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Accurate knowledge of static parameters forms the basis for nearly all applications in the
energy management system. This paper proposes an efficient method for the
simultaneous identification and correction of multiple network parameter errors based
on a linear mixed-effects (LME) model and the generalized least squares (GLS) method. An
LME model for parameter error identification is formulated using the residual equations of
multiple-snapshot state estimation with equality constraints. The parameter errors are
considered as the fixed effects and the measurement errors are considered as the random
effects. Then, using the measurement error variances estimated by the LME model, the
GLS method is used to estimate the parameter errors along with a hypothesis testing to
infer whether each parameter error is zero. The semi-supervised adversarial autoencoder
is used for bad data detection in the presence of erroneous parameters and limited labels
such that only measurement snapshots that are free of any bad data are used. The
proposed methodology is efficient in that the LME model is only used to estimate the
variances of the measurement errors using a small number of measurement snapshots,
therefore the huge computation burden needed to solve a large-scale LME model is
avoided. In addition, the GLS only involves inversion of low-dimension matrices, which is
very efficient even a large number of measurement snapshots are used. Thorough tests of
the proposed methodology on a large number of scenarios are provided to show the
effectiveness of the proposed methodology with promising results.

Keywords: parameter error identification, linear mixed-effects model, generalized least squares, adversarial
autoencoder, transmission systems

INTRODUCTION

Correct static parameters of transmission lines and transformers are essential for many applications
in the energy management systems of all electric utilities, such as state estimation (SE), power flow,
security assessment, etc. For example, it has been reported by the federal energy regulatory
commission that finding a good solution for AC optimal power flow (OPF) could potentially
save tens of billions of dollars annually (Cain et al., 2012). However, the OPF results may be hugely
distorted and may even be infeasible due to potential errors in network parameters.
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Traditional power system SE (Monticelli, 1999; Abur and
Gómez-Expósito, 2004; Zhao et al., 2019) usually assumes that
all of the parameters stored in databases are correct. However, it
has been found that parameter deviation in power systems can be
as large as 30% (Kusic and Garrison, 2004). Therefore, it is very
important to identify and correct erroneous parameters in power
networks.

The parameter error identification (PEI) and estimation
problem has been studied for decades and several approaches
have been proposed in the past (Zarco and Exposito, 2000).
Relevant research in this field falls roughly into two categories
according to different assumptions: constant parameters or
time-varying parameters. Assuming constant model
parameters during a short period, parameters can be
periodically estimated and updated by operators. The
contribution of this paper falls in this category. In (Debs,
1974), a recursive filtering-type algorithm is derived to
correct inaccurate parameters by processing collected online
data in an off-line mode. Parameters are augmented into the
state vector, and existing parameters in the database are used as
a-prior information. This method may suffer from modifying
correct parameters to false values due to measurement noise. In
(Liu et al., 1992; Liu and Lim, 1995), the authors propose to
estimate parameters from measurement residuals of SE, which
can be interpreted as a linear model linking measurement
residuals to an unknown parameter error in the presence of
noise. A suspicious parameter set is built based on normalized
residuals to reduce computation cost. In (Castillo et al., 2011), a
three-stage offline approach is presented to detect, identify, and
correct series and shunt branch parameter errors. Suspicious
parameters are flagged through a heuristic identification index,
and are then estimated via an augmented state estimator, and
are finally validated via a weighted least squares estimator.

Recently, a largest normalized Lagrange multiplier (NLM)
method is proposed in (Zhu and Abur, 2006; Lin and Abur,
2018), which identifies an erroneous parameter to be the one with
the largest NLM. The method is then extended to use multiple
measurement snapshots (Zhang and Abur, 2013; Lin and Abur,
2017). The method has shown good performance for single or
multiple non-interacting parameter errors, and is also able to
distinguish erroneous parameters from bad data. However, the
NLM method identifies parameter errors in a sequential manner,
and thus may encounter the smearing and masking effect when
multiple-interacting parameter errors exist. In (Zhao et al., 2018),
the projection statistics is used for selection of suspicious
parameters associated with leverage points, which is shown to
be insensitive to the smearing andmasking effects. In (Liang et al.,
2021), a linear mixed-effects (LME)-based method is proposed
for simultaneous identification of multiple network parameter
errors. Suspicious parameter set is constructed by solving an LME
model and hypothesis testing. An extended state augmentation
(ESA) method is further proposed so that modifying correct
parameters to false values can be avoided as much as possible. The
method is shown to be promising for simultaneous identification
of multiple network parameters, assuming all bad measurements
have been removed. However, solving an LME model is
challenging and expensive, especially when a large number of

measurement snapshots are used. Due to this reason, only several
typical scenarios are tested and a thorough testing on large
number of scenarios is missing.

On the other side, assuming model parameters are time-
varying, parameter tracking is also getting more and more
attention. In (Slutsker et al., 1996; Bian et al., 2011), Kalman
filter-based recursive parameter estimation methods are
presented. The methods treat parameters as Gaussian
random variables and can track parameters as they fluctuate
due to changes in load and ambient conditions. In (Williams
et al., 2016), the residual sensitivity analysis (RSA) method
used in (Liu et al., 1992; Liu and Lim, 1995) is adopted for off-
line parameter tracking and the discovery of non-diurnal and
nonseasonal changes of parameters in unbalanced distribution
systems. The method leverages the increased deployment of
distribution level measurement devices for a three-phase state
estimator to estimate changes in impedance parameters over
time. In (Ren et al., 2017), the authors propose to estimate the
parameters of untransposed overhead transmission lines using
synchronized measurements. SE and Kalman filter-based
parameter tracking process are iteratively carried out to
reduce the uncertainties that exist in the estimation
function. All above references base their method on power
system SE theory in a network-wide manner. Recently, non-SE
type methods are also proposed for parameter tracking using
local measurements, see (Wang et al., 2015; Dobakhshari et al.,
2020) and references therein.

This paper proposes an efficient method for the simultaneous
identification of multiple network parameter errors based on a
LME model and the generalized least squares (GLS) method. The
contributions are summarized as follows:

1) An LME model for PEI is formulated using the residual
equations of multiple-snapshot SE with equality
constraints. The parameter errors are considered as the
fixed effects and the measurement errors are considered as
the random effects. Using the measurement error variances
(MEVs) estimated by solving the LME model, the GLS
method is adopted to estimate the parameter errors along
with a hypothesis testing to infer whether each parameter
error is zero. The proposed methodology is efficient in that the
LME model is only used to estimate the variances of the
measurement errors using a small number of measurement
snapshots, therefore the huge computation burden needed to
solve a large-scale LMEmodel is avoided. In addition, the GLS
only involves inversion of low-dimension matrices, which is
very efficient even a large number of measurement snapshots
are used.

2) The semi-supervised adversarial autoencoder (semi-AAE) is
used to detect existence of any bad data in each measurement
snapshot such that only measurement snapshots that are free
of any bad data are used. Thanks to the generalization ability
of neutral networks, the method can achieve high bad data
detection (BDD) accuracy even in the presence of erroneous
parameters and limited labels.

3) Thorough tests on a large number of scenarios are provided to
show the effectiveness of the proposed methodology.
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The remainder of this paper is organized as follows. Power
System State Estimation Section briefly introduces the power
system SE theory. The LME Method for Estimation of MEVs
Section presents the LME methodology. The Proposed LME-GLS
Methodology Section presents the proposed LME-GLS
methodology. Simulation Results Section describes the
simulation results. Conclusions are drawn in Conclusion Section.

