismatch between ES output and actual load peak
adjustment occurs when ES’s historical constant power
charging and discharging approach, as well as the
local reverse peak phenomenon, are used. This study
proposes a variable power “peak cutting and valley filling”
method that can dynamically adjust the charge–discharge
power according to the load peak adjustment requirement,
thus smoothing the load curve and improving the accuracy of
peak and valley time division. The specific procedure is as
follows:

Step 1: Import the original load PL to obtain the maximum and
minimum load values, Pmax and Pmin.

Step 2: The rated power and capacity of the ES are Pm and Em,
respectively, while the current available capacity of
the storage is En. By starting with the initial value of
the peak clipping line Px = Pmax and decreasing the
step size △P, the intersection points t1 and t2 of Px =
Pmax-k×△P and the load curve can be obtained. Then,
the energy released by ES during peak cutting is as
follows:

Sf � ∫t2

t1

(Pmax − Pi)dt (24)

When peak clipping capacity Sf = En, Px is peak clipping line;
If Sf < En, the number of iterations k = k + 1, update peak
cutting line Px until Sf = En. The peak cutting output of ES is as
follows:

Pbess−x � PL − Px (25)

Step 3: Take the initial grain filling line Pt = Pmin, and move
up with step △P.The intersection points t3 and T4 of the
filling line Pt = Pmin + k × △P, the load curve, and the
energy absorbed by ES during valley filling is as follows:

Sg � ∫t2

t1

(Pi − Pg)dt (26)

When the filling capacity is Sg = En, Pt is the filling line. If
Sg < En, iteration times k = k + 1, update peak clipping line Pt

until Sg =En. The absorption power of ES during valley filling
is as follows:

Pbess−t � PL − Pt (27)
Thus, the amount of charge and discharge and peak

and valley periods of ES during “peak cutting and valley
filling” can be determined. Its control process is shown in
Figure 2.

FIGURE 1 | Trading period division of ES’s participation in the electricity market.

FIGURE 2 | ES peak-valley period flow chart of division method.
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4 AN ECONOMIC BOUND MODEL BASED
ON THE COST EVOLUTION OF ES

The unit production costs will gradually decrease with the
development of ES technology. If the fixed cost is used to
calculate the investment benefit, it will not give an accurate
investment decision. This study develops an economic bound
model of electricity market transactions based on the evolution of
ES costs to give an accurate investment decision.

4.1 Mathematical Model of ES Cost
Evolution
This section uses the learning curve theory to fit the ES cost
evolution function (Qin, 2020) as follows:

Y � AXb (28)
Y is the product unit of wood, A is the unit cost of the first

product, X is the cumulative output of the product, and b
represents the learning rate index, usually 0 < b < 1.

Currently, development scale and research and development
investment are two key factors affecting the cost of ES. Therefore,
this study constructs the two-factor learning curve, for example.

C(xt, yt) � C(x0, y0) × (x0

xt
)m

× (y0

yt
)n

(29)

where C (x0, y0) and C (xt, yt) are the initial unit and the unit cost
of ES in the t year, respectively. X0 and Xt are the cumulative
production scales in the initial and t years, respectively. Y0 and YT

are the accumulated R&D investment in the initial and t years
respectively; m and n are the elasticity coefficient of cumulative
output and R&D investment, respectively.

To facilitate fitting, take the logarithms of both sides of Eq. 24
and convert them into a linear function, which can be
expressed as:

LnC(xt, yt) � LnC(x0, y0) +mLn(x0

xt
) + nLn(y0

yt
) (30)

According to relevant parameters in literature (Qin, 2020), the
cost evolution function can be expressed as:

C(xt, yt) � 0.89 × (x0

xt
)0.046

× (y0

yt
)0.202

(31)

4.2 Economic Boundary Mathematical
Model of ES
4.2.1 Annual Limit Value Model of Investment Income
It is proposed in this section that the sum of the present value of
the benefits of charging and discharging of an ES system in each
period equal the present value of the cost of the whole life cycle of
charging and discharging in each period be used to determine the
economic boundary of ES (Qin, 2020). Namely:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
∑n
i�0
NPV � 0

∑n
i�0

Ri

(1 + r)i � ∑n
i�0

Ci

(1 + r)i
(32)

where Ri is the income of ES system in the i year; Ci is the i th
annual cost of ES system, and n is the life of ES system.

