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Transient stability prediction under the concept of security region of a power system can be
used to identify potential unstable states of the system and ensure its secure operation. In
this paper, we propose amethod to predict the transient stability margin under the concept
of security region based on the long short-term memory (LSTM) network and attention
mechanism (AM). This method can ensure rapid and accurate situational awareness of
operators in terms of transient stability. The LSTM layer reduces the dimension of the
historical steady-state power flow data, and the temporal characteristics are extracted
from the data. Subsequently, the AM is introduced to differentiate the characteristics and
historical transient stability margin data for the models to identify the information
associated with stability. Finally, the LSTM and fully connected layers are used to
predict the transient stability margin, providing up-to-date situational awareness of the
power system to operators. We performed simulations on the IEEE 39-bus system, and
the simulated results validated the effectiveness of the proposed method.
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INTRODUCTION

The expanding scale of power grids has increased the challenges for transient stability analysis and
power dispatch (Wu et al., 2012). Transient stability prediction can evaluate and determine the future
states of power grids, which is highly essential to ensure their safe and reliable operation.

Transient stability prediction can be performed using two types of methods: model-driven and
data-driven methods. Based on a detailed mathematical model and the parameters, in the model-
driven prediction, the differential algebraic equations representing the designed system are
numerically integrated, and the system power-angle stability is determined using the generator
power-angle curve. Reference (Huankun et al., 2012) proposed a high-precision and stable implicit
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Taylor-series method for transient stability analysis. To improve
the speed of solving differential algebraic equations, a fast
termination algorithm based on the concave–convex time-
domain simulation of phase trajectory was proposed (Su
et al., 2017). Although model-driven methods have certain
advantages, such as strong interpretability and adaptability,
they also have several disadvantages, for example, the
calculation results can be affected by the model accuracy and
parameters. Moreover, in these methods, satisfying the
requirements of transient stability prediction speed is difficult
owing to the time-consuming calculations. Furthermore, these
methods cannot provide the stability margin of the system
precisely.

Conversely, data-driven algorithms have been widely applied
as fast solvers in various applications, such as image recognition,
language processing, and power-system analysis. They have been
increasingly studied owing to their high-speed knowledge
learning and feature extraction abilities. The applications of
these methods to transient stability prediction can be primarily
divided into two groups (Wang et al., 2016; An et al., 2019; Gao
et al., 2019; Li et al., 2020; Du et al., 2021; Wang et al., 2021), with
one based on the concept of the stability region and the other on
the concept of security region. In the former, the input data
include the feature variables before, during, and after the
appearance of faults in a power system, and the mapping
between the input feature and the transient stability state is
established to use for real-time prediction. Reference (Shi
et al., 2020) proposed an evaluation method based on a
convolutional neural network (CNN), which considers the
post-event voltage phasors as input data. To improve the
accuracy and computational efficiency of the prediction model,
a transient stability fast-batch prediction algorithm framework
based on cascading CNN was proposed (Yan et al., 2019).

Transient stability prediction under the concept of stability
region is rarely used in the operation control centres because it
requires post-event measurements of the state variables and fault
has occurred; moreover, a high prediction speed and accuracy are
required.

Meanwhile, methods based on the concept of security region
use data of the steady-state power flow as the original input
features. The mapping between the power flow before
disturbances and the stability margin after disturbances is
performed considering the type, location, and duration of
faults. Once the current state of power grid is judged to be
unsafe, there is more time to formulate prevention and control
strategies than the stability region. Reference (Karami, 2011)
proposed a fast and accurate methodology for estimating
transient stability margin using multi-layered perceptron
neural network. To improve the reliability of the prediction
model, a previous study used multiple support vector
machines (SVMs) to perform the system stability analysis
(Dengkai et al., 2020). To improve the accuracy of prediction,
another study used the steady-state voltage phasors as input
feature data filtered by the elastic network regression
algorithm (Dai Yuanhang et al., 2016), and mapping relations
were established between the measured data and critical clearing
time. Furthermore, to improve the prediction performance of the

model by extracting the power flow and topology information of
the system, a comprehensive neural network based on a CNN and
a computervision-based power flow image as the input were
proposed, which established the mapping relationship between
the steady-state power flow and stability margin of the generator
with anticipated fault (An et al., 2020).