POWER SYSTEM STATE ESTIMATION

In this section, the basic theory of equality constrained power
system state estimation is introduced, which forms the basis for
the following sections on parameter error identification.

Consider a power network with the measurement model
given by:

z � h(x) + e, (1)
where x is Ns×1 vector of the state variables consisting of voltage
amplitudes and phase angles of all buses expect phase angle of the
reference bus, Ns = 2Nb-1; z is the Nm×1 measurement vector,
including real and reactive power injection measurements, real
and reactive power flow measurements, and voltage magnitude
measurements; h(·) is the Nm×1 measurement function vector; e
is the Nm×1 measurement error vector, e ∼ N(0, R); R is the
Nm×Nm covariance matrix of the measurement error vector e; Nb

is the number of buses; Nm is the number of measurements.
We consider the following equality constrained weighted least

squares (WLS) SE formulation:

min
x

J(x) � (1/2)rTR−1r

s.t. { r � z − h(x)
c(x) � 0

,
(2)

where r is the Nm×1 measurement residual vector; c(·) is the zero-
injection measurement function vector.

The Lagrange function can be constructed as:

L(x, μ, λ) � (1/2)rTR−1r − μTc(x), r � z − h(x), (3)
where μ, λ are Lagrange multiplier vectors of the equality
constraints.

Taking the derivative of the Lagrange function, we get the first-
order optimal condition:

⎧⎪⎨⎪⎩
zL/zx � −H(x)TR−1r − CT(x)μ � 0
zL/zμ � −c(x) � 0
r � z − h(x),

(4)

where H(·), C(·) are Jacobian matrices of the measurements and
zero-injection measurements with respect to (w.r.t.) state
variables evaluated at a suitable operating point.

Using a Taylor expansion at an initial operating point x0, the
nonlinear equation can be linearized as follows:

⎡⎢⎢⎢⎢⎢⎣ 0 HT(x0)R−1 CT(x0)
H(x0) I 0
C(x0) 0 0

⎤⎥⎥⎥⎥⎥⎦⎡⎢⎢⎢⎢⎢⎣Δxr
μ

⎤⎥⎥⎥⎥⎥⎦ � ⎡⎢⎢⎢⎢⎢⎣ 0
Δz

−c(x0)
⎤⎥⎥⎥⎥⎥⎦. (5)

Starting from an initial state x0, the nonlinear equation can be
solved iteratively. If we let the inverse of the coefficient matrix at
the kth iteration be:

⎡⎢⎢⎢⎢⎢⎣ 0 HT(xk)R−1 CT(xk)
H(xk) I 0
C(xk) 0 0

⎤⎥⎥⎥⎥⎥⎦
−1

� ⎡⎢⎢⎢⎢⎢⎣ E1(xk) E2(xk) E3(xk)
E4(xk) E5(xk) E6(xk)
E7(xk) E8(xk) E9(xk)

⎤⎥⎥⎥⎥⎥⎦, (6)

then at the last iteration before the iteration converges, starting
from the true operating point x (x0 = x), we get the following
residual equation which relates the measurement residuals and
measurement errors together:

r � E5Δz � E5e, (7)
where matrix E5 is evaluated at the estimated state x̂.

If parameter errors exist, the linearization of residual at the
true operating point x becomes r ˜ z-h(x)-H(x)Δx-Hp(x)pe ˜ e-
HΔx-Hppe, where pe is the Np×1 parameter error vector and Np

is the number of parameters. Then the residual equation
becomes:

r � E5Δz � E5(e −Hppe) � −E5Hppe + E5e, (8)
where Hp is the Nm×Np Jacobian matrix of the measurements
w.r.t. parameters evaluated at x̂.

If there are no zero-injection measurements, the residual Eq. 8
reduces to the following widely known format:

r � −SHppe + Se, S � I −H(HTR−1H)−1HR−1, (9)
where S is the residual sensitivity matrix evaluated at x̂.

As (8) and (9) have similar format, we will put an emphasis on
Eq. 9 in the following. However, all the analysis are applicable if S
is replaced by E5.

The residual equation provides an accurate linear
approximation of the nonlinear measurement equations at the
estimated operation point. Considering measurement error
vector follows independent Gaussian distribution, i.e. ei ∼ N(0,
R), then we have ri ∼ N(-SiHp,ipe, SiRSi

T) and it seems that pe can
be estimated by GLS. However, Si is singular whose rank is equal
to Nm-Ns and thus GLS cannot be directly used.

THE LME METHOD FOR ESTIMATION OF
MEVS

Based on the SE theory, this section presents the LME method
(Liang et al., 2021), which is then improved in the next section
to improve the computation efficiency. This LME method has
shown to be very effective for simultaneous identification and
correction of multiple network parameters. However, solving an
LME model is challenging and expensive, especially when a
large number of measurement snapshots are used.
Theoretically, if MEVs can be accurately known, the LME
method reduces to a much easier GLS method. However,
directly solving the GLS model using empirical values of
MEVs may lead to failing to identify the erroneous but less
sensitive parameters. Fortunately, it is found that estimation of
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MEVs does not rely on a large number of measurement
snapshots. In fact, a small number of measurement
snapshots are enough to get acceptable estimates for MEVs,
which greatly reduces the computation burden. Therefore,
in this section we propose to use the LME model not for
PEI, but only to estimate the MEVs using a small number
of measurement snapshots, therefore the huge computation
burden needed to solve a large-scale LME model is avoided.
We briefly present the LME method in the following.

Formulation of the LME Model
LME models extend linear models by incorporating random
effects to account for correlation among observations. An
LME model contains a population of individuals, and each
individual has a group of observations. Fixed effects are
associated with the entire population and random effects
are associated with each individual. For the ith individual
with ni observations, an LME model describing a response
vector yi is as follows (Pinheiro and Bates, 2000):

yi � Xiβ + Zibi + εi, i � 1,/, N, (10)
where yi is the ni×1 response vector of the ith group; β is the p × 1
fixed effect vector; bi is the q × 1 random effect vector of the ith
group, bi ∼ N(0, D*) = N(0, σ2D); εi is the ni×1 error term vector,
εi ∼ N(0, σ2I); Xi, Zi are ni×p and ni×q full-column-rank design
matrices associated with the fixed effects and random effects,
respectively.

The response vectors are correlated within a group but
independent among different groups. The equations of N
groups can be stacked into one:

y � Xβ + Zb + ε, (11)
where

y � ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
y1
..
.

yN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,X � ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
X1

..

.

XN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,Z � ⎡⎢⎢⎢⎢⎢⎣Z1

1
ZN

⎤⎥⎥⎥⎥⎥⎦, b � ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
b1
..
.

bN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, ε � ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
ε1
..
.

