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Nuclear signals are sensitive to noise which may affect final monitoring results significantly.
In order to suppress the nuclear signal noise, a sparse representation method, which is
based on the sparse representation of signals and a matching pursuit algorithm, has been
proposed for denoising. Time–frequency matching “atoms” have been selected for
building an over-complete library by training atoms matching with the characteristics of
nuclear signals regardless of the noise. The best time–frequency matching atoms have
been extracted by sparsely representing the noisy signals with an Orthogonal Matching
Pursuit (OMP) algorithm and the library. The residual ratio threshold has been chosen as a
stopping criterion in the OMP algorithm for avoiding the influence of improper selection of
iterations on denoising results. At the end, the pulse matching the atom extracted by each
iteration has been optimized by performing effective sparse representation on the original
noiseless nuclear signal component in noisy nuclear signals. The proposed method has
been used to denoise the simulated and measured signals and has been compared with
the nuclear denoising result using traditional wavelet theory. The results show that the
proposed method can accurately suppress the noise interference of nuclear signals, and
the denoising effect is better than that of the traditional wavelet method.
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INTRODUCTION

Nuclear radiation detection is one of the key technologies in nuclear analysis and also the
fundamental of nuclear science and technology and has been widely applied in the operation of
nuclear power and its safety, uranium mining and metallurgy, environmental monitoring and
radiation protection, homeland security and nuclear non-proliferation, industrial buildings and
radiation imaging, and other fields. The nuclear information, such as energy, time, and position, is
usually converted into voltage in visual and thus can be expediently analyzed and used for obtaining
valuable information (KNOLL, 2000). As the nuclear signals are usually very weak and there is large
electromagnetic noise in a practical environment, therefore, noise suppression has become a problem
that must be solved in the analysis and processing of nuclear signals in nuclear measurement systems
(Williams, 2005; Hashemian and Bean, 2011; To-PoWang and Zong-Wei Li, 2014; Min et al., 2015).

Sparse representation of signals is a method to represent the original signal as accurately as
possible by less specific information, first proposed byMallet and Zhang in 1993 (Mallat and Zhifeng
Zhang, 1993), in which the signal can be represented by a linear superposition of different basis
signals, and the set of these basis signals is called a dictionary, and the basis signals are called atoms.
The sparse representation of signals is based on the adaptive selection of a small number of atoms to
represent the signal with full consideration of the signal characteristics, and because the method does
not require the atoms to have orthogonality, the selection of atoms in the dictionary is flexible and
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can better characterize the signal and retain the frequency- and
time-domain information of the original signal to the maximum
extent, and it has many advantages such as a wide range of signal
representation, concise representation method, and strong
representation capability (Mallat and Zhifeng Zhang, 1993;
Zhang et al., 2017; Othmen et al., 2021; Shi et al., 2021),
which has been more often applied in the fields of image
restoration, image denoising, and signal recognition (Deeba
et al., 2020; Maqsood and Javed, 2020; Alotaibi, 2021;
Balnarsaiah and Rajitha, 2021). Sparse representation methods
include both sparse decomposition algorithms and construction
of over-complete atomic dictionaries, and the main sparse
decomposition algorithms are convex optimization algorithms
and greedy algorithms. Typical convex optimization algorithms
include Basis Pursuit (BP) (Ekanadham et al., 2011), and in 2015,
Selesnick et al. constructed convex sparse representation models
based on parametric non-convex functions and proposed
corresponding sparse decomposition algorithms, which
achieved superior performance in signal denoising and other
aspects (Selesnick et al., 2014; Parekh and Selesnick, 2015).
Convex optimization algorithms have a more rigorous
mathematical optimization solution process, and compared
with greedy algorithms, convex optimization algorithms can
find sparser or more accurate solutions, but the computational
complexity is high and will take a lot of time. Typical greedy
algorithms include Matching Pursuit (MP) (Mallat and Zhifeng
Zhang, 1993), Orthogonal Matching Pursuit (OMP) (Yi and
Song, 2015), which is developed on the basis of MP,
Regularized Orthogonal Matching Pursuit (ROMP) (Sajjad
et al., 2015), Sparsity Adaptive Matching Pursuit (SAMP)
(Wang et al., 2020), Compressive Sampling Matching Pursuit
(CoSaMP) (Huang et al., 2017), Subspace Pursuit (SP) (Li et al.,
2015), and other methods, and all of them can achieve sparse
signal reconstruction very well. Matching Pursuit class algorithms
are commonly used for image sparse representation, and
Rubinstein’s team (Rubinstein et al., 2008) used Batch
Orthogonal Matching Pursuit (Batch-OMP) to achieve fast
noise reduction and sparse representation processing of image
signals. Greedy class algorithms with mature theory, low
complexity, and fast running speed are widely used for signal
sparse decomposition. The construction of over-complete
dictionaries mainly includes conformal dictionaries and
learning dictionaries. Constructed dictionaries are constructed
by analyzing the signal feature structure, using parametric
wavelets as atoms, and obtaining a large number of different
atoms by changing parameters, such as the Gabor
time–frequency atom dictionary (Mallat and Zhifeng Zhang,
1993) and the chirplet time–frequency atom dictionary (Mann
and Haykin, 1995). The learned dictionaries are mainly learned
from training samples and have good adaptability, but in
application scenarios where the signal interference noise is
relatively strong, the learned dictionaries may not be optimal
and do not perform well for sparse representations of other
signals of the same type; moreover, dictionary learning
algorithms are generally high in complexity and are not
suitable for dealing with large-scale datasets. The current
typical dictionary learning methods include the method of

