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INTRODUCTION

Increasing global energy demand (Zhang et al., 2016; Shen et al., 2019), exhausted fossil fuel
resources (Wei Yao et al., 2015; Yang et al., 2015), and deteriorating ecological environment have
threatened the healthy development (Liu et al., 2016; Kalyan and Rao, 2021; Noman et al., 2021) of
the world. Hence, numerous clean production technologies (Zhang et al., 2015; Bakeer et al., 2021;
Iqbal et al., 2021) are conceived as candidates to alleviate energy depletion (Chen et al., 2019; Wang
et al., 2020; Dzobo et al., 2021). Among them, hydrogen energy utilization (Yang et al., 2020a) plays a
considerable role in alleviating environmental pressure and reconstructing energy structure because
of its protruding characteristics of pollution-free and high energy conversion (Erdiwansyah et al.,
2021). Besides, hydrogen (Zhang et al., 2021a) is used as an alternative renewable energy supplement,
while solid oxide fuel cell (SOFC) techniques arouse extensive attention and research studies due to
effective and dependable conversion of chemical energy into electrical energy. It is particularly
noteworthy that accurate and reliable SOFC system models are hindered owing to the inherent
nonlinearity, strong coupling, and diversification. Therefore, to address the aforementioned
obstacles, advanced SOFC modeling approaches (Yang et al., 2020b) with flexible parameter
identification technologies should be proposed for better behavior prediction and performance
research. At present, the practical application of SOFC modeling and parameter identification is
confronted with many challenges. First of all, the current research articles lack the description of
overall accurate models about cell stack because the influence of electrical coupling is ignored.
Second, after selecting an appropriate model, current parameter identification strategies also have
potential defects, while advanced methods are worthy of further consideration and research. This
study gives a clarification of the abovementioned problems and puts forward some perspectives on
various SOFC modeling and parameter identification technologies.

SOFC MODELING

Accurate and reliable SOFC system models have a crucial part in maximum power point tracking
(MPPT), behavior prediction, performance simulation, and research. For the sake of conducting a
specific study on SOFCs from multiple perspectives, numerous modeling methods have been
devised, which mainly comprise electrochemical model (Yang et al., 2021a), steady-state model
(Jiang et al., 2014), and transient model (Wu et al., 2020). Particularly, the identification parameters
of various SOFCmodels are demonstrated inTable 1, while the specific meaning of each parameter is
detailed in reference (Yang et al., 2020b). Among them, the electrochemical model has the most
extensive application in parameter identification, while it is considered to be a vigorous and deep
description of electrochemical reaction phenomena of SOFC without involving complex situations
such as concentration gradient (Xiong et al., 2018; Yang et al., 2021b). Figure 1 shows the overall
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generation process based on the electrochemical mechanism of
the SOFC. It is clearly described in the study by Wang et al.,
(2022) that SOFC output voltage is lower than ideal voltage due to
the existence of activation loss, ohmic loss, and concentration
loss, which is extremely profitable for understanding and
designing SOFC structure. Furthermore, the datasets from
cylindrical cells (Pierre, 2010) and tubular cell stacks
(Caisheng Wang and Nehrir, 2007) in literature (Xiong et al.,
2021) are used for parameter identification of electrochemical
models, where simulation research is specific to the type of the
SOFC and possesses a certain promotion effect on the refinement
of the model. In addition, steady-state models can be subdivided
into two types (Yang et al., 2020b) as for easy differentiation to
name them steady-state model 1 (Jiang et al., 2014) and steady-
state model 2 (El-Hay et al., 2018). Since two steady-state models
of the SOFC can be tracked and optimized, several unknown
parameters under different operation conditions, that is, model 1
has six parameters and model 2 has seven parameters, upon
which more trustworthy and efficient online control and
performance study of SOFC systems can be achieved (Jiang
et al., 2014; Huang and Turan, 2019). Yang et al., (2020b)
describe in detail the voltage and load current (V-I)
polarization characteristic of steady-state models 1 and 2,
where it is necessary to cover a more in-depth and
comprehensive introduction to difference comparison,
advantages/disadvantages, and specific applications. It is
worthwhile that neither model can display the response under