εN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦.
(12)

For ease of simplicity, we can assume that N measurement
snapshots share an equal number of measurements Nm, then the
ith residual equation is:

ri � −SiHp,ipe + Siei. (13)
By adding a virtual error term εi, we can transform the residual

Eq. 13 into an LME model:

ri � Xipe + Ziei + εi, (14)
where the fixed effects β and random effects bi of the general
LME model (10) are replaced by the deterministic parameter
error vector pe and stochastic measurement error vector ei,
respectively; the design matrices of the fixed effects and
random effects can be constructed by Xi = -SiHp,i, Zi = Si.
Note that it is acceptable to introduce a virtual error term εi,
obeying a Gaussian distribution with an unknown but very
small standard deviation σ that will automatically be estimated

and does not affect the performance of the method. We set ei ∼
N (0, R) = N(0, σ2Ψ), where σ2 is an extracted scale parameter
equal to variance of the error term εi and Ψ = R/σ2 is the
remaining term. At this time ri ∼ N(Xipe, σ

2(I + ZiΨZi
T)), and

the covariance matrix σ2(I + ZiΨZi
T) is now nonsingular and

can be viewed as a damped version of the original covariance
matrix ZiRZi

T. However, the statistical properties of the
measurement errors are still unknown as R−1 is usually
casually set by experience and does not accurately reflect
the realistic statistical properties. This motivates the usage
of an LMEmodel rather than directly usage of the GLS method.

Using N measurement snapshots, the LME model can be
stacked as:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
r1
..
.

rN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ � ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
X1

..

.

XN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦pe + ⎡⎢⎢⎢⎢⎢⎣Z1

1
ZN

⎤⎥⎥⎥⎥⎥⎦⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
e1
..
.

eN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ + ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
ε1
..
.

εN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (15)

Suppose all the measurements in each snapshot are divided
into three groups (or random-effects terms) by measurement
types: real power measurements, reactive power
measurements, and voltage magnitude measurements. We
divide each Zi into [ZP

i Z
Q
i ZV

i ] and divide each ei into
[(ePi )T (eQi )T (eVi )T]T. Then, by proper splitting and
reordering, (15) can be written as:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
r1
..
.

rN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ � ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
X1

..

.

XN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦pe + ⎡⎢⎢⎢⎢⎢⎢⎣Z
P
1

1
ZP
N

⎤⎥⎥⎥⎥⎥⎥⎦⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
eP1
..
.

ePN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ + ⎡⎢⎢⎢⎢⎢⎢⎣Z
Q
1

1
ZQ
N

⎤⎥⎥⎥⎥⎥⎥⎦

× ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
eQ1
..
.

eQN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ + ⎡⎢⎢⎢⎢⎢⎢⎣Z
V
1

1
ZV
N

⎤⎥⎥⎥⎥⎥⎥⎦⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
eV1
..
.

eVN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ + ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
ε1
..
.

εN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,
(16)

where the three groups of measurements have standard
deviations σP, σQ, and σV, respectively. It should be noted that
the measurements should be divided based on the types and
precision levels of the instruments and are not necessarily divided
into these three groups.

Maximum Likelihood Estimation of MEVs
Let the unknown Ψ be parameterized by a vector θ, i.e., Ψ
becomes Ψ(θ). As Ψ denotes a covariance matrix and the
measurements are assumed to be independent, Ψ should be a
diagonal matrix, and θ should have a dimension of Nm.
Furthermore, assuming that the measurements in the same
group share the same standard deviation, Ψ should be an
isotropic matrix, and θ only has a dimension of three.

By applying the Bayesian formulas, the likelihood of the
observed residual r, given parameters pe, θ, and σ2, is
(Pinheiro and Bates, 2000; Bates et al., 2015):

L(θ, pe, σ2∣∣∣∣r) � ∏N
i�1

P(ri∣∣∣∣θ, pe, σ2) � ∏N
i�1

∫P(ri∣∣∣∣ei, θ, pe, σ2)P(ei∣∣∣∣θ, σ2)dei,
(17)

where

Frontiers in Energy Research | www.frontiersin.org February 2022 | Volume 10 | Article 8407364

Liang et al. Identification of Multiple Parameter Errors

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


P(ei∣∣∣∣θ, σ2) � exp( − eTi R
−1ei/2)

(2π)Nm/2∣∣∣∣R∣∣∣∣1/2 � exp( − eTi Ψ
−1(θ)ei/2σ2)

(2πσ2)Nm/2∣∣∣∣Ψ(θ)∣∣∣∣1/2 ,

(18)
P(ri∣∣∣∣ei, θ, pe, σ2) � exp( − ||ri − Xpe − Zei||2/2σ2)

(2πσ2)Nm/2
, (19)

and |A| denotes the determinant of matrix A.
Solving an LME model includes the following steps (refer to

(Pinheiro and Bates, 2000; Bates et al., 2015) for more details):
Step 1: Maximize P(r|θ,pe,σ

2) with respect to pe and σ2 for a
given θ. The solutions pe(θ) and σ2(θ) are functions of θ.

Step 2: Substitute these solutions into the likelihood function
P(r|θ,pe,σ

2), i.e., P(r|θ,pe(θ),σ
2(θ)). This expression is called a

profiled likelihood where pe and σ2 have been profiled out.
Step 3: Optimize P(r|θ,pe(θ),σ

2(θ)) with respect to θ to find the
optimal estimate of θ.

Step 4: Compute the estimated p̂e and σ2 by substituting the
estimated θ into pe(θ) and σ2(θ).

It should be noted that the LME model can be solved only if
matrix X = -SHp has full column rank. If the measurement

redundancy is low and X does not have full column rank,
then an identifiability analysis should be performed to find the
unidentifiable parameters.

THE PROPOSED LME-GLS
METHODOLOGY

This section presents the proposed LME-GLS methodology as a
whole. The key lies in that the MEVs and parameter errors are no
longer estimated simultaneously but in a sequential manner.
Specifically, using the MEVs estimated by solving the LME
model, the GLS method is adopted to estimate the parameter
errors along with a hypothesis testing to infer whether each
parameter error is zero. In addition, the semi-AAE is used to
detect existence of any bad data in each measurement snapshot
such that only measurement snapshots that are free of any bad
data are used. The total flow chart of the proposed LME-GLS
methodology is shown in Figure 1 and the details are explained in
the following.

Step 1: Bad Data Detection by Semi-AAE
Due to various disturbances in realistic power systems, it is
necessary to detect bad data so as to prepare an accurate
measurement dataset for subsequent PEI. In this paper, the
BDD problem is viewed as a binary classification problem and
solved by the semi-AAE (Makhzani et al., 2015). The semi-AAE
model is designed and trained to accept each measurement
snapshot as a data sample and output a detection indicator β.
β = 1 indicates existence of bad data and β = 0 otherwise. The
semi-supervised property makes it suitable for scenarios when
only a small portion of measurement snapshots are labeled.

The AAE integrates the generative adversarial network (GAN)
into the autoencoder (AE) framework. An encoder learns to
convert the input data vector to a latent vector, while a
decoder learns to reconstruct the original data vector from the
latent vector. The aggregated posterior distribution of the latent
data is defined as

q(H) � ∫ q(H|X)pd(X)dX, (20)

where X is theNm×M input data;H is the q×M latent data; q(H|X)
is the encoding distribution of H given X; pd(X) as the true
distribution of X;M is the number of samples; q is the dimension
of each latent vector.