optimal directions (MOD) (Engan et al., 2000), K-SVD
(Aharon et al., 2005), and online dictionary learning (ODL)
(Celik and Bilge, 2017). At the moment, sparse
decomposition’s application and research in nuclear signal
processing is still in its infancy. In 2011, Trigano T et al.
(Trigano et al., 2011) conducted a study on activity estimation
of radioactive source based on the sparse representation of signals
method and investigated the efficiency of this approach on
simulation and real datasets. And also in 2018, Zhang (Zhang
et al., 2018) investigated the rapid and effective extraction method
of nuclear pulse signals based on the sparse representation
method.

In this paper, a sparse representation method has been applied
for denoising nuclear signals. As nuclear signal matching atoms,
Gabor time–frequency atoms and chirplet time–frequency atoms,
which can accurately correlate with the characteristics of the
original nuclear signal, were first produced. Gabor and chirplet
atoms exhibit good time–frequency aggregation, according to the
uncertainty principle, and the nuclear signal is a type of uncertain
signal with unpredictable time and amplitude. The
time–frequency features of the nuclear signal can be
completely revealed utilizing the sparse representation of the
signal generated using the Gabor dictionary and chirplet
dictionary. Then, the Orthogonal Matching Pursuit (OMP)
algorithm was applied for searching the best matched atom in
the noisy nuclear signals from the over-complete library
composed of time–frequency atoms, and the threshold of
residual ratio was taken as the stopping criterion of OMP
algorithm. Because the matched atoms obtained from each
iteration can only effectively sparse represent the original
nuclear signals without noise components, the aim of nuclear
signal denoising can be achieved. In this work, the above methods
have been used to denoise the simulated and measured nuclear
signals, respectively (Chen et al., 2009; Zhou et al., 2011). The
results prove that the method proposed in this paper is more
effective and superior compared with the traditional wavelet
denoising method.

