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When multiple scattered wind farms are connected to the power grid, the meteorological
and geographic information data used for power prediction of a single wind farm are not
suitable for the regional wind power prediction of the dispatching department. Therefore,
based on the regional wind power historical data, this study proposes a combined
prediction method according to data decomposition. Firstly, the original sequence
processed by the extension methods is decomposed into several regular components
by Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN).
All the components are classified into two categories: fluctuant components and smooth
components. Then, according to the characteristics of different data, the long short-term
memory (LSTM) network and autoregressive integrated moving average (ARIMA) model
are used to model the fluctuant components and the smooth components, respectively,
and obtain the predicted values of each component. Finally, the predicted data of all
components are accumulated, which is the final predicted result of the regional ultra-short-
term wind power. The feasibility and accuracy of this method are verified by the
comparative analysis.
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INTRODUCTION

With the vigorous development of wind resources in China, multiple wind farms are connected
to the provincial and regional power grid at the same time. Different wind farms are far away and
have dispersion characteristics (Gan et al., 2016). In order to face the impact of cluster grid
connection on the power system and the power market, it is necessary to predict the regional
wind power when making decisions such as operating plans and market transactions (Zalzar
et al., 2020). In recent years, regional wind power prediction has become a key technology to
improve the operation level of large-scale wind power integration into a power system (Wang
et al., 2021). The traditional regional wind power prediction is to accumulate the power
prediction results of sub-wind farms or divided small-region wind farms (Lobo and Sanchez,
2012). However, error may occur in the wind power prediction for each wind farm, and it is
difficult to consider the dispersion characteristics of prediction error in accumulation (Wang C
et al., 2017). In addition, the weather forecasts and geographical features used in the power
prediction of each wind farm are different from each other. They are no longer applicable to
regional wind power prediction. Therefore, the dispatching department can use the stored
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regional historical wind power data to complete the forecast,
which avoids the accumulation process and does not rely on
individual wind farms.

With the rapid development of the smart grid, environmental
sensors, and related technologies, artificial intelligence methods
have been gradually applied in ultra-short-term wind power
prediction. Compared with the traditional support vector
regression (SVR) and backpropagation (BP) algorithms,
recurrent neural network (RNN) is good at processing time
series data. In response to the problem of gradient
disappearance or gradient explosion about RNN, the input
gate, the output gate, and the forget gate have been introduced
in the long short-term memory network (Hochreiter and
Schmidhuber, 1997), which can fully reflect the long-term
historical information in time series data and showing better
performance. Xu et al. (2021) showed that, by combining a
similar day with an LSTM network, the ultra-short-term wind
power prediction method had been proposed to improve the
prediction accuracy. Wu et al. (2021) proposed a spatiotemporal
correlation model for the ultra-short-term wind power prediction
based on CNN-LSTM. By constructing the error following the
forget gate-based LSTM model, the ultra-short-term wind power
prediction has been achieved with less prediction error (Zhang
et al., 2020). In order to improve the accuracy and reduce the
training time, a multilayer bidirectional gated recurrent unit
(GRU) is constructed (Chen et al., 2021). However,
meteorological data have been used in the abovementioned
works, which are not suitable for the regional ultra-short-term
wind power prediction. Machine learning methods continue to
learn the mapping relationship between input data and output
data through training a large number of data samples (Elsaraiti
and Merabet, 2021), providing improvement for power
prediction only based on historical data. In order to further
explore the variation law of wind power data with time and
improve the prediction accuracy of training models, many
scholars choose wavelet decomposition, Empirical Mode
Decomposition (EMD) (Huang et al., 1998), Ensemble
Empirical Mode Decomposition (EEMD) (Wu and Huang,
2011), and other methods to decompose the historical data
into several regular subsequences (Safari et al., 2017). These
methods integrated with the machine learning method can
build a combination model. Using the discrete wavelet
transform to decompose the non-stationary wind power time
series, the obtained components have more stationarity, which is
easier to predict (Liu et al., 2019). Similarly, three-stage wavelet
decomposition is adopted to smooth the original wind power
time series, and the prediction models for each sub-series sample
are developed based on the LSTM network. The proposed
method overcomes the poor prediction of a single LSTM
network for the non-stationary signals (Wang et al., 2019).
Compared with the wavelet decomposition technique, the
EMD method has more advantages in dealing with nonlinear,
non-stationary, and complex time series data. EMD is used to
decompose the power load data, and LSTM is used to train the
subsequences (Bedi and Toshniwal, 2018). The EEMD-SE
technique is used to decompose the original wind power series
into a number of subsequences with obvious complexity