AAE introduces a GAN model to regularize the aggregated
posterior distribution q(H) of the latent representation to an
arbitrary prior distribution p(H), such as the standard Gaussian
distribution. The encoder acts as the generator of the GANmodel.
It tries to learn an aggregated posterior distribution q(H) to fool
the discriminator of the GAN and make it falsely believe a latent
vector sample comes from q(H) but is actually from p(H). The
discriminator DGauss, on the other side, tries to classify the input
samples correctly. Furthermore, to make good use of the label
information of the input samples for classification use, the latent
vector is augmented with an additional category variable vector

FIGURE 1 | Flow chart of the proposed LME-GLS methodology.
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using one-hot format along with an additional discriminator
DCat. Therefore, H consists of two parts: category latent data
HC and continuous latent data HG, which are forced to
approximate a binary categorical distribution Cat(2) and a
standard Gaussian distribution N(0, I), respectively. In this
situation, the encoder q(HC, HG|X) works as the generator of
both GANs so that it can simultaneously predict fake category
data HC and fake continuous data HG. The real data of the two
discriminators, i.e. HC’ and HG’, can be randomly sampled from
Cat (2) and N(0, I).

The AAE model can be trained in three stages: reconstruction
stage, regularization stage and semi-supervised classification
stage:

1) In the reconstruction stage, the AE updates its encoder q(HC,
HG|X) and decoder to minimize the reconstruction loss where
the input is the unlabeled data. The encoder maps the input
data X to the representation H of the hidden layer:

hi � f(xi) � s(Wxi + b), (21)
where hi is the ith column vector of H; xi is the ith column vector
of X;W is the q×Nm weight matrix; b is the q × 1 offset vector; s(·)
is a nonlinear activation function. The model parameters of the
encoder are expressed as θ = {W,b}.

The decoder maps the latent data H to the reconstructed data
X′ through the mapping function f′:

x′i � f′(h′
i) � s(W ′hi + b′), (22)

where xi′ is the ith column vector of X′; W′ is the Nm×q weight
matrix; b′ is the Nm×1 offset vector. The model parameters of the
decoder are expressed as θ’ = {W′,b′}.

The reconstruction error LossR is minimized to obtain the
optimized parameters:

min
θ,θ′

LossR � 1
N

����X −X′
����2 (23)

2) In the regularization stage, the discriminator parameters of
the GAN models are updated first, and then the generator
parameters are updated. The discriminator should distinguish
real samples from fake samples as much as possible, while the
generator tries to generate fake data similar to the real samples
to deceive the discriminator, resulting in a two-player min-
max game formulated as

min
G

max
DCat

EH′
C ∼ Cat(2)[logDCat(H ′

C)] + EHC ∼ p(HC)[log(1 −DCat(G(HC)))]
min
G

max
DGauss

EH′
G ∼ N(0,I)[logDGauss(H ′

G)] + EHG ∼ p(HG)[log(1 −DGauss(G(HG)))]
(24)

where E is the expectations under a distribution; p(HC), p(HG) are
the prior distributions of HC, HG; G(·) is a function mapping
samples from the prior distributions to the latent data space;
DCat(·) is a function which returns the probability that the input
sample comes from the real categorical distribution Cat(2)
(positive samples), rather than from our generative model
(negative samples); DGauss(·) is a function which returns the

probability that the input sample comes from the real
standard Gaussian distribution N(0, I) (positive samples),
rather than from our generative model (negative samples).

3) Finally, in the semi-supervised classification stage, the
encoder q(HC|X) is updated only by using the labeled
data to minimize the cross-entropy loss, which is
expressed as

min
θ

LossS � Eq(HC)[ − logp(HC)] (25)

where q(HC) is an aggregated posterior distribution of HC.

Step 2: MEV Estimation by Solving the LME
Model
Using the clean measurement dataset without outliers, the LME
method presented in The LME Method for Estimation of MEVs
Section is then used to estimate MEVs.

Step 3: Parameter Error Estimation by the
GLS Method
Using the clean measurement dataset without outliers, the LME
method is then used to estimate MEVs. Once the statistical
properties of the measurement errors are estimated, then
we have ri ∼ (Xipe, σ̂

2(I + ZiΨ̂ZT
i )). As follows from the

Gauss-Markov theorem, pe can be estimated directly by the
GLS method:

p̂e � ⎡⎣∑N
i�1
XT

i (I + ZiΨ̂ZT
i )−1X i

⎤⎦−1⎡⎣∑N
i�1
XT

i (I + ZiΨ̂ZT
i )−1yi⎤⎦ (26)

As can be seen from (26), the GLS only involves inversion of
low-dimension matrices, which is very efficient even a large
number of measurement snapshots are used.

Step 4: Suspicious Parameter Selection by
Hypothesis Testing
Although pe can be estimated through GLS, the estimated p̂e is
not suitable for parameter correction as p̂e will have many
nonzero elements, even elements corresponding to correct
parameters may be relatively large due to measurement noise,
and the optimal solution will show some amount of “overfitting”.
Therefore, p̂e is only used for hypothesis testing to test whether
each parameter error is zero or not.

The covariance matrix of p̂e can be calculated by

C � σ̂2⎡⎣∑N
i�1
XT

i (I + ZiΨ̂ZT
i )−1Xi

⎤⎦−1. (27)

The ith component of normalized p̂e approximately follows a
t-distribution with NT-Np degrees of freedom (Pinheiro and
Bates, 2000):

γi � p̂e,i/ ���
Cii

√
∼ t(NT −Np), (28)
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where γi is the t-statistic of the ith parameter error; C is theNp×Np

covariance matrix of p̂e; Cii is the ith diagonal element of C; NT is
the number of total measurements, NT = NNm.

The hypothesis testing identification (HTI) is then used to
decide if a parameter is erroneous. The null hypothesis and
alternative hypothesis are chosen as follows:

H0: pe,i � 0, H1: pe,i ≠ 0. (29)
The statistical significance of the ith parameter error can be

tested by its two-sided p-value:

p−valuei � P(|γi|< tα/2,NT−Np), (30)
where tα/2,d is the (1-α/2)th quantile of the t-distribution with d
degrees of freedom, which indicates the probability of obtaining a
value γj more extreme than the critical value. p-values below the
significance level provide strong evidence for rejecting the null
hypothesis.

Step 5: Parameter Correction by the ESA
Method
TheHTImaymake two types of errors known as type I errors and
type II errors. A type I error is the rejection ofH0 when it is indeed
true. It is also referred to as a “false alarm” because correct
parameters are misidentified as erroneous. To this end, the ESA
method (Liang et al., 2021) is further used to move misidentified
but correct parameters from the suspicious parameter set back to
the correct parameter set while correcting the identified
erroneous parameters.

Comparison With Existing Methods
The proposed method seems similar to the traditional RSA method
(Liu et al., 1992; Liu and Lim, 1995). However, there are two
differences between the LME-GLS method and the RSA method.

1) The RSAmethod is used to estimate parameter errors whereas the
LME-GLS method is used to identify parameter errors. Due to
different measurement configurations, measurement noise levels,
and limited number of measurement snapshots used, it is possible
to modify the existing values in the database, even when they are
correct. On the contrary, in the LME-GLS method, only a limited

number of parameters with strong evidence by data that they are
undoubtedly erroneous are selected for estimation, which avoids
modifying existing values to any false values as much as possible.

2) The RSA method formulates a linear model linking the
residuals and the unknown parameter errors and assumes
the measurement noise has a known statistic property.
However, the proposed LME-GLS method formulates the
residual equation as an LME model in which parameter
errors and measurement noise are viewed as fixed effects
and random effects, respectively. The parameter errors and
variances in the measurement noise are simultaneously
estimated from longitudinal residual data, followed by an
HTI process.