ORIGINAL RESEARCH ARTICLE

Sparse Representation Theory of Signals
Any signal f ∈ RN can be represented as a linear combination of
atoms (ϕγ(t))γ∈Γ in the dictionary D:

f � ∑
γ∈Γ

αγϕγ , (1)

where αγ is the expansion coefficient. Since the dictionary D is
non-orthogonal and over-complete, a signal f has various
possible representations in the dictionary D. Solving the
sparse signal representation coefficient in a certain atomic
dictionary D is equivalent to solving the following
optimization problem:

(P0) : min
����x0

���� s.t. y � Dx, (2)
where ‖x‖0 � |{i: x(i) ≠ 0}| is the number of non-zero terms in
the coefficient vector x.
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The denoising of the nuclear signals infected by noise can be
composed of two parts, namely, the original nuclear signals
without noise and the noise signal, and its mathematical
model can be expressed as (SARKAR et al., 2012)

f � fp + fn, (3)
where f is the nuclear signal infected by noise, fp is the original
nuclear signal without noise, and fn is the noise signal.

Basically, fp has a particular structure, but fn does not, or fp

and fn have different structures. If there is some kind of atom Pγ,
and its atomic structure is related to fp and unrelated or has weak
correlation to fn, when sparse representation based on the
decomposition algorithm is done to fp in an over-complete
dictionary of atoms composed of Pγ atoms, the inner product of
atoms and fp must be greater than that of atoms and fn. Based on
the rational of MP algorithm, the first extracted nuclear signal must
be the original nuclear signal without noise and can be formulized as

f � ∑k

k�1 <R
kf, pk

γ >pk
γ + Rk+1f, (4)

where ∑k
k�1 <Rkf, pk

γ >pk
γ is the original nuclear signal without

noise, Rk+1f represents the noise signal, and pk
γ denotes matched

atoms for nuclear signals.

Sparse Representation and Decomposition
Algorithm
Orthogonal Matching Pursuit Signal Sparse
Decomposition Algorithm
The process of Matching Pursuit algorithm (Mallat and Zhifeng
Zhang, 1993) is presented as follows: Firstly, the atom xr0 that best
matches the signal y to be decomposed is selected from the over-
perfect dictionary to satisfy the following conditions:∣∣∣∣<y , xr0 >

∣∣∣∣ � sup
∣∣∣∣<y , xri >

∣∣∣∣. (5)
The signal can be decomposed into components and residuals

on the optimal atom:

y � <y , xr0 >xr0 + R1, (6)
where R1 is the residue after the optimal matching of the original
signal with the optimal atom. The same decomposition process
above can be carried out for the residue after the best matching:

Rt � <Rt , xrt >xrt + Rt+1. (7)
After the T step decomposition, the signal is decomposed into

y � ∑T−1
t�0 <Rt , grt >grt + RT. (8)

And a small number of atoms can represent the main component
of the signal, namely,

y ≈ ∑T−1
t�0 <Rt , grt >grt. (9)

From Equation 6, it can be seen that the sparse decomposition
of signals by the matching tracking algorithm is a continuous
iterative process. Without limiting the residual energy threshold
and decomposition iteration times, signals can be decomposed
indefinitely on a fixed atomic dictionary.

The OMP algorithm uses the Gram–Schmidt
orthogonalization method to normalize the matched atoms xrt

at each step of MP decomposition (Yi and Song, 2015), which can
not only accelerate the convergence rate but also avoid
introducing unnecessary components when residual errors are
projected on the atoms xrt. The specific process assumes u0 � xr0,
the most matching atom xrt is selected according to Equation 7,
and then xrt is normalized:

ut � xrt −∑N−1
t�0

<xrt, ut−1 >
u2
t−1

ut−1. (10)

After N iterations, the system output signal y is decomposed:

y � ∑N−1
t�0

<xrt, ut−1 >
u2
t−1

ut−1 + RN. (11)

The Nuclear Signal Over-Complete Atomic Dictionary
The Gabor Atomic Over-Complete Dictionary
According to the principle of sparse representation, the sparse
representation of a signal can be achieved in any over-complete
atomic dictionary (Mallat and Zhifeng Zhang, 1993). From the
point of view of obtaining a better sparse representation of the
signal, the over-complete dictionary of atoms chosen or