differences. The forecasting model of each subsequence is
created by full-parameters continued fraction (Wang HZ et al.,
2017). A novel fault diagnosis method based on EEMD and
optimized Elman_AdaBoost is proposed to get better accuracy
and real-time processing performance (Fu et al., 2018). In
practice, EMD and EEMD have some defects, including mode
mixing, large calculation, and difficulties in eliminating auxiliary
noise, which limit their application (Mahmoud et al., 2017).
Compared with EMD and EEMD, Complete Ensemble
Empirical Mode Decomposition with Adaptive Noise
(CEEMDAN) (Torres et al., 2011) is more suitable for data
decomposition. CEEMDAN is used to decompose wind speed
data, and each component is trained based on an improved BP
neural network (Qu et al., 2018). The original wind power is
decomposed by the CEEMDAN to eliminate the noise of the data.
Then, the decomposed wind power is reconstructed into new
subsequences (Lu et al., 2021). In addition, to improve the
prediction accuracy, the end effect of the intrinsic mode
functions (IMFs) obtained by CEEMDAN also needs to be
resolved (Huang et al., 2003). There are usually two methods
to suppress the end effect. The first is to replace spline
interpolation using different interpolation methods, but the
degree of suppression is limited. The second is to increase the
sequence length by extending the left and right ends of the
original sequence, which is proved to be more suitable.

Aiming at the problem of regional wind power prediction with
weak regularity, this study proposes a combined prediction
method based on modal decomposition and artificial
intelligence technology. Through actual analysis, the accuracy
of the combined prediction method will be tested by comparison
with the actual engineering level and the prediction results of
other methods. The main contributions are as follows:

1) CEEMDAN is used to decompose wind power data to solve
the problem of mode mixing and difficulties in eliminating
auxiliary noise.

2) LSTM, which can reflect the long-term historical information
in time series, is used to predict the fluctuant components of
wind power.

3) According to the different characteristics of fluctuant and
smooth components, LSTM and ARIMA are selected to
predict the wind power, respectively, and the prediction
results are further combined and optimized.

Processing and Division of Regional Wind
Power Historical Data
Before decomposition, the end points of the regional wind power
historical data are extended to suppress the end effect. After
decomposition, the decomposed subsequences are divided into
two categories: fluctuant components and smooth components.

Data Extension Method
The existing extension methods have certain requirements for the
original data, making it inapplicable for wind power data because
regularity is not obvious. In order to suppress the end effect as
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much as possible, two different methods are used to deal with the
left and right end points, respectively. For the left end points, the
data of two pairs of extreme points are extracted forward. In
contrast, for the right end points, the data of the two pairs of
extreme points are extracted in a symmetrical continuation
manner. The extension process is shown in Figure 1.

Complete Ensemble Empirical Mode
Decomposition With Adaptive Noise
CEEMDAN is based on EMD and EEMD. In order to eliminate
end effect and reconstruction errors, CEEMDAN replaces the
noise data added by EEMD with adaptive white noise. The
complete decomposition steps of CEEMDAN are as follows.