Typically, the conventional transient stability prediction under
the concept of security region can only be used to evaluate the
stability of the given power grid. It can not provide a specific
degree of future security for the power grid. Furthermore, because
it only evaluates the stability of the given power grid, it does not
extract the historical operational data of the power system and
temporal characteristics of the historical transient stability
margin. The future states of power grids are highly essential to
safe and reliable operation of power grids. Therefore, we
proposed a method for predicting the future power-system
stability margin under the concept of security region by
abstracting the time-series features.

To predict the power system stability margin, several
convenient methods exist for abstracting the time-series
features from large amounts of historical measured data. Deep
learning algorithms can handle the aspects of big data efficiently.
Additionally, as an improved recurrent neural network (RNN),
the long short-term memory (LSTM) can effectively learn from
the long-term or short-term dependencies of time-series data
(Zhang et al., 2020). However, the drawback of the conventional
LSTM is that the effects of different data inputs on the output are
ignored (Cheng et al., 2016). Therefore, the complementary
integration of attention mechanisms (AM) and neural
networks (Bera et al., 2021; Kardakis et al., 2021; Zhou et al.,
2021) have been applied for traffic prediction, sentiment analysis,
and image recognition. Owing to the advantages of this integrated
method, an attention mechanism was added to the encoding and
decoding network in (Luong et al., 2015). The integrated method
can distinguish and learn from different features, which improves
the prediction performance of the network.

In this paper, we propose a method to predict the transient
stability margin of a power system based on the LSTM network
with an attention mechanism to satisfy the requirements of
accurate transient stability situation awareness. The method
establishes nonlinear mappings between temporal
characteristics and the stability margin by considering the
input features of the historical power flow and transient
stability margin to effectively ensure their strong correlation
with the output. The introduced attention mechanism aids the
model in further distinguishing the importance of the extracted
data features. We compared the proposed model with several
existing models to validate its effectiveness.

The primary contributions of this study can be summarised as
follows:

1) A data-driven transient stability margin prediction method
under the concept of security region is proposed.

2) The LSTMmethod is used to extract the historical operational
data of the power system and temporal characteristics of the
historical transient stability margin to predict the transient
stability margin accurately.
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3) An attention mechanism is proposed to distinguish and learn
the importance of data features to achieve an improved
prediction performance.

The remainder of this paper is organised as follows. LSTM
Network and Attention Mechanism introduce the basic
mathematical principles of the LSTM and attention
mechanism, respectively. Prediction Model Based on LSTM
Network and AM describes the design of the proposed
method, and Case Studies explains the case study performed
on the IEEE 39-bus system. Finally, the conclusions are presented
in Conclusion.

LSTM NETWORK

Figure 1 shows the architecture of the established LSTM
structure. The LSTM is an enhanced type of RNN, which uses
input, output, and forget gates for control. Its key function is to
selectively add or delete input information, and the gates provide
the path for information to pass. The three gates enhance the
memory ability of the network and solve the problem of the
disappearing gradient (Lu et al., 2018), (Ramakrishnan and Soni,
2018). The variables are updated in the LSTM as indicated in
(Eq. 1): ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ht � otσ1(ct)
ct � ftct−1 + itσ1(Wht−1 + Uxt + B)
it � σ2(wiht−1 + uixt + bi)
ft � σ2(wfht−1 + ufxt + bf)
ot � σ2(woht−1 + uoxt + bo)

(1)

where the activation function σ1 denotes the tanh function, σ2
indicates the sigmoid function, xt represents the input, ht denotes
the hidden state, and ct indicates the internal state at time t.
Additionally,W, U, and B represent the weighted constants for ht
assigned by ct, input weight, and deviation parameters,
respectively. The variables it, ft, and ot denote the output of
the input gate, forget gate, and output gate, respectively. wi, wf,

and wo indicate the weights for ht-1 assigned by the input gate,
forget gate, and output gate, respectively, and ui, uf, and uo
represent the weights for xt assigned by the input gate, forget
gate, and output gate, respectively. bi, bf, and bo denote the
deviations of the input gate, forget gate, and output gate,
respectively.

ATTENTION MECHANISM

The attention mechanism attempts to mimic the attention of a
human. Typically, the human brain focuses on a particular part
of an object at a specific moment and gives less attention to the
other parts of the object. During the extraction of the sequence
features of power grid operational data, the predicted output of
the LSTM is affected by noncritical features. The function
described by the attention mechanism aids in focusing on the
key features of the sequence. The integrated function can be
viewed as a key feature extractor, which primarily assigns
weights to different features depending on their importance.
Figure 2 illustrates the structure of the attention mechanism
adopted in this study.