Additionally, the sum of the discounted value of the product of
the annual leveling KWH cost of ES Pdj and the current electricity
production En is equal to the sum of the discounted value of the
annual life-cycle cost of the ES, namely:

∑n
i�0

Pdj i × En

(1 + r)i � ∑n
i�0

Ci

(1 + r)i (33)

The return on the investment period may be computed using
Eqs 27, 28 for a certain level of electricity cost and power
production En.

4.2.2 Economic Income Boundary Model
To enhance the economic border mathematical model of ES, this
part develops a crucial value model for resolving the equalization
KWH cost Pdj over the entire life cycle. Assuming that the leveling
KWH cost Pdj remains constant during the life of the ES system, it
may be calculated using Eq. 1. To enhance the economic bounder
mathematical model of ES, this section develops a critical value
model for resolving the equalization KWH cost Pdj in the whole
life cycle. Assuming that the leveling KWH cost Pdj remains
unchanged throughout the whole life cycle of ES, it can be
calculated using Eq. 28:

Pdj �
∑n
i�0

Ci

(1+r)i

∑n
i�0

En

(1+r)i
(34)

Additionally, when taken with the life-cycle cost of ES in
Section 2:

Pdj �
∑n
i�0

CDCkV1k+CIC+∑k

k�2(CPC+COC+CMC+CFC+Cex)kV0k

(1+r)i

∑n
i�0

EN × hi × ηi
(1+r)i

(35)

Where EN is the rated capacity of ES, hi and η I are the utilization
hours and efficiency of ES in the first year, respectively.

5 THE GA ALGORITHM IMPROVED THE
MODEL

To save space, this section will not go into detail about traditional
GA. However, its process analysis is covered in literature (Basu,
2013). This section discusses ways to optimize and improve the
GA algorithm and the mechanism through which it solves
problems.
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Traditional GA algorithms include concepts such as elite selection,
fast nondominated sorting, and crowded distance to perform their
work (Srinivas and Deb, 1994). The superiority, diversity, and
convergence of a population are directly determined by the elite
selection operator (Jiang and Tu, 2019). Therefore, this section
focuses on optimizing the elite selection operator in the GA
algorithm. The following are the specific operations:

In the literature (Dhanalakshmi, et al., 2011; Jeyadevi, et al.,
2011), the following operators are proposed to improve it.

Nm � N × ( 1 − r

1 − rk
) × rm−1 (36)

where Nm is the number of reserved populations in m rank of
non-dominant order, N is the population size, and k is the total
number of non-dominant ranking levels.

Although the problem of population diversity is effectively
solved in the preceding equation, Nm and gt exists. Nm* (where
Nm* is the actual number of individuals in the nondominant
ordering m level), which leads to the decrease of the selected
population level by level, until the final population number is less
than N, or even no solution. Based on this, the literature (Wang,
2020) proposed adding a fault-tolerant term to accommodate the
difference between the two values and accumulating the
difference to the next level until N individuals are taken,
which not only increases computational complexity but also
makes it difficult to select an appropriate fault-tolerant
variable factor. Based on this, the optimization operator
proposed in this study is shown in Eq. 37, as shown in

Figure 3, which is the selection probability of individuals of
different grades under different R parameters of the optimization
elite selection operator.

Nj � Np
j exp[(r/k) − r] r ∈ (0, 1) (37)

It is not difficult to find from the figure that when r = 0.75 and
k = 10 are selected, the optimization effect of the elite selection

FIGURE 3 | Probability of individual selection at different.

FIGURE 4 | Improved GA algorithm solving process.

TABLE 1 | Basic parameters of an ES battery.