1) First, add the I group of normally distributed white noise
data wi(t) to the regional wind power historical data s(t).
Construct the I group of new series si(t) (i = 1, 2, ··· I). After
EMD decomposition is performed to obtain the average
value, the first modal component IMF1(t) is obtained as
follows:

si(t) � s(t) + ε0Wi(t) (1)

IMF1(t) � 1
I
∑I
i�1
IMFi1(t) (2)

where ε0 denotes the weight coefficient of Gaussian white noise
and IMF1

i(t) denotes the first IMF after EMD decomposition
of si(t).

2) Subtracting IMF1(t) from s(t), the first residual component
r1(t) is obtained as follows:

r1(t) � s(t) − IMF1(t) (3)

3) Continue to do EMD decomposition on r1(t) + ε1E1[wi(t)] to
obtain the IMF2(t) and r2(t), as shown in Eqs 4, 5:

IMF2(t) � 1
I
∑I
i�1
E1{r1(t) + ε1E1[Wi(t)]} (4)

where E1(·) denotes the first component after EMD
decomposition:

r2(t) � r1(t) − IMF2(t) (5)

4) Repeat the process of Step 3. Then, IMFh(t) and rh(t) can be
calculated as follows:

IMFh(t) � 1
I
∑I
i�1
E1{rh−1(t) + εh−1Eh−1[Wi(t)]} (6)

rh(t) � rh−1(t) − IMFh(t) (7)

5) Until the termination condition is satisfied, h IMF(t)s and a
res(t) can be obtained as follows:

s(t) � ∑h
i�1
IMFi(t) + res(t). (8)

Component Judgment Formula
Because the data changes of the latter few IMFs and Res are
relatively smooth, modeling these subsequences by fitting can
save time. Therefore, a threshold f* is set according to the ratio f of
the number of extreme points to the number of original data.
When f is greater than f*, these IMFs are judged to be the
fluctuant components, and the remaining IMFs and Res are
judged to be the smooth components. The extension data are
not included when calculating f, and the judgment formula f is as
follows:

f � Mmax +Mmin

N
(9)

where Mmax, Mmin, and N denote the number of maximum
points, minimum points, and the original data, respectively.

FLUCTUANT/SMOOTH COMPONENTS
PREDICTION METHOD

After completing the processing and division of regional wind
power historical data, the subsequences contained in each
component are modeled and predicted, respectively. Because
the decomposition results are a number of subsequences with
gradually decreasing frequency components, it is more difficult to
model the fluctuant components relative to the smooth
components.

Prediction Method of Fluctuant
Components
Because the fluctuant components contain several IMFs with the
highest frequency components, the prediction results of each
subsequence in this component will directly affect the final
prediction accuracy. RNN is specialized in processing time

FIGURE 1 | Diagram of the data extension process.
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series data and has a unique memory function for processed data.
In order to effectively solve the problem in RNN related to
gradient, LSTM adds three control gates on the basis of RNN:
the input gate, forget gate, and output gate are added to build
LSTM. In addition, it can ensure the model remembers the
historical information of an uncertain time. The basic unit
model of LSTM is shown in Figure 2.

The forget gate determines the degree of retention of
historical state information. When the output value is closer
to 0, it means more discarded; when the output value is closer
to 1, it means more reserved as follows:

ft � sigmoid(wf · [ht−1, xt] + bf ) (10)
where xt denotes the input vector. ht-1 denotes the output vector
of the hidden layer at the previous moment. wf and bf denote the
weight and bias of the forget gate, respectively.

The input gate determines the information stored in the
unit as follows:

it � sigmoid(wi · [ht−1, xt] + bi) (11)
Update the status information after getting the output value of

the input gate. Then, the state and the new cell state calculate can
be gained:

C′
t � tanh(Wc · [ht−1, xt] + bc) (12)

Ct � ftpCt−1 + itpC
′
t (13)

wherewi andwc denote the weights of the input gate and cell state,
respectively. bi and bc denote the biases of the input gate and cell
state, respectively.