As indicated in the figure, the variable βi denotes the attention
weight for different inputs and is calculated using (Eq. 2). The
variable xi is a vector. Flatten indicates the expansion of matrix,
and k represents the number of attention coefficients, referred to
as the output dimension. After obtaining the normalised
coefficient of the attention βi, the new feature βixi is
generated. The larger the value of βi, the more attention the
model pays to the eigenvector xi, and the greater the influence of
xi on the output eigenvalue.

βi �
exp(sigmoid(yi))∑k
i�1exp(sigmoid(yi)) (2)

where yi denotes the output feature of the network, and sigmoid
indicates the nonlinear activation function.

In this study, the attention mechanism is designed to be used
after the first layer of the LSTM because the historical operational
data has higher dimension than the corresponding transient
stability margin data. Therefore, the output features of the first
LSTM can be selected through the probability distribution of the
attention mechanism with different weights that ensure accurate
model prediction.

FIGURE 1 | Long short-term memory network structure.

FIGURE 2 | Attention mechanism structure.
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PREDICTION MODEL BASED ON LSTM
NETWORK AND AM

Structure of the Proposed Model
Based on the historical operation data of power grid, on the one
hand, temporal characteristics are extracted through a certain
model, so that the characterisation of historical power flow
operation can be obtained. At this time, the features of the
model output are the dimensionality reduction expression of the
original input features, which prevents the AM layer from receiving
complicated high-dimensional information. Furthermore, the
transient stability margin of the power grid in the historical-
operation mode is also obtained. Subsequently, the stability
margin and the power flow characteristics after the
dimensionality reduction are organically integrated through the
AM layer, and the multiple weights of the importance of different
dimension characteristics are automatically learned. Finally, based
onmultiple fused features as the input of the time-series prediction
model, the transient stability margin of the power grid can be
predicted for a future period. Therefore, we developed the model
with two LSTM layers, one AM layer, and two fully connected (FC)
layers. Figure 3 shows the structure of the proposed model.

In the figure, LSTM indicates the LSTM network layer, AM
represents the attention mechanism layer, and FC denotes the FC
layer. Additionally, concatenate represents the splicing of the
matrix, and the final layer, which is also a regression layer, uses a
linear function as the activation function. The remaining layers
use the rectified linear unit (ReLU) as the activation function.

Network Input and Output Variables
As shown in Figure 3, the input data are measured from the
power grid. The dataset includes the power flow in various
branches and the calculated metrics of the transient stability
margin. The input data comprise two segments: X1, which is
sampled from the active power and reactive power of the branch
from t1 to t2, and X2, which is sampled from the values of the
transient stability metrics from t1 to t2. Furthermore, the output
of the first LSTM layer is concatenated with X2 to serve as the
input for the AM layer.

The output of the proposed model is the predicted stability-
margin metrics of the continuous t sampling points after t2. The
stability-margin metrics are calculated using the trajectory
analysis method (Mu et al., 1993). The stability metrics of
generator i can be defined using the trajectory-analysis
method, as follows:

Si � −~Pai(tbi)
Vpei(tbi, tai) (3)

where

Vpei(tbi, tai) � −∫tbi

tai

ωN
~Pai(t)~ωi(t)dt (4)

and ~Pai denotes the acceleration power of generator i in the
inertial central coordinate system; Vpei indicates the potential
energy of generator i; tai and tbi represent the times when Vpei of
generator i attains its minimum and maximum values,
respectively; ~ωi denotes the angular velocity deviation of
generator i in the inertial central coordinate system; and ωN

indicates the rated angular frequency.
Based on the analysis of trajectory ~Pai(t), ωi(t) of each

generator in the system can be calculated after the fault and
the quantitative information reflecting the stability degree of each
generator can be obtained, without relying on the calculated
critical energy.

Model Error Analysis and Comparison
The predicted results were evaluated using the root mean square
error (RMSE) and mean absolute error (MAE), which are
expressed as ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

RMSE �
������������
1
N

∑N
i�1
(pi − ri)2√√

MAE � 100%
N

∑N
i�1

∣∣∣∣pi − ri
∣∣∣∣ (5)

where N denotes the total number of samples, and pi and ri
indicate the predicted and actual values of the stability metrics of
sample i, respectively.

Model Prediction Process
The proposed method predicts the stability margin in two steps:
offline training and online prediction.