transient disturbances and lack the capability of dynamic
response during load changes. Besides, the transient response
mainly depends on the reactant flow and the changes of external
environment, such as the change rate of hydrogen, steam, and
oxygen; the response time of fuel processors; and load variations,
while these factors will cause chemical reaction parameter
variation and a certain time delay in practical engineering (Xu
et al., 2016; El-Hay et al., 2019). Therefore, it is an exceptional and
practical discussion trend to investigate both steady-state models
and transient models, such as in the study by Wu et al., (2019;
Fathy and Rezk, (2022).

Especially, based on the abovementioned three modeling
methods (Yahya et al., 2018), the output voltage of the whole
cell stack is the number of cells multiplied by the output voltage of
a single cell, which is assuming that V–I characteristics of all
single SOFCs in the cell stack are same or similar. Nevertheless,
due to the existence of electrical coupling, the characteristics (Cao
et al., 2011; Chaudhary et al., 2019) of each SOFC make a
distinction in practical engineering applications leading to
inaccurate parameter identification results or poor model
practicability. Under various references, the value range of
each parameter to be identified is different in the same model,
while there is no literature to emphasize the most scientific and
universal value range. Besides, because the range of some
unknown parameters is too large, the unreasonable search
space results in a long optimization time and low accuracy. As
a consequence, it plays an essential role to explore a scientific,
precise, and accurate parameter value range in all SOFC models
in future research.

METHOD OF PARAMETER
IDENTIFICATION

With the rapid progress of computer technology and artificial
intelligence (AI), a great number of meta-heuristic algorithms

TABLE 1 | Summarization of identification parameters on various models.

SOFC model Identified parameters

Electrochemical model Eo , A,R,B, I0,a , I0,c , IL
Steady-state model 1 kE , kl , k1 , k2 , γ, and δ
Steady-state model 2 Eo , A,R,B, J0 , Jmax

Transient model Eo , A,R,B, J0 , Jmax

FIGURE 1 | Electrochemical mechanism of the SOFC.
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and artificial neural network (ANN) technologies have been
proposed for high nonlinear optimization problems.
Meanwhile, these techniques have been supposed to solve a
series of parameter identification of the SOFC with high
flexibility and low computational pressure due to lack of
gradient and complex computational processing. Until now,
multitudinous advanced meta-heuristic algorithms have been
developed astonishingly to identify unknown parameters in
precise SOFC systems. The converged grass fibrous root
optimization algorithm (CGROA) (Shi et al., 2020) is a novel
optimized technique that is utilized to select unknown parameters
in the electrochemical model of the SOFC, where the convergence
speed and statistical analysis are applied to present a clearer
contrast result. In the study by Wei and Stanford, (2019), an
optimized algorithm based on the chaotic binary shark smell
optimization (CBSSO) algorithm is recommended, which
alleviates the limitations of the optimization process and
obtains satisfactory unknown parameter results, upon which
superior performance in global search is fully verified.
Furthermore, there are other meta-heuristic algorithms with
excellent performance, such as interior search optimizer (ISO)
(), differential evolution (DE) (Sarmah et al., 2017), co-evolution
RNA genetic algorithm (coRNA-GA) (Wang et al., 2019), and
simplified variant of competitive swarm optimizer (SCSO) (Xiong
et al., 2020).