The proposed method although cannot handle bad data
directly, it makes use of a novel learning-based BDD method
to guarantee only measurement snapshots that are free of any bad
data are used. The comparison of the proposed learning-based
bad data detection (BDD) method with classic BDD method, i.e.
the Chi-squares test method using objective function values of
state estimation, or the largest normalized residual (LNR)
method, are summarized as follows:

1) Classic BDD methods are able to detect single bad data or
multiple non-interacting bad data. However, they are
incapable of detecting multiple interacting bad data whose
residuals are masked by each other and the objective function
value or their (normalized) residuals are smaller than the
threshold even they exist. Note that the famously known false
data injection attack is a special type of multiple interacting
bad data, where hackers can circumvent the BDD module by
tampering with the sensor measurements and injecting the
elaborately designed false data without being detected.

2) Classic BDD methods depends on convergence of SE
algorithms, which may be time-consuming or hard to
converge, especially for large scale systems. On the other
side, the learning-based BDD method is free of
convergence problems and is very fast once it is well
trained. In the meantime, it is very effective and can
achieve very high accuracy, taking advantage of the strong
feature extraction ability of neural networks.

SIMULATION RESULTS

In this section, thorough tests on a large number of scenarios are
provided to show the effectiveness of the proposed methodology.
Multiple measurement snapshots are generated by varying the
loading condition between approximately 0.8 and 1.2 times their
nominal values using MATPOWER (Zimmerman et al., 2011).

TABLE 1 | Definitions of the four statistics indices.

Sample
without bad data

Sample with bad data

Bad data detected FP TP

Bad data undetected TN FN

TABLE 2 | BDD performance of the semi-AAE method on the IEEE 14-bus system.

Training accuracy (%) Detection accuracy (%) Training time (s) Detection time (s)

96.5 94.5 124.38 0.66
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The measurements are divided into five groups: real power flow
measurements (PF), real power injection measurements (PI),
reactive power flow measurements (QF), reactive power
injection measurements (QI), voltage magnitude
measurements (VM), and different levels of measurement
noise are used for each group. The selected line parameters
are added with an error value of +30%. The significance level
for the p-values is set to 0.05.

BDD Results
In this section, the IEEE 14-bus system is used to test the
effectiveness of the semi-AAE-based BDD method in the
presence of erroneous parameters and limited labels. There are
20 series branches (transmission lines and transformers) and 40
series parameters (resistances and reactances) in this system.
+30% relative error are added to parameters r2-4, r2-5, r3-4 and
r4-5. Full measurement configuration is assumed. Relative

measurement errors are added to the true values of
measurements by zi = zi,true×(1 + etype×σ) where zi, zi,true are
measured and true value of measurement i, etype is percent relative
error corresponding to measurement i’s type, σ is a random
variable obeying standard Gaussian distribution. Measurement
errors are set as ePF = eQF = 0.5%, ePI = eQI = 1.0%, eVM = 0.2%.
Monte Carlo simulation is used to generate 5000 normal
measurement snapshots without bad data. Relatively large
errors (10–20% of the normal values) are added to 8–12% of
measurements in each measurement snapshot to generate
another 5000 measurement snapshots with bad data. 80% of
the whole 10,000 measurement snapshots are selected as the
training dataset and the left 20% as the testing dataset. Only 10%
of all snapshots are labeled β = 0 or 1, including 500 normal
measurement snapshots with label β = 0 and 500 erroneous
measurement snapshots with label β = 1, respectively. The
performance of the semi-AAE method is evaluated by the
following accuracy rate (A), which refers to the percentage
that the detection results are correct among the prediction
results of all samples:

A � TP + TN

TP + TN + FP + FN
, (31)

where TPmeans true positive, TNmeans true negative, FP means
false positive, and FN means false negative. Their specific
definitions are shown in Table 1.

The accuracy, detection time and training time are shown in
Table 2. It can be seen that the detection accuracy on the training
set and testing set reach 96.5 and 94.5%, respectively, showing

TABLE 3 | Estimated MEVs of the IEEE 14-bus system (NLME = 3).

Case Estimated MEVs

σPF σPI σQF σQI σVM σ (E)

1 0.0017 0.0061 0.0003 0.0014 0.0016 1.64-8

2 0.0034 0.0090 0.0006 0.0023 0.0041 4.32-8

3 0.0024 0.0058 6.47E-5 0.0015 0.0015 3.12-7

4 0.0053 0.0068 9.88E-7 0.0028 0.0042 1.08-6

FIGURE 2 | PEI success rate of the IEEE 14-bus system.
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that the algorithm is effective for BDD. At the same time, the
training time is only 124.38 s, and the detection time is only
0.66 s, which shows that the AAE can meet the requirements of
online BDD.

PEI Results
The IEEE 14-Bus System
In this section, the IEEE 14-bus system is used to test the
effectiveness of the proposed PEI method. Let measurement
redundancy be defined as η = Nm/Ns. For the IEEE 14-bus
system, the following cases are designed:

Case 1: ePF = eQF = 0.5%, ePI = eQI = 1.0%, eVM = 0.2%, η = 4.52.
Case 2: ePF = eQF = 1.0%, ePI = eQI = 1.5%, eVM = 0.5%, η = 4.52.
Case 3: ePF = eQF = 0.5%, ePI = eQI = 1.0%, eVM = 0.2%, η = 3.04.
Case 4: ePF = eQF = 1.0%, ePI = eQI = 1.5%, eVM = 0.5%, η = 3.04.
In Case 1 and Case 2, full measurement redundancy is

assumed, resulting in a high η value. In Case 3 and Case 4, we
delete all the real/reactive power flow measurements at the end of
each branch, resulting in a lower η value.

Different combinations of erroneous parameters are simulated to
test the performance of the proposed methodology. If Ne parameter
errors are assumed to exist, then there will be CNe

Np
different

combinations of erroneous parameters, among which 100
combinations are selected for testing. In the LME step (Step 2 in
Figure 1), NLME measurement snapshots are used to test the
estimation accuracy of the MEVs and its impact on the whole
success rate. In the GLS-HTI step (Step 3-4 in Figure 1),
maximally 100 measurement snapshots (NGLS = 10, 20, . . . , 100)
are used for parameter error estimation and hypothesis testing.

Simulation results show that three snapshots are enough to
obtain acceptable MEVs. The estimated MEVs of the four cases
whenNLME = 3 are summarized in Table 3. If largerNLME is used,
the estimated MEVs only slightly differ from the current values
but much heavier computation burden is needed.

Then, based on the estimated MEVs in Table 3, the GLS is
carried out to test the success rates of PEI. For each PEI test, the
result is defined as “success” if all the erroneous parameters’
p-values rank top k ones among the whole Np parameters’
p-values sorted in ascending order. k = min(Nmax, Nthreshold),
where Nmax is a constant depending on Ne (Nmax = 2Ne in this
paper), Nthreshold is the number of parameters whose p-values are
smaller than a predefined significance level (0.05 through all
simulations). In this way only Nmax parameters are selected as
suspicious if a large number of parameters fail the hypothesis
testing and thus the maximum number of suspicious parameters
can be controlled.