FIGURE 3 | Model structure based on LSTM network and AM.
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Offline Training
Different operational modes and fault conditions were set up
for the test system through a time-domain simulation to
obtain the results under different designed scenarios. The
training sample set was established based on the input and
output features defined in Network Input and Output
Variables. For a sample set with the number of samples N,
the feature vectors X1 � [x1, x2,/xt]T and X2 � [s1, s2,/st]T
at time t of each sample are
xt � [P1t, P2t,/Pmt, Q1t, Q2t,/Qmt], st � [S1t, S2t,/Snt],
respectively. Herein, n denotes the total number of
generators; m indicates the total number of transmission
lines; Snt represents the stability metrics of the nth
generator at time t; and Pmt and Qmt denote the active
power and reactive power flowing through the line at time
t of the branch m, respectively.

The objective of the offline training for the prediction model is
to minimise the loss. The most commonly used loss function for a
prediction regression is the square loss function. However, this
function generates a large penalty for outliers; hence, it is not
sufficiently robust. Although the absolute value loss is better than
the outlier loss, optimal values cannot be obtained easily owing to
its discontinuous derivation. Therefore, Huber loss is used as the
loss function in this study, which integrates the square and
absolute loss functions [x]. The loss can be calculated using
(Eq. 6) as follows:

{ 0.5
∣∣∣∣ya − g(x)∣∣∣∣2 ∣∣∣∣ya − g(x)∣∣∣∣≤ma

ma

∣∣∣∣ya − g(x)∣∣∣∣ − 0.5m2
a

∣∣∣∣ya − g(x)∣∣∣∣>ma
(6)

where ya denotes the actual output value, g(x) indicates the
predicted value, and ma represents the threshold value. If the
absolute value of the predicted error is lesser or greater than ma,
Huber loss represents the square loss or absolute loss,
respectively. Therefore, it has the advantages of both the
square and absolute losses.

Online Prediction
Online prediction of the stability margin is performed using the
input features of the model that are formulated based on the
historical data measured from the power grid. When they are
input into the trained prediction model, the model can predict the
stability-margin metrics of the power grid for a future period.

CASE STUDIES

Data Set Construction
Figure 4 shows the IEEE 39-bus system used for the case study. It
comprises 10 generators, 39 buses, 46 branches (including 12
transformer branches), and 19 loads. The reference power and
rated frequency of the system are 100 MVA and 60 Hz,
respectively.

The 19 loads of the IEEE 39-bus system indicate the actual
load values measured from a provincial power grid over a 90-
day period. In this period, each load increment was apportioned
by all the generators, the measuring interval was 5 min, and a
total of 25,920 samples were collected. A three-phase fault
occurred at Bus four at the beginning of each measured time
with a duration of 0.15 s. Based on the disturbed trajectories of
the operating variables of each generator, the stability metrics of
each generator corresponding to the fault were calculated. To
robustly evaluate the performance of the model (Aly, 2020;
Bokde et al., 2020), we used 5-fold cross validation method. And
all samples were randomly divided into five groups (each group
accounts for 20% of the total samples), one group of data was
taken as the testing set, the remaining groups (80% of the total
samples) were taken as the training set, and we used the average
value of five experiments to compare the performance of
the model.

Analysis of Model Prediction Results
We used the Adam network optimizer with 100 iterations, 0.001
learning rate, 128 batch size and set the predicted time step to one
during model testing. Table 1 summarises the results in terms of
the RMSE and MAE of the predicted transient stability metrics
for all generators at input time steps of 5, 10, 15, and 20.

The results in Table 1 indicate that the model exhibits a
relatively small error at the four different time steps. We observed
that both the error metrics in the case of time step 15 are smaller
than those for the other time steps. For one of the 5-fold cross
validation experiments, Figure 5 illustrates the actual and
predicted stability-margin curves considering generator 2 (Bus
31) as an example; the curves of the absolute error are plotted in

FIGURE 4 | Single line diagram of the IEEE 39-bus system.

TABLE 1 | Prediction performance of different input step sizes.

Input time steps RMSE MAE

5 0.2778 0.1133
10 0.2167 0.1387
15 0.1923 0.1023
20 0.2134 0.1167
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Figure 5B. Figure 5 illustrates that the predicted stability margin
is close to the actual value based on the model trained using the
sample data. The red circle in Figure 5A shows the maximum
value of the absolute error occurring on the curve, which is
0.5127. The corresponding relative error is 8.0%, thus indicating
adequate prediction characteristics.