The output gate determines the output of information:

ot � sigmoid(wo · [ht−1, xt] + bo) (14)

ht � otptanh(Ct), (15)
where wo denotes the weight of the output gate and bo represents
the bias of the output gate.

Prediction Method of Smooth Components
Compared with the fluctuant components, the data of each
subsequence in the smooth components are extremely steady.
ARIMA can be used to predict the smooth components, which
can reduce time consumption while obtaining extremely high
prediction accuracy. The ARIMA (p, d, q) model is shown as
follows:

Δx � xt − xt−1 � (1 −D)xt (16)
Δ2x � Δx − Δxt−1 � (1 −D)2xt (17)

Δdx � (1 −D)dxt

� φ0 + φ1xt−1 + φ2xt−2... + φpxt−p + εt − θ1εt−1... − θqεt−q (18)
where p denotes the autoregressive order; q denotes the average
moving order; d denotes the difference order; φ0, φ1 . . . φp denote
the autoregressive coefficients; and θ1, θ2 . . . θq denote the moving
average coefficients.

COMBINED PREDICTION METHOD

In this section, the missing data in the historical data of regional
wind power will be repaired and the data will be denoised to
improve the signal-to-noise ratio. Then, the left and right end
points of the data will be extended and decomposed by
CEEMDAN. Additionally, we will delete the data of the
extension part of each subsequence.

Forecasting Process
The CEEMDAN process will find the upper and lower envelopes,
respectively, according to the maximum and minimum points of
the repaired original sequence. When the training data are
updated, they need to be re-decomposed, and subsequences
will also change after each decomposition. Figure 3 shows that
the decomposed IMFs1 of the training data are separated by 96
data points. It can be seen that the changing trends of the
overlapping part are almost the same, but a more obvious

FIGURE 2 | Basic unit model of LSTM.

FIGURE 3 | Difference of IMF1 before and after updating training data.
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difference can be seen after partial magnification. Therefore, the
trained model cannot be saved for continuous prediction. After
each prediction is completed, the data need to be decomposed
again by CEEMDAN, with the fluctuant/smooth components
redivided and retrained. In addition, in order to directly obtain
multiple power values, the LSTM model is trained in n:1 multi-
input and multi-output modes. After the model training is
completed, the last n data are input, and the future l data will
be predicted.

The construction process based on the fluctuant /smooth
components partition model (combined prediction method) is
shown in Figure 4. The specific steps are as follows:

1) Extract the repaired n days of historical data before the
predictive time points as the training data, and complete
the data extension.

2) Perform CEEMDAN on the data to obtain the
subsequences composed of IMFs and Res. Calculate the
proportion f of each subsequence, and divide IMFs and Res
into fluctuant components and smooth components
according to f.

3) Different methods are used to model the subsequences
contained in the fluctuant components and the smooth
components.

For the fluctuant components, each subsequence is divided
into training data and testing data. The tree-structured Parzen
estimator (TPE) algorithm is used to optimize the
hyperparameters of the LSTM model, including the number of
LSTM layers of each model, the number of nodes in each layer,
the activation function, batch_size, and optimizer.

For the smooth components, ARIMA (1, 2, 0) is used to fit the
z data points before each subsequence predictive time point. After
the fitting function is obtained, the z + 1 to z + l data can be
calculated.

4) The final predictive result can be obtained by combining all
the predictive data for each subsequence.

5) In the next round of prediction, update the regional wind
power historical data first and repeat Steps 1–4 to start a new
prediction round. The hyperparameter optimization process
of the LSTM model is not re-optimized due to the time-
consuming process, and the first hyperparameters
combination is used again.

Evaluation Indexes
In order to measure the prediction accuracy, an evaluation system
with mean absolute error (MAE), root mean squared error
(RMSE), and qualified rate (Q) is established, which can
effectively reflect the prediction accuracy. The calculations of
MAE, RMSE, and Q are shown in Eqs 19, 20, 21, 22. RMSE and
MAE reflect the absolute value of the error and are used to
directly measure the prediction accuracy. Q reflects the acceptable
degree of the prediction effect in practice.