FIGURE 1 | Flow chart of the sparse decomposition algorithm based on
block processing.
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constructed should match as closely as possible the intrinsic
structure and properties of the signal, so that as few atoms as
possible can be used for the representation, and the
representation results will be more sparse. In addition, in
order to better describe the time-varying characteristics of
non-stationary nuclear signals from the perspective of
time–frequency analysis, the atoms in the dictionary should

have good resolution in both the time domain and the
frequency domain. In this study, a Gabor atom is firstly used
to construct an over-complete dictionary due to the best
time–frequency aggregation. It is expressed as follows:

gγ(t) � 1�
s

√ g(t − u

s
)cos(vt + w), (12)

FIGURE 2 | Simulation GUI interface of the nuclear signal.

FIGURE 3 | Denoising results of the nuclear pulse simulation signal.
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where g(t) � e−πt2 represents a Gaussian window function, γ �
(s, u, v, w) is the atomic time–frequency parameter, s is the
scaling factor, u is the shift factor, v is the frequency factor, and w
is the phase factor. Signal sparse representation requires high
redundancy and enough diversity of atomic dictionary. To meet
the design requirements, we discretize the atomic time–frequency
parameters into

γ � (aj, paj Δu, ka−j Δv, iΔw). (13)

Here, a = 2, Δu = 1/2, Δv = π, Δw = π/6, 0< j≪ log2N,
0≪P≪N2−j+1, 0≪ k≪ 2j+1, 0≪ i≪ 12, and N represents the
number of sampling points of a frame signal processed.

The Chirplet Atomic Over-Complete Dictionary
The chirplet atom (Mann and Haykin, 1995) is the most widely
used atom after the Gabor atom. On the principle of Gabor atom,
and then the chirplet atom, a one-dimensional frequency
modulation parameter is added, which makes the chirplet

TABLE 1 | Nuclear signal sparse decomposition algorithm based on block processing.

Input: Raw nuclear
signal vector y

Processing: Use the im2col function to transform the signal vector to be processed into an M*N matrix, that is, the signal is divided into M segments of length N, and the data
less than N are processed by adding 0
Task: Select the corresponding time–frequency atoms according to nuclear signal characteristic construction and generate an over-complete atomic dictionary of
corresponding size according to the length of Block data
Initialization: Set the current cycle number m = 1, the maximum cycle number m = M, m = 1,2, . . ., M, and the cycle termination condition m ≥ M
Repeat steps 1 to 6
1. Input: Import the m Block signal data and the generated over-complete dictionary
2. Initialization: Set the cumulative number of stopping updates of the current iteration N = 1 and the maximum number of stopping iterations N=K. And set both N ≥ K and the
residual ratio threshold
3. q(RN−1) � RN−ξRN−1

ξRN−1 < ε, N = 1,2, . . ., K, as the calculation iteration termination condition.
4. Start OMP algorithm decomposition, initialize residual to original noisy signal Block data, set the atomic index set, initialize support set, and decompose sparse vector α
5. Repeat steps 1 to 5
1) The atom xr0 that best matches the signal Block data y is selected from the over-complete dictionary to satisfy the following conditions:
|< y , xr0 > | � sup|< y , xri > |
2) Schmidt orthogonal processing for all selected atoms: set u0 � xro
ut � xrt −∑N−1

t�0
< xrt ,ut−1 >

u2t−1
ut−1

3) Sparse is decomposed by the following calculation:

y � ∑N−1
t�0

< xrt ,ut−1 >
u2t−1

ut−1 + RN

and the sparse vector α is updated
4) Update signal residual RN

RN � RN−1 − < xrN−1 ,uN−2 >
u2N−2

uN−2, N = 2,3. . .,K

5) Determine if termination conditions are met: N ≥ K or q(RN−1) � RN−ξRN−1
ξRN−1 < ε, ξ �

������������������
E[(RN)2]/E[(RN−1)2]

√
If one of the above conditions is satisfied, stop the iteration; if not, set N=N+1 and return to step 1
6. Processing: Signal Block data are represented by a linear combination of the best matched atoms selected each time, that is, Y = D.α, and the last residual represents the
noise removed
7. Determine whether to meet the loop termination condition: m ≥ M; if satisfied, stop the loop and execute the next step; if not, set m = m+1 and return to step 1
Processing: Use the reshape function to reorganize the M-segment Block data to reconstruct the complete signal

TABLE 2 | Calculation results of denoising effect evaluation indexes.