Basic parameter Mumerical value Basic parameter Mumerical value

ES station capacity 27.7 MW/80 MWh Battery cycles (times) 5,500
Battery Cost (ten thousand yuan) 3,062.8 Battery life cycle (years) 10
Civil construction cost (ten thousand yuan) 2,398 Charging and discharging times (times/day) 2
Battery capacity decay rate 2% Rate of depreciation 20%
Battery discharge depth/efficiency (construction period) 0.7/0.9 discount rate 8%
Battery discharge depth/efficiency (trial operation period) 0.8/0.9 Battery discharge depth/efficiency (trial operation period) 0.9/0.9
Battery discharge depth/efficiency (decline phase) 0.75/0.75
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operator is the best. Therefore, r = 0.75 and k = 10 were selected
for further simulation. At the same time, it can be further found
that in all grades, the number of individuals selected in the

population is greater than 1/2, which effectively ensures that
the optimal population number meets the requirement of N. At
the same time, the probability of individual selection decreases
with the increase in rank, which effectively ensures that the
characteristics of elite individuals are inherited and accelerates
the convergence speed (Qin, 2020). The solving process based on
the improved GA algorithm is shown in Figure 4.

In section 6.2 and 6.3, economic comparative analysis
simulation is mainly carried out, so Eq. 16 is taken as the
objective function. In section 6.4 simulation analysis,
economic boundary value is mainly solved. After the

FIGURE 5 | ES reserve compensation price.

TABLE 4 | Annual costs and benefits of “peak cutting and valley filling”.

Annual cost (ten
thousand yuan)

Initial investment cost 3,062.8

Operation and maintenance
cost

59.4

scrap cost −17.2

Annual income (ten thousand yuan) peak shaving 3,293.3
environmental revenue 35.1
peak shaving 208.5

Annual net Income (ten thousand yuan) 432.4
PP (year) 9.26

FIGURE 6 | Load curve.

TABLE 3 | Type and cost of emissions.

Gas species Displacement (kg/MWh) Cost (yuan/kg)

dust 0.5 2.92
SO2 0.5 6.24
NOx 0.75 8.03
CO2 0.3 0.03
CO 0.05 1.01

FIGURE 7 | ES output in multiple peak and frequency modulation
scenarios.

TABLE 2 | TOU power price.

Type Peak Flat section Valley The peak-valley
price differenceTime frame Price Time frame Price Time frame Price

great industry 8:00–12:00 1.0 12:00–17:00 0.6 04:00–8:00 0.3 0.7
17:00–21:00 21:00–4:00

general industry 8:00–12:00 1.3 12:00–17:00 0.8 04:00–8:00 0.4 0.9
17:00–21:00 21:00–4:00
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objective function value of Eq. 16 is worked out, Eq. 32 is
substituted for solution.

6 THE SIMULATION ANALYSIS

6.1 Simulation Parameter Basis
This paper takes an ES station in Jiangsu province as an
example for analysis. Pm = 27.7MW, rated capacity EN =
80MWh, adopt two charge and two discharge mode, charge
and discharge 270 days a year, ES battery parameters are
shown in Table 1. The peak-shaving compensation
standard is 2 yuan/MW, and the deep peak-shaving

compensation standard is 0.5 yuan/MWh. The participants
participate in deep peak shaving for 140 days throughout the
year. The subsidy price of auxiliary services is shown in
Figure 5, and the participants participate in the auxiliary
services for 240 days throughout the year. The TOU power
price are shown in Table 2, and the carbon emissions of
thermal power units are shown in Table 3. The construction
period, trial operation period, stable period, and decline
period of an ES battery are 1, 1, 6, and 2 years, respectively.

6.2 Economic Comparative Analysis of the
“Idle Time Reuse” Control Strategy
6.2.1 Economic Analysis of “Cutting Peak and Filling
Valley”
It is assumed that the maximum iteration number of the GA
algorithm is 500, the iteration termination error is 10–10, the
population size is 200, and the crossover probability is 0.3 and
0.1, respectively. Annual costs and revenue are shown in

FIGURE 8 | Load curves in different seasons.