MAE � 1
n
∑n
i�1

∣∣∣∣Pp − Pr

∣∣∣∣ (19)

RMSE �
������������
1
n
∑n
i�1
(Pp − Pr)2√

(20)

ηi �
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1
∣∣∣∣∣∣∣Pp − Pr

Pr

∣∣∣∣∣∣∣< 10%
0

∣∣∣∣∣∣∣Pp − Pr

Pr

∣∣∣∣∣∣∣≥ 10% (21)

Q � 1
n
⎛⎝∑n

i�1
ηi⎞⎠ × 100% (22)

where Pp denotes the prediction value, Pr denotes the real value,
and n denotes the length of the prediction value.

EXPERIMENT

The data from lots of wind power plants in a certain area of northern
China are extracted from the November and December data of the
current year. The unit is MW and the time resolution is 30 min.
Therefore, there are 48 regional wind power values each day.

FIGURE 4 | Prediction flow chart based on fluctuant/smooth
components division.
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Historical Data Acquisition and Processing
Wind power data have strong intermittentness, randomness,
and volatility, making it difficult to obtain high prediction
accuracy for ultra-short-term wind power prediction. The
curve in Figure 5 is the regional wind power data within
1 month. It can be seen that the data do not have obvious
regularity but have a wide range of changes. The ultra-short-
term sudden rise and sudden rise of nearly 4000 MW can be
achieved within half a day. It also explains the low prediction
accuracy of most algorithm models to a certain extent.

In each prediction, 960 wind power data points for 20 days
are selected as the training data, and the prediction period is
from 00:00 to 06:00 on the 21st day. Thirty-five comparative
experiments have been conducted. The decomposition of the
first CEEMDAN is made after removing the extension data,
and six groups of IMFs and Res with frequency from high to
low are obtained in Figure 6.

Figure 6 shows that the change of each subsequence is
relatively stable, and there is no obvious modal aliasing

phenomenon, which is in line with the expected
assumption. Based on many experiments, we decided to set
2% as the component division threshold f*. When the f of
subsequence is greater than 2%, this subsequence is divided
into fluctuant components. When the f of subsequence is less
than 2%, this subsequence is divided into smooth components.
With respect to the smooth components, using ARIMA instead
of LSTM can not only eliminate the complex parameter tuning
but also make the calculation faster. In Figure 6, from IMF1 to
IMF4 belong to the fluctuant components, and the rest belong
to the smooth components.

The total number of subsequences decomposed during 35
ultra-short-term predictions are shown in Figure 7. The numbers
of subsequences are relatively stable, which are all between six and
eight. Among them, seven groups had 25 times at most,
accounting for 71.428%. Eight groups and six groups had six
times and four times, respectively, accounting for 17.143% and
11.429% of the total. This also shows that after the training data
are updated, the subsequence data decomposed by CEEMDAN
are relatively stable, and there is no obvious difference in
volatility. Therefore, it is reasonable for LSTM to train the
subsequence following the first optimized hyperparameters.

Analysis of Prediction Results
In order to compare the performance of the combined prediction
method in regional ultra-short-term wind power forecasting,
ARIMA, SVR, BP, and LSTM are selected as comparative
models, and actual project forecast data are added as a
reference. The neural network model can obtain multiple
outputs. BP and LSTM models all use 48 inputs and 12
outputs to train the models and use the TPE algorithm to
determine the hyperparameters. Specifically, the hidden layer
of BP is set as two layers with 36 neurons and 18 neurons,
and the optimizer, activation function, and batch_size are Adam,
tanh, and 64, respectively. For LSTM, the hidden layer is set as
two layers with 48 neurons and 18 neurons. The optimizer,
activation function, and batch_size are set to nadam, tanh, and
32. Moreover, the ARIMA and SVRmodels use rolling predictions
to obtain 12 forecast data and use the grid search to achieve the best

FIGURE 5 | Variation of regional wind power data.