Index Method 1 2 3 4 5 6 7 8 9 10 Overall

RMSE Signal with noise 0.0373 0.0369 0.0397 0.0419 0.0386 0.0382 0.0408 0.0397 0.041 0.0412 0.0395
Chirplet 0.0068 0.0059 0.0062 0.006 0.0059 0.0073 0.0071 0.0057 0.0066 0.0067 0.0064
Gabor 0.0094 0.007 0.0069 0.0055 0.0075 0.0112 0.0076 0.0073 0.0088 0.0068 0.0078
Db4 0.0091 0.0091 0.0103 0.0082 0.0091 0.0099 0.0095 0.0116 0.0102 0.0124 0.0099
Db8 0.0089 0.0105 0.0095 0.0084 0.0098 0.0117 0.0106 0.0108 0.0109 0.0112 0.0102

NCC Signal with noise 0.5901 0.6131 0.5848 0.5405 0.5977 0.6523 0.6073 0.6137 0.6009 0.6325 0.6033
Chirplet 0.8243 0.8772 0.843 0.8246 0.8609 0.8677 0.8538 0.8808 0.8524 0.8712 0.8556
Gabor 0.7361 0.8494 0.8157 0.8351 0.8101 0.7766 0.8329 0.8431 0.7914 0.8695 0.8160
Db4 0.7467 0.7977 0.7174 0.7393 0.7686 0.8062 0.7878 0.7306 0.7555 0.7363 0.7586
Db8 0.7511 0.7603 0.7423 0.7288 0.7473 0.7681 0.7597 0.7509 0.737 0.7669 0.7512

SNR Signal with noise 14.29 14.02 14.02 13.78 14.14 14.18 13.90 14.01 13.88 13.85 14.01
Chirplet 21.66 22.27 22.09 22.19 22.30 21.38 21.49 22.47 21.82 21.71 21.94
Gabor 20.29 21.55 21.58 22.16 21.25 19.53 21.12 21.36 20.53 21.67 21.16
Db4 20.40 20.42 19.87 20.88 20.39 20.05 20.22 19.34 19.93 19.05 20.05
Db8 20.51 19.79 20.22 20.75 20.10 19.33 1976 19.67 19.61 19.50 19.92
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atom have a good matching effect on the linear frequency
modulation signal. It can be expressed as follows:

gγ(t) � 1�
s

√ g(t − u

s
)exp(j(ξ(t − u) + 1

2
c(t − u)2)), (14)

where g(t) � e−πt2 represents a Gaussian window function, γ �
(s, u, ξ, c) is the atomic time–frequency parameter, s is the
telescopic scale, u is the shift factor, ξ is the modulation
factor, namely, frequency center, and c is the linear frequency
modulation factor responding signal frequency over time. The
real part of the time–frequency atom can be expressed as

gγ(t) � 1�
s

√ g(t − u

s
)cos(ξ(t − u) + 1

2
c(t − u)2). (15)

According to the optimal discretization method, the atomic
parameter set γ is discretized:

γ �� (s, u, ξ, c, ω)
� (aj, paj Δu, ka−j Δξ, la−2j Δc, iΔw), (16)

in which a = 2, Δu = 1/2, Δξ = π, Δw = π/6, 0< j≪ log2N,
0≪P≪N2−j+1, 0≪ k< 2j+1, 0≪ l< 2j+1, 0≪ i≪ 12, and N
represents the number of sampling points of a frame signal
processed.