Comparison of Performance Based on
Different Prediction Methods
To verify the effectiveness of the proposed method, we compared
its performance with another method. The input time step was set
to 15 and the output was set to 1. As shown in Figure 6, because
the historical operation data of the power grid has the temporal
characteristics, Method one is to directly input the historical
operational data into the corresponding prediction model, so as
to obtain the power flow information of the power grid at the next
moment, and at the same time, calculate the transient stability
margin at the next moment based on the specific information of

the power flow and the traditional stability-margin prediction
methods. The performances of different prediction methods are
shown in Table 2.

The results in Table 2 indicate that the RMSE and MAE
obtained using the proposed method are respectively 74.9 and
79.4% less than those obtained using Method 1, and the
prediction error is significantly reduced. This is because in the
process of constructing the mapping for the machine learning
terminal of Method 1, the time-series prediction model is
required to directly output the power flow information at the
next moment, and the dimension of the output variables is
considerably high; moreover, the designed model is highly

FIGURE 5 | (A) Actual and predicted values; (B) Actual and predicted errors.

FIGURE 6 | Transient stability margin prediction method under the concept of security region.

TABLE 2 | Prediction performance of different methods.

Method RMSE MAE

Proposed method 0.1923 0.1023
Method 1 0.8045 0.4865
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complex. Therefore, the proposed method performs better than
Method one by extracting the temporal characteristics of the
operational data to predict the stability margin of the power grid
for a future period.

Comparison of Performance Based on
Different Input Features
The model input is designed using two segments, namely the
branch power flow X1 and transient stability-margin metrics X2.
Table 3 summarises the single and double input feature methods
with different prediction performances using the same model
structure and parameters. The concatenate layer for the splicing
matrix is used only in the simulation of double input. Again, the
input time step was set to 15 and the output was set to 1. Figure 7
shows the attention coefficients assigned to different features
using the attention mechanism layer.

As indicated in Table 3, the RMSE of the double input is
0.0466 and 0.0635 lower than those of the single inputs X1 and
X2, respectively. Additionally, the MAE is 0.0345 and 0.0255
lower than the single inputs, respectively. This enhanced
prediction validates that the proposed double input feature
method exhibits a higher prediction accuracy than the single
input feature method with historical power flow or stability
margin data.

The horizontal axis in Figure 7 represents different features;
numbers 1 to 10 denote the eigenvalues of the branch active and
reactive powers after the dimensionality reduction in the first
LSTM layer, whereas numbers 11 to 20 indicate the features of the
stability-margin metrics of 10 generators. Generally, different

features affect the stability-margin prediction in a power grid
differently. Considering the ability of the attention mechanism to
identify information, the greater the attention coefficient assigned
to the feature, the higher is the impact on the prediction.
Furthermore, Figure 7 indicates that the attention coefficients
from 1 to 10 are not significantly different than those from 11 to
20; the sums of the former and latter are 0.3470 and 0.6530,
respectively. Additionally, features X1 and X2, and the stability
margin exhibit a strong correlation, verifying that the prediction
model should use double input features to train the network. In
the following comparative analysis, we also used the double input
feature method.

Prediction Performance Analysis Under
Changing Topologies
The branch power flow comprises the topology information of
the power. To verify the prediction performance of the proposed
model under varying topologies, three different proportion
samples of topology change were selected to perform the
simulation. Each sample randomly switched off one
transmission line. Furthermore, the input time step was set to
15 and the output was set to 1. The test results are summarised in
Table 4.

As indicated in the table, the difference in the RMSE andMAE
values between 30 and 0% topological change are 0.0931 and
0.0510, respectively; the difference in the RMSE and MAE values
between 15 and 0% topological change are 0.0645 and 0.0363,
respectively. The results indicate that the proposedmodel exhibits
adequate prediction performance under a varying topology.

Comparison and Analysis of Prediction
Performance of Different Algorithms
To verify the effectiveness of the proposed model, we compared
the simulations with those performed using other common
methods, such as artificial neural network (ANN), SVM, deep
neural network (DNN), CNN, and LSTM. They concatenate X1
and X2 as inputs to the model. In the ANN and SVM methods,
the principal component analysis is used to reduce the dimension
of input features, and the optimal model is developed by
combining principal component features with the contribution
rates over 95%. The ANN is set as a backpropagation neural
network with a single hidden layer, and the number of hidden-
layer units ranges from 100 to 300. The SVM uses the radial basis
function kernel, and the optimal hyperparameters are determined
using grid search. For deep learning, the DNN is a modification of
the ANN with a deep network, with three, four, or five hidden

TABLE 3 | Prediction performance for different input features.