The success rate results of the four cases are shown in Figures
2A–D respectively, where Ne can be 2, three or 4. It can be seen that
the success rates increase with increasing measurement snapshots.
For Case 1 with the highest measurement accuracy and the largest
measurement redundancy, Figure 2A shows that when the number
of measurement snapshotsN is 10, the minimum success rate is only
about 60%. However, when the number ofmeasurement snapshots is
20, the success rate reaches above 90%. By increasing N, the success
rates can be higher than 95%, or even 100%. For Case 2 with the same
redundancy and lower measurement accuracy, Figure 2B shows that
the minimum success rate is only 33% when N is 10. As N increases,
the success rate also gradually increases, but the final result is less than
100%. For Case 3with high precision and low redundancy, Figure 2C
shows that when N is 10, the minimum success rate is only 38%, but
with the increase of N, the success rate gradually increases and can
reach 100%. Finally for Case 4 with lowest measurement accuracy
and redundancy, Figure 2D shows that the minimum success rate
reduces to 10%whenN is 10, and the highest success rate is only 82%
when N increase to 100.

Comparing the results of Case 1–4 in Figure 2, it can be seen
that the accuracy of measurements has a great impact on the

FIGURE 3 | PEI success rate of the IEEE 14-bus system using empirical MEVs (Case 1).

TABLE 4 | Estimated MEVs of the IEEE 30-bus system (NLME = 3).

Case Estimated MEVs

σPF σPI σQF σQI σVM σ (E)

1 0.0002 0.0006 0.0002 0.0004 0.0015 3.01-6

2 0.0002 0.0006 4.72E-5 0.0005 0.0016 1.67-6

Frontiers in Energy Research | www.frontiersin.org February 2022 | Volume 10 | Article 8407369

Liang et al. Identification of Multiple Parameter Errors

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


FIGURE 4 | p-values of all parameters in the IEEE 30-bus system (Case 1, Ne = 6).

FIGURE 5 | PEI success rate of the IEEE 30-bus system.

FIGURE 6 | PEI success rate of the IEEE 30-bus system (Case 2, 1 missing).
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performance of the PEI method proposed in this paper, while the
measurement redundancy has less impact on this method. In
addition, the success rates gradually increase with the increase of
the number of measurement snapshots used.

Figure 3 shows the success rates of PEI using empirical values of
MEVs, taking Case 1 as an example, i.e. ePF = eQF = 0.005 p.u., ePI =
eQI = 0.010 p.u., eVM = 0.002 p.u. It can be seen that the maximum
success rate is only 85%. Compared with Figure 2A, the maximum
decline of success rate is more than 20%, and the success rate become
lower when more parameter errors exist, which verifies the
advantages of using the LME model to estimate the MEVs.

The IEEE 30-Bus System
In this section, the IEEE 30-bus system is used to test the effectiveness
of the proposed PEI method. There are 41 series branches and 82
series parameters in this system. As the true values of the loads and
power flow are very small for this system, small absolute errors for
measurements are added. The following cases are designed:

Case 1: ePF = eQF = 0.3%, ePI = eQI = 0.5%, eVM = 0.2%, η = 4.31.
Case 2: ePF = eQF = 0.3%, ePI = eQI = 0.5%, eVM = 0.2%, η = 2.92.
Similarly, 100 different error parameter combinations are selected

to test the performance of the proposed method. The estimated
MEVs of the two cases are summarized in Table 4. Then, based on
the estimated MEVs in Table 4, the GLS is carried out for PEI. For
Case 1, one scenario (Ne = 6) is randomly selected from 100

combinations and the p-values of all 82 line parameters using
10–100 snapshots are shown in Figure 4. It can be seen that all
erroneous parameters except for r3-4 are identified. The erroneous
parameter r3-4 is missed because the resistance value of this line is too
small and the objective function has low sensitivity to it.

The success rate results of the two cases using at most 100
snapshots are shown in Figure 5, where Ne can be 2, 3, 4, 5 or 6.
For Case 1, Figure 5A shows that the success rate increases if
more measurement snapshots are used from the overall
perspective. Specifically, when 100 snapshots are used, all the
success rates of PEI are above 95%. For Case 2 with high precision
but low redundancy, Figure 5B shows the success rate is greatly
affected. When 10 measurement snapshots are used, the
minimum success rate is only 11% (Ne = 6), and the highest
success rate is only 48% (Ne = 2). In addition, the success rate does
not show a monotonous increase as N increases. When N is 100,
mostly success rates concentrated at 70%, which is far worse than
Case 1.

However, the PEI results show much better performance if the
definition of “success” is relaxed, i.e. for each PEI test, the result is
defined as “success” if all the erroneous parameters’ p-values “but
one” rank top k ones among the whole Np parameters’ p-values
sorted in ascending order. In other words, missing of one
erroneous parameter is permitted and still viewed as “success”.
The success rates under this definition for Case 2 are shown in
Figure 6. We can see much higher success rates can be achieved
than in Figure 5B. For example, the success rate rises from 48 to
91%whenN = 10,Ne = 6, which means that in most tests only one
erroneous parameter is missed by the proposed method due to
this missed parameter’s low sensitivity.

Figure 7 shows the PEI results using empirical MEVs, taking
Case 1 as an example. It can be seen that the success rate of PEI is
less than 30% when 10 snapshots is used, and the success rate
increases with the increase of N. Even when N is 100, the
maximum success rate is only 65%. Compared with
Figure 5A, the success rate is reduced by 30%, which proves
the superiority of using LME method for MEV estimation.

FIGURE 7 | PEI success rate of the IEEE 30-bus system using empirical MEVs (Case 1).

TABLE 5 | Estimated MEVs of the IEEE 118-bus system (NLME = 3).

Case Estimated MEVs

σPF σPI σQF σQI σVM σ (E)

1 0.0033 0.0090 0.0010 0.0027 0.0019 9.75-8

2 0.0066 0.0132 0.0020 0.0042 0.0048 2.97-7

3 0.0023 0.0095 0.0005 0.0031 0.0018 1.70-7

4 0.0049 0.0135 0.0010 0.0052 0.0046 2.43-7
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The IEEE 118-Bus System
In this section, the proposed method is evaluated on the IEEE
118-bus system with 186 series branches and 372 series
parameters. The following cases are designed for testing:

Case 1: ePF = eQF = 0.5%, ePI = eQI = 1.0%, eVM = 0.2%, η = 4.67.
Case 2: ePF = eQF = 1.0%, ePI = eQI = 1.5%, eVM = 0.5%, η = 4.67.
Case 3: ePF = eQF = 0.5%, ePI = eQI = 1.0%, eVM = 0.2%, η = 3.09.
Case 4: ePF = eQF = 1.0%, ePI = eQI = 1.5%, eVM = 0.5%, η = 3.09.

Similarly, in Case 1 and Case 2, full measurement
redundancy is assumed, resulting in a high η value. In Case
3 and Case 4, we delete all the real/reactive power flow
measurements at the end of each branch, resulting in a
lower η value. Three measurement snapshots are used for
MEV estimation, which is then used for the GLS-based PEI.
The estimated MEVs of the four cases are summarized in
Table 5.

FIGURE 8 | p-values of all parameters in the IEEE 118-bus system (Case 1, Ne = 10).

FIGURE 9 | PEI success rate of the IEEE 118-bus system.
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For Case 1, one scenario (Ne = 10) is randomly selected from
100 combinations and the p-values of all 372 line parameters are
shown in Figure 8. It can be seen that all the erroneous
parameters rank first and are correctly identified. Note that
the p-value curve of parameter x100-103 is too small to be
displayed.