FIGURE 6 | Decomposition effect of CEEMDAN.

FIGURE 7 | Number of decomposed subsequences of CEEMDAN.
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hyperparameters. The hyperparameters of the comparative model
are optimized, and the results are as follows. p, d, and q of ARIMA
are set as 4, 1, and 0, respectively. The kernel function, c, and epsilon
of SVR are set as a linear kernel function, 1, and 0.05.

Table 1 shows the statistical results of the regional ultra-short-
term wind power prediction within 1 month.

In Table 1, the combined prediction model has the best
prediction effect when the hyperparameters of all the models
are selected according to their respective optimization strategies.
Compared with the engineering level, ARIMA, SVR, BP, and
LSTM, the MAE of the combined prediction model is lower by
71.594, 86.825, 131.858, 132.614, and 38.328 MW, respectively.
The RMSE is lower by 80.331, 107.326, 163.904, 159.762, and
57.305 MW, respectively. Q is higher by 3.611%, 3.334%,
12.223%, 6.945%, and 2.223% respectively. It indicates that
CEEMDAN can effectively decompose the regional wind
power historical data into several regular subsequences. At the
same time, the fluctuant and smooth components are modeled by
different methods, which can give full play to the predictive
capabilities of LSTM and ARIMA. Figure 8 is a comparison of the
prediction results for 1 day. The combined prediction results are
the closest to the real value, which can effectively follow the 12
points of wind power in the next 6 h.

Figures 9–11 give the box diagram of MAE, RMSE, and Q. It
can be shown that the box height of the combined prediction
model is the lowest among all the models, which demonstrates
that the prediction error of the combined prediction model is

TABLE 1 | | Model prediction accuracy comparison.

Model MAE (MW) RMSE (MW) Q (%)

Engineering level 341.301 384.602 70.556
ARIMA 356.532 411.597 70.833
SVR 401.565 468.175 61.944
BP 402.321 464.033 67.222
LSTM 308.035 361.576 71.944
Combined prediction 269.707 304.271 74.167

FIGURE 8 | Comparison of prediction results.

FIGURE 9 | MAE box diagram of each model.

FIGURE 10 | RMSE box diagram of each model.

FIGURE 11 | Q box diagram of each model.
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more concentrated. In addition, in Figures 9, 10, the lower
quartile line, the upper quartile line, and the upper edge of the
combined prediction model are lower than those of other models
except for LSTM, which indicates that the changes in the MAE
and RMSE of the combined prediction model are concentrated,
and the error is generally lower than other models. Figure 11
shows that the lower quartile of the combined prediction model is
also the highest among all models, and the median line is also
higher than most models, which indicates that the Q of the
combined prediction model is generally higher than other
models. To sum up, the box diagrams for MAE, RMSE, and Q
show that the combined prediction model is not the best in all
aspects but can achieve a high prediction concentration.

CONCLUSION

According to the variation characteristics of historical data of the
regional wind power, this study proposes a combined prediction
method based on CEEMDAN and the division of fluctuant/
smooth components. The following studies have been completed.

1) In order to deeply explore the variation of historical data of
the regional wind power, CEEMDAN is selected to
decompose the data after extension processing, and the
subsequences obtained are divided into the fluctuant and
smooth components. LSTM is used to train the
subsequences of the fluctuation components, while
ARIMA is used to fit the subsequences of the smooth
components directly. This method not only remedies the
defect of the regularity of the regional wind power data but
also gives full play to the advantages of LSTM and ARIMA.

2) The example shows that the combined prediction model
can better follow the variation of the regional wind power
data and can effectively improve the ultra-short-term
prediction accuracy of regional wind power.

In this article, the prediction speed needs to be improved. It is
proposed to further study the neural network with a simple
structure to realize fast prediction, such as the improved
method based on GRU.
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