Although the pure single-algorithm portfolios can acquire
satisfactory solutions through multiple iterations, these
algorithms also contain certain imperfections (Ghadimi et al.,
2018), that is, weak balance ability of local exploitation and global
exploration, premature convergence, long calculation time, and
insufficient accuracy. In order to amplify the superiorities and
partly ameliorate these deficiencies of pure single meta-heuristic
algorithms, many scholars have begun to engender more
outstanding methods, mainly mixing a variety of meta-
heuristic algorithms to realize the parameter identification of
the SOFC. Bai and Li, (2021) propose a remarkable and accurate
method, that is, the combination of cuckoo search (CS) and gray
wolf optimization (GWO) algorithm, where using CS changes the
static control parameters in GWO to improve precision by
reducing the probability of falling into local optimal points. In
the study by Xiong et al., (2021), a novel optimization-based
hybridization of differential evolution (DE) with the Jaya
algorithm is implemented, which makes full use of the
exploration character of DE and exploitation character of Jaya
to achieve superb performance in a cylindrical cell and a tubular
stack. These methods combine two or more meta-heuristic
algorithms to improve search accuracy, shorten calculation
time, and enhance robustness by complementing the
disadvantages of one from the advantages of the other. It is a
key direction of meta-heuristic algorithm research and design in
the future, especially the number of hybrid meta-heuristic
algorithms used to identify unknown parameters of the SOFC
is still not enough.

In addition, the integration of meta-heuristic algorithms and
ANN models is an alternative research direction extensively
discussed at present. Zhang et al., (2021b) propose a novel
optimal model of extreme learning machines (ELM) network

based on the improved red fox optimization (CRFO) algorithm,
upon which parameter identification under nonlinear dynamic
behavior of the SOFC stack can be perceived by comparing
with the other two methods. Based on the minimizing
mean squared error (MSE) between empirical and modeled
data, a new hybrid Elman neural network (ENN) method is
designed to track unknown parameters of the SOFC efficiently
and accurately, which is combined with the quantum
pathfinder (QPF) algorithm, called QPF base ENN (QPF-
ENN) (Jia and Taheri, 2021). There is no doubt that the
use of various meta-heuristic algorithms to optimize the
control parameters of ANN models can take into account
the advantages of both, so as to significantly reduce fitting
errors and improve accuracy.

However, few scholars pay attention to the shortage of
experimental data and noise data, which exists objectively and
cannot be ignored in practical engineering. Yang et al., (2021c)
provide a perfect research idea, that is, paying attention to the
insufficient experimental datasets and random noised datasets in
the process of identifying SOFC parameters upon which ELM is
applied to predict additional data and update noised data with
outstanding stability, great robustness, and high efficiency. At
present, several deficiencies need further follow-up research to
solve and improve. First of all, more attention should be
concentrated on noise data caused by complex operation
conditions in order to increase the anti-interference ability of
algorithms to identify parameters. In addition, in terms of
expanding insufficient data, no standard is elaborated on what
is the minimum amount of experimental data to accurately
identify unknown parameters.

CONCLUSION

The precise modeling technology of the SOFC is a crucial step
for its performance evaluation, simulation analysis, and
subsequent fault diagnosis, while there is still much space to
ameliorate in research and development. In particular, various
thorny obstacles of present techniques exist in engineering
practicability, stability, and efficiency, whose main conclusions
are stated as follows:

• Standardized and realistic cell stack models owning perfect
practicability for parameter identification have not been
devised due to their electrical coupling phenomenon upon
which the accuracy and authenticity of models are limited to
a great extent. With consideration of various practical
factors, the influence of electrical coupling on accurate
models can weaken/ avoid.

• Models have the problems of too large parameter
boundaries and inconsistency. Thus, it is necessary to
formulate a unified standard for the unknown parameter
range of each model, while the specific considerations
should be combined with different types of cells.

• Multiple hybrid algorithms can make effective use of their
advantages simultaneously, which can greatly tackle defects
of a single meta-heuristic algorithm and balance the ability
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of local exploitation and global exploration, such as CS-
GWO, DE-Jaya, and QPF-ENN.

• Noise datasets exist in engineering applications with various
complicated conditions, while the current research studies
pay little attention. It is worthwhile to focus on noise
datasets and find reasonable strategies to remarkably
reduce or even eliminate their interferences.

• Another important aspect of this technology is the
expansion of insufficient data. The amount of

experimental data is a considerable research subject,
while no research points out the minimum amount of
data for parameter identification.
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