The success rate results of the four cases are shown in
Figure 9, where Ne can be 2–10. For Case 1 and Case 3,
Figures 9A,C show that even if a large number of error
parameters exist, the success rates can still reach a high
level as long as the measurement accuracy is high, and the
success rate will gradually increase with the increase of N. For
Case 2 and Case 4 with lower measurement accuracy, Figures
9B,D show that the number of successful PEI is greatly

reduced, especially for Case 4 with both lower
measurement accuracy and lower measurement redundancy.

Then, if we relax the definition of “success”, i.e. missing of one
or more erroneous parameter is permitted and still viewed as
“success”. Figures 10, 11 show that much better performance can
be achieved, compared with Figures 9B,D. This means that in
most tests only one or two erroneous parameters are missed while
most erroneous parameters are actually correctly identified by the
proposed method.

Figure 12 shows the success rates of PEI using empirical
MEVs taking Case 1 as an example. By comparing the results of
Figure 9A and Figure 12, it can be concluded that the MEVs
estimated by solving the LME model result in much better PEI
performance than empirical ones.

FIGURE 10 | PEI success rate of the IEEE 118-bus system (Case 2, 1 missing).

FIGURE 11 | PEI success rate of the IEEE 118-bus system (Case 4, 2 missing).
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Computation Time
All the tests above are performed on a personal computer with a
3.70 GHz i7-8700K CPU and 32 GB RAM. Table 6 shows the
computation times of different methods under different
scenarios. It can be seen that the proposed LME-GLS method
greatly saves the calculation time than the original LME-based
PEI method. The main reason is that this method only uses a
small number of measurement snapshots to estimate the MEVs,
which avoids the computational burden of solving a very large-
scale LME model. In addition, the GLS only involves inversion of
low-dimension matrices thus is very fast without losing the PEI
accuracy.

CONCLUSION

This paper proposes an efficient method for the simultaneous
identification of multiple network parameter errors based on an
LME model and the GLS method. The residual equations from
multiple-snapshot state estimation are used to formulate the LME
model in which the parameter errors are considered as the fixed
effects and the measurement errors are considered as the random
effects. Then, using the measurement error variances estimated by
solving the LME model, the GLS is used to estimate the parameter
errors alongwith a hypothesis testing to inferwhether each parameter
error is zero. The key advantage of the proposed methodology lies in

FIGURE 12 | PEI success rate of the IEEE 118-bus system using empirical MEVs (Case 1).

TABLE 6 | CPU time comparison.

Case Method CPU time (seconds)

14-Bus 30-Bus 118-Bus

1 LME (NLME = 100) 181.75 386.87 22,677
LME-GLS LME (NLME = 3) 6.31 14.76 1106

GLS (NGLS = 100) 0.14 0.69 7.61
Total 6.45 15.45 1113.61

2 LME (NLME = 100) 178.25 187.45 20,589
LME-GLS LME (NLME = 3) 5.98 9.71 1066

GLS (NGLS = 100) 0.12 0.47 8.18
Total 6.1 10.18 1074.18

3 LME (NLME = 100) 104.12 \ 15,908
LME-GLS LME (NLME = 3) 7.35 \ 435

GLS (NGLS = 100) 0.12 \ 2.80
Total 7.47 \ 437.8

4 LME (NLME = 100) 96.40 \ 15,414
LME-GLS LME (NLME = 3) 5.60 \ 430

GLS (NGLS = 100) 0.17 \ 2.81
Total 5.77 \ 432.81

Frontiers in Energy Research | www.frontiersin.org February 2022 | Volume 10 | Article 84073614

Liang et al. Identification of Multiple Parameter Errors

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


that the LME model is only used to estimate the variances of the
measurement errors using a small number of measurement
snapshots, therefore the huge computation burden needed to
solve a large-scale LME model is avoided. In addition, the GLS
only involves inversion of low-dimension matrices, which is very
efficient even a large number of measurement snapshots are used.

The proposed method is shown to be promising for the
simultaneous identification of multiple parameter errors. It can be
used periodically by system operators in an offline manner using
multiple measurement snapshots, to identify and correct multiple
erroneous parameters once large residuals are reported by state
estimator and existence of parameter errors are suspected. However,
parameter errors are treated as unknown constants in this paper rather
than random variables. Considering continuous varying of parameters
during various operating conditions and load levels, future workwill be
focused on dynamic parameter tracking using phasor measurements.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusion of this article will be
made available by the authors, without undue reservation.

AUTHOR CONTRIBUTIONS

DL contributed toward supervision, conceptualization, and
writing—review and editing. YC contributed toward

methodology, software, data curation, and
writing—original draft. SS contributed toward software and
data curation. XW contributed toward writing—review and
editing. LZ contributed toward writing—review and editing.

FUNDING

This work is supported by the Natural Science Foundation of
Hebei Province of China under Grant E2021202053, the Natural
Science Foundation of the Department of Education of Hebei
Province of China under Grant QN2020442, the China
Postdoctoral Science Foundation under Grant 2019M660966,
and State Key Laboratory of Reliability and Intelligence of
Electrical Equipment (Hebei University of Technology) under
Grant EERI_PI2020002.

ACKNOWLEDGMENTS

The authors would like to thank the financial support received
from the Natural Science Foundation of Hebei Province of
China, the Natural Science Foundation of the Department of
Education of Hebei Province of China, the China Postdoctoral
Science Foundation, and State Key Laboratory of Reliability and
Intelligence of Electrical Equipment (Hebei University of
Technology). We would like to thank the reviewers for their
valuable comments.

REFERENCES

Abur, A., and Gómez-Expósito, A. (2004). Power System State Estimation—Theory
and Implementation. New York: Marcel Dekker Press.

Bates, D., Maechler, M., Bolker, B., and Walker, S. (2015). Fitting Linear
Mixed-Effects Models Using Lme4. J. Stat. Soft. 67 (1), 1–48. doi:10.
18637/jss.v067.i01

Bian, X., Li, X. R., Chen, H., Gan, D., and Qiu, J. (2011). Joint Estimation of
State and Parameter with Synchrophasors-Part II: Parameter Tracking.
IEEE Trans. Power Syst. 26 (3), 1209–1220. doi:10.1109/tpwrs.2010.
2098423

Cain, M. B., O’neill, R. P., and Castillo, A. (2012). History of Optimal Power Flow
and Formulations. Fed. Energ. Regul. Comm. 33.

Castillo, M. R. M., London, J. B. A., Bretas, N. G., Lefebvre, S., Prévost, J., and
Lambert, B. (2011). Offline Detection, Identification, and Correction of branch
Parameter Errors Based on Several Measurement Snapshots. IEEE Trans. Power
Syst. 26 (2), 870–877. doi:10.1109/TPWRS.2010.2061876

Debs, A. (1974). Estimation of Steady-State Power SystemModel Parameters. IEEE
Trans. Power Apparatus Syst. PAS-93 (5), 1260–1268. doi:10.1109/tpas.1974.
293849

Dobakhshari, A. S., Abdolmaleki, M., Terzija, V., and Azizi, S. (2020). Online Non-
Iterative Estimation of Transmission Line and Transformer Parameters by
SCADA Data. IEEE Trans. Power Syst. 36 (3), 2632–2641. doi:10.1109/TPWRS.
2020.3037997

Kusic, G. L., and Garrison, D. L. (2004). Measurement of Transmission Line
Parameters from SCADA Data. IEEE Power Syst. Conf. Expo. 1, 440–445.
doi:10.1109/PSCE.2004.1397479