TABLE 5 | ES efficiency.

Scene Action times The total time Use ratio (%)

Peak shaving 1,082 1,440 75.14
Ease disturbance 234 1,440 16.25
When idle reuse 1,316 1,440 91.39

FIGURE 9 | Division curves of peak and valley periods of different
seasonal loads. (A) Fixed peak-valley period. (B) The improved method
divides peak and valley periods.

TABLE 6 | Annual cost and benefit of “idle time reuse” control strategy.

Annual cost (ten
thousand yuan)

Initial investment cost 3,062.8

Operation and
maintenance cost

84.44

scrap cost −17.39

Annual income
(ten thousand yuan)

peak shaving 3,293.3
environmental revenue 35.1
Delay grid investment
construction income

208.53

Reserve power gain 45.41
Annual net Income
(ten thousand yuan)

452.49

PP (year) 8.09
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Table 4. The curve of “peak cutting and valley filling” is shown
in Figure 6.

It can be seen from Figure 6 that the peak value of the load
curve is reduced from 205.32 to 177.24 MW through the function
of ES peak clipping and valley filling, and the peak clipping rate
reaches 13.68%, alleviating the peak load pressure of the power
grid. When combined with Table 4, the initial investment cost
accounts for 98% of the total cost, and the scrap cost includes the
residual value provided by the ES battery resource recovery,
which is negative, showing that the scrap cost can bring
additional revenue. It has a 9.26 year investment recovery
duration and a 10 year ES life cycle, indicating that the cost
can be recovered within the life span.

6.2.2 Economic Analysis of “Leisure Time Reuse”
Figure 7 shows the output value of ES after adopting the control
strategy of “idle time reuse,” where standby is mainly to suppress
equivalent load disturbance. The ES operation times and
utilization rates of “peak clipping and valley filling” and
“disturbance suppression” are shown in Table 5. Table 6
shows the annual cost, annual income, and annual net income
under the control strategy of “off-time reuse.”

When the “off-time reuse” control strategy is adopted for
ES, the output power of ES is consistent in the period of “peak

cutting and valley filling,” as seen in Figure 7. When the
system load increases, the ES discharges, and when the load
decreases, the ES utilization rate effectively increases by
16.25%.

When Table 4 and Table 6 are compared, the investment
and construction costs remains unchanged, while the
operation and maintenance costs increase slightly, due to
the standby state contributing to load disturbance
suppression and increasing the number of operations.
However, because the ES contributes to suppressing load
disturbance during idle periods, the reserve power gain is
greater than the cost. Therefore, annual net income
increased by 201,200 yuan when only “peak cutting and
valley filling” were used, and the investment recovery life
was reduced by 1.17–8.09 years.

To summarize, by using an “off-time reuse” control method
for ES, not only can annual net income be increased and the
investment recovery period shortened, but also the use of ES can
be effectively increased. Then, realize the dual purpose of

FIGURE 11 | Relationship between ES efficiency and critical peak-valley
price difference.

FIGURE 10 | Variation trend of ES cost.

TABLE 7 | Distribution table of peak cutting and valley filling period.

Time frame Working condition

21:00–01:00 standby application
01:00–06:00 Fill in the valley
06:00–09:00 standby application
09:00–12:30 peak clipping
12:30–17:30 Fill in the valley
17:30–21:00 peak clipping

TABLE 8 | Results of economic indicators.

Partition method Fixed peak-valley period Methods
in this paper

PP (year) 8.09 6.34
NPV(thousand yuan) 452.49 813.41
IRR (%) 4.13% 9.43%

FIGURE 12 | Critical peak-valley price difference under different ES cost
models.
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improving ES use and grid economy, which has good
research value.