Input features RMSE MAE

X1 0.2389 0.1368
X2 0.2558 0.1278
X1, X2 0.1923 0.1023

FIGURE 7 | Distribution of attention coefficient of the model.

TABLE 4 | Errors of predicted results with changing topologies.

Proportion of topological
change (%)

RMSE MAE

30 0.2854 0.1533
15 0.2568 0.1386
0 0.1923 0.1023
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layers and a corresponding unit number of hidden layers of 100,
200, or 300, which are determined via cross-parameter traversal.
The CNN structure comprises two convolution, pooling, and FC
layers each. The LSTM structure is configured using two LSTM
layers and two FC layers. Furthermore, the activation function
and learning algorithm of the ANN, DNN, CNN, and LSTM are
consistent with those of the proposed model. And the input time
step was set to 15 and the output was set to 1. Table 5
summarises the prediction errors of each model.

The results in Table 5 indicate that the RMSE andMAE values
of the proposed model are the smallest in comparison with those
of the other models. We observed that the two errors of the LSTM
are smaller than those of the other models, except for the
proposed model, which verifies the adequate prediction
characteristics of the LSTM. The attention mechanism used
with the LSTM in the proposed model improved the
predictive network, resulting in the enhanced prediction
performance.

To verify the effectiveness of the two-stage input mode of the
proposed model, another model structure (Model 1) was
designed based on the LSTM and attention mechanism, and
the specific model structure is shown in Figure 8. The original
data of the power flow was directly used as input data. The
performances of different models are shown in Table 6. The two-
stage model proposed in this study also achieves a significant
prediction accuracy, which also verifies the effectiveness of
reducing the dimension of the historical data X1 using the
first layer LSTM network.

Multistep Analysis of Model Prediction
Typically, the output timespan is a critical characteristic of a
prediction model, which is essential in industrial applications.
Herein, we explore the effect of the output timespan on the
proposed model. The input time step was retained as 15, and the
output timespan was varied from 1 to 10 for testing. Figure 9
illustrates the characteristic metrics in terms of RMSE and MAE,
respectively.

As indicated in the figure, the RMSE and MAE values vary
with an increment in the output timespan. When the prediction
step size is smaller than or equal to six, the RMSE andMAE values
obtained using the proposed model are relatively stable, and the
maximum differences in comparison with the prediction step size
of one are 0.0301 and 0.0231, respectively. When the prediction
step size is greater than six, the prediction error of the proposed
model increases slightly within a small range. The maximum
differences in comparison with the step size of one were only
0.0537 and 0.0619 for the RMSE and MAE, respectively.
Therefore, the proposed model ensures high accuracy and
stability for the long timespan prediction.

CONCLUSION

Conventional data-driven transient stability prediction under the
concept of security region of power systems can evaluate the
stability of only the existing power grid and it does not satisfy the
requirements of future predictions. Therefore, an effective
prediction method based on the LSTM network and attention
mechanism is proposed for the evaluation and prediction of the
transient stability margin. The proposed method can effectively
determine the stability of a power grid for a future period. The
simulation results verify that the proposed model outperforms
the conventional machine learning methods. Additionally, the
proposed model can abstract the critical features based on the
historical power flow and stability metrics dataset; this double
input feature and two-stage input mode improve the prediction
accuracy. The output timespan value can be selected by the
operator to determine the stability trend in advance. The

TABLE 5 | Prediction performance of different models.

Model RMSE MAE

ANN 2.1201 1.3025
SVM 2.1471 1.3586
DNN 0.9527 0.5359
CNN 0.4798 0.2956
LSTM 0.3878 0.2546
Proposed model 0.1923 0.1023

FIGURE 8 | Model one structure based on the LSTM network and AM.

TABLE 6 | Prediction performance of different model structures.

Model RMSE MAE

Proposed Model 0.1923 0.1023
Model 1 0.3544 0.1935
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proposed method for the prediction of transient stability margin can
be applied to several engineering applications, such as consolidation
of the protection and control system, and to avoid severe blackouts.

In the future, we intend to analyse the generalisation performance
of the proposed model considering varying system operational
modes, network parameters, and topological structures.
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