Liang, D., Zeng, L., and Chiang, H.-D. (2021). Simultaneous Identification
and Correction of Multiple Network Parameter Errors by Mixed-Effects
Models. IEEE Trans. Control. Netw. Syst., 1. doi:10.1109/TCNS.2021.
3124899

Lin, Y., and Abur, A. (2018). A New Framework for Detection and Identification of
Network Parameter Errors. IEEE Trans. Smart Grid 9 (3), 1698–1706. doi:10.
1109/tsg.2016.2597286

Lin, Y., and Abur, A. (2017). Enhancing Network Parameter Error Detection and
Correction via Multiple Measurement Scans. IEEE Trans. Power Syst. 32 (3),
2417–2425. doi:10.1109/tpwrs.2016.2608964

Liu, W.-H. E., and Lim, S. L. (1995). Parameter Error Identification and Estimation
in Power System State Estimation. IEEE Trans. Power Syst. 10 (1), 200–209.
doi:10.1109/59.373943

Liu, W.-H. E., Wu, F. F., and Lun, S.-M. (1992). Estimation of Parameter Errors
fromMeasurement Residuals in State Estimation (Power Systems). IEEE Trans.
Power Syst. 7 (1), 81–89. doi:10.1109/59.141690

Makhzani, A., Shlens, J., Jaitly, N., Goodfellow, I., and Frey, B. (2015). Adversarial
Autoencoders. [Online] Available: https://arxiv.org/abs/1511.05644.

Monticelli, A. (1999). State Estimation in Electric Power Systems: A Generalized
Approach. Norwell, MA, USA: Kluwer Press.

Pinheiro, J. C., and Bates, D. (2000).Mixed-Effects Models in S and S-PLUS. Berlin:
Springer-Verlag Press.

Ren, P., Lev-Ari, H., and Abur, A. (2017). Tracking Three-Phase Untransposed
Transmission Line Parameters Using Synchronized Measurements. IEEE
Trans. Power Syst. 33 (4), 4155–4163. doi:10.1109/TPWRS.2017.2780225

Slutsker, I. W., Mokhtari, S., and Clements, K. A. (1996). Real Time Recursive
Parameter Estimation in Energy Management Systems. IEEE Trans. Power Syst.
11 (3), 1393–1399. doi:10.1109/59.535680

Wang, Y., Xu, W., and Shen, J. (2015). Online Tracking of Transmission-Line
Parameters Using SCADA Data. IEEE Trans. Power Deliv. 31 (2), 674–682.
doi:10.1109/TPWRD.2015.2474699

Williams, T. L., Sun, Y., and Schneider, K. (2016). Off-Line Tracking of Series
Parameters in Distribution Systems Using AMI Data. Electric Power Syst. Res.
134, 205–212. doi:10.1016/j.epsr.2015.12.036

Zarco, P., and Exposito, A. G. (2000). Power System Parameter Estimation: A
Survey. IEEE Trans. Power Syst. 15 (1), 216–222. doi:10.1109/59.852124

Frontiers in Energy Research | www.frontiersin.org February 2022 | Volume 10 | Article 84073615

Liang et al. Identification of Multiple Parameter Errors

https://doi.org/10.18637/jss.v067.i01
https://doi.org/10.18637/jss.v067.i01
https://doi.org/10.1109/tpwrs.2010.2098423
https://doi.org/10.1109/tpwrs.2010.2098423
https://doi.org/10.1109/TPWRS.2010.2061876
https://doi.org/10.1109/tpas.1974.293849
https://doi.org/10.1109/tpas.1974.293849
https://doi.org/10.1109/TPWRS.2020.3037997
https://doi.org/10.1109/TPWRS.2020.3037997
https://doi.org/10.1109/PSCE.2004.1397479
https://doi.org/10.1109/TCNS.2021.3124899
https://doi.org/10.1109/TCNS.2021.3124899
https://doi.org/10.1109/tsg.2016.2597286
https://doi.org/10.1109/tsg.2016.2597286
https://doi.org/10.1109/tpwrs.2016.2608964
https://doi.org/10.1109/59.373943
https://doi.org/10.1109/59.141690
https://arxiv.org/abs/1511.05644
https://doi.org/10.1109/TPWRS.2017.2780225
https://doi.org/10.1109/59.535680
https://doi.org/10.1109/TPWRD.2015.2474699
https://doi.org/10.1016/j.epsr.2015.12.036
https://doi.org/10.1109/59.852124
https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


Zhang, L., and Abur, A. (2013). Identifying Parameter Errors via Multiple
Measurement Scans. IEEE Trans. Power Syst. 28 (4), 3916–3923. doi:10.
1109/tpwrs.2013.2254504

Zhao, J., Fliscounakis, S., Panciatici, P., and Mili, L. (2018). Robust Parameter
Estimation of the French Power System Using Field Data. IEEE Trans.
Smart Grid 10 (5), 5334–5344. doi:10.1109/tsg.2018.2880453

Zhao, J., Qi, J., Huang, Z., Meliopoulos, A. P. S., Gomez-Exposito, A., Netto, M.,
et al. (2019). Power System Dynamic State Estimation: Motivations,
Definitions, Methodologies, and Future Work. IEEE Trans. Power Syst. 34
(4), 3188–3198. doi:10.1109/tpwrs.2019.2894769

Zhu, J., and Abur, A. (2006). Identification of Network Parameter Errors. IEEE
Trans. Power Syst. 21 (2), 586–592. doi:10.1109/tpwrs.2006.873419

Zimmerman, R. D., Murillo-Sánchez, C. E., and Thomas, R. J. (2011).
MATPOWER: Steady-State Operations, Planning, and Analysis Tools for
Power Systems Research and Education. IEEE Trans. Power Syst. 26 (1),
12–19. doi:10.1109/TPWRS.2010.2051168

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Liang, Cheng, Su, Wang and Zeng. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY). The
use, distribution or reproduction in other forums is permitted, provided the original
author(s) and the copyright owner(s) are credited and that the original publication in this
journal is cited, in accordance with accepted academic practice. No use, distribution or
reproduction is permitted which does not comply with these terms.

Frontiers in Energy Research | www.frontiersin.org February 2022 | Volume 10 | Article 84073616

Liang et al. Identification of Multiple Parameter Errors

https://doi.org/10.1109/tpwrs.2013.2254504
https://doi.org/10.1109/tpwrs.2013.2254504
https://doi.org/10.1109/tsg.2018.2880453
https://doi.org/10.1109/tpwrs.2019.2894769
https://doi.org/10.1109/tpwrs.2006.873419
https://doi.org/10.1109/TPWRS.2010.2051168
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles

	Efficient Identification of Multiple Parameter Errors in Power Grids by Mixed-Effects Models and Generalized Least Squares
	Introduction
	Power System State Estimation
	The LME Method for Estimation of MEVs
	Formulation of the LME Model
	Maximum Likelihood Estimation of MEVs

	The Proposed LME-GLS Methodology
	Step 1: Bad Data Detection by Semi-AAE
	Step 2: MEV Estimation by Solving the LME Model
	Step 3: Parameter Error Estimation by the GLS Method
	Step 4: Suspicious Parameter Selection by Hypothesis Testing
	Step 5: Parameter Correction by the ESA Method
	Comparison With Existing Methods

	Simulation Results
	BDD Results
	PEI Results
	The IEEE 14-Bus System
	The IEEE 30-Bus System
	The IEEE 118-Bus System

	Computation Time

	Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	References