6.3 Analysis of the Impact of Peak-Valley
Division on ES Economy
To further analyze the impact of peak-valley time division on ES
economics, an “off-time reuse” control method for ES has been
adopted. Load curves in different seasons are shown in Figure 8,
and curve division in peak and valley periods is shown in
Figure 9. The fixed peak-valley period (see Table 2) and the
“peak clipping and valley filling” period proposed in this study are
divided into two periods, as shown in Table 7. PP, NPV, and IRR
are shown in Table 8.

As shown in Table 8, the PP of the ES station using the peak-
valley division method presented in this study is 6.34 years, and the
investment can be recovered before the battery life expires, which is
1.75 years shorter than the fixed division method. Additionally, the
NPV of the ES power station is 8.1341 million yuan, which is far more
than the fixed division method. Meanwhile, the IRR of ES power
stations is 9.43%, which is higher than the 3.97% interest rate on 5 year
Treasury bonds issued in 2020. It fully shows that the “peak cutting and
valleyfilling” time divisionmethodwith equal capacity proposed in this
paper effectively improves theESutilization rate. This ismainly because
of the equal-capacity period divisionmethod. It effectively improves the
peak-valley time division and the accuracy of ES scene switch, giving
full play to the role of ES. However, the fixed time divisionmethod fails
to give full play to the capacity of ES in the peak-valley cutting and
valley filling period, thus reducing economic benefits.

6.4 Analysis of the Impact of ES Cost
Evolution on Economic Critical Value
To further analyze the impact of ES cost evolution on economic
critical value, assuming that the life of ES facilities is 10 years, the
critical value of the peak-valley price difference between fixed and
evolving costs is compared and analyzed. The cost of ES can be
calculated using Eq. 31, as shown in Figure 10. The impact of ES
efficiency on the profit critical price difference is shown in
Figure 11. The critical value of the peak-valley price difference
between an investment over its whole life cycle and fixed cost is
shown in Figure 12.

As ES technology advances, the cost of ES will gradually decrease,
as shown in Figure 11. By 2030, the cost of lithium batteries will drop
to about 3,000 yuan/kW. As shown in Figure 12, the charge and
discharge efficiency of ES is negatively correlatedwith the critical peak-
valley price difference for ES profit.When the efficiency is increased by
5%, the critical peak-valley price difference decreases by 0.005 yuan/
kWh. This also indicates that while resolving the important peak-
valley difference in ES investment profit, the charge–discharge
efficiency of ES, i.e., the influence of the entire life cycle of ES,
should be fully considered. The critical values of ES efficiency
decline and remain constant during the entire life cycle of ES.
When the influence of the entire life is considered, the critical
value is relatively high, because the charge and discharge efficiency

of ES decreases significantly during the construction period, and
especially during the decline period.

7 CONCLUSION

In view of the influence of ES construction investment decision
on ES production costs, market peak-valley price difference, and
ES charge and discharge efficiency, a method for determining the
economic boundary value of ES power market transactions is
proposed. Using simulation analysis, the following conclusions
can be drawn:

1) Based on the multi-purpose function of ES power station.
Compared with monotone peak control, the utilization rate is
increased by 16.25%, NPV is increased by 201,200 yuan and
investment recovery life is shortened by 1.17 years. The
proposed “peak clipping and valley filling” time division
method improves the accuracy of peak and valley time
division, and then realizes the accurate switch between
peak and frequency modulation working state. Compared
with the fixed division method, the investment recovery life
is shortened by 1.75 years.

2) The whole life-cycle cost model of ES and the evolution
function model of ES cost are constructed, which
effectively improve the reliability of critical value, as shown
in Figures 11, 12. If fixed charge–discharge efficiency is used,
critical value results will be seriously affected; the critical value
in 2022 is 0.76 yuan/kWh when the whole life cycle, ES aging,
and other factors are not considered, while the critical value is
0.8 yuan/kWh when the aging effect is considered, and the
error is as high as 5.26%.

To summarize, the method proposed in this study improves
the solution model for ES investment critical value by taking into
account actual operating conditions, making it consistent with
the actual project, improving the reliability of the results, and
providing a theoretical basis for investment enterprises to make
decisions.
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