The Termination Conditions of Residual Threshold
The iterative termination conditions of the OMP algorithm are
mainly composed by the hard and soft threshold methods. The
former refers to the fixed iteration termination number K, and the
original signal was replaced with the linear combination of K
original signals. This method is simple but has the flaw that the K
value is difficult to determine accurately. When K is too small, the
original noiseless signal component will be lost, while the noise
component will be introduced in reverse with a very large K. On
the contrary, the soft threshold method holds that the iteration is

terminated when the residual signal is less than a certain
threshold. Its denoising effect is fine when the signal-to-noise
ratio is high, whereas at low signal-to-noise ratios, a larger noise
component will impact on the judgment of the residual error
threshold. Thus, no matter how many times iteration was done,
the residual all cannot reach the specified threshold. In addition,
when the number of iterations is too much, a noise component
will further be introduced, which also will influence the denoising
effect. A termination condition of the residual ratio threshold of
the signal denoising was introduced in the study of Liang and Que
(2010) based on the MP theory, which avoids the influence on the
judgment of the threshold of the residual ratio when the noise
energy is large; as a consequence, the noise disturbance was
reduced, and the robustness of the sparse representation was
improved. Taking Rkf and Rk+1f, respectively, as the k-th and
k+1-th residuals, the residual error ratio is

q(RKf) �
����RK+1f − ξRKf

����
ξRKf

, (17)

where ξ �
��������������������
E[(Rk+1f)2]/E[(Rkf)2]

√
and E(·) denotes the

expectation value.

Steps of Nuclear Signal Denoising Method Based on
Sparse Representation
The steps of the nuclear signal denoising method based on sparse
representation are presented as follows:

1) The number of dictionary contents will be huge, when the
length of the signal to be processed is large enough for the size
of the over-complete dictionary used in sparse decomposition
which depends on the length of the signal to be processed. To
solve this problem, the collected data sequence is divided into
blocks. A Block is a segment of an entire data sequence
(Rubinstein et al., 2008).

FIGURE 4 | Measured nuclear pulse signals in the laboratory. FIGURE 5 |Measured nuclear pulse signals with noise superimposed in
the laboratory.
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2) The corresponding time–frequency atoms are constructed
according to the characteristics of the nuclear signal, and
the over-complete atomic dictionary is generated according to
the length of the Block.

3) For each Block, OMP decomposition is performed separately.
Set the cumulative number of stopping iterations N = 1, and
set the maximum allowed number of stopping iterations to K.

4) According to the threshold condition of residual ratio, do
determination when the OMP calculation iteration
termination condition is satisfied. If not, return to step 3); if
so, a Block denoising ends.

5) Each Block is processed separately and then spliced.

Flow chart of the sparse decomposition algorithm based on
block processing is shown in Figure 1, and the detailed algorithm
is shown in Table 1.

Simulation Verification and Analysis
Nuclear Signal Simulation
The simulation experiment is designed to verify the
effectiveness of the method based on sparse representation.
According to the random statistical law of nuclear event
(Bertuccio and Pullia, 1993; Georgiev and Gast, 1993), the
waveform shape, amplitude, adjacent pulse time interval, and
system interference noise characteristics of the nuclear signal
are statistically described, and then the simulated nuclear
signal is generated on this basis.

1) The mathematical model of pulse waveform

To select an appropriate signal mathematical model according
to the type of preamplifier after the detector, in this paper, a
resistance–capacitance feedback preamplifier is employed to
simulate the output pulse waveform. It is approximated by a
double exponential function:

sn(t) � An × (e−(t−tn)/τ1 − e−(t−tn)/τ2) × u(t − tn), (18)
where An represents the amplitude of the nth pulse waveform, tn
stands for the formation time of the pulse waveform, τ1 and τ2
show the corresponding slow time constant and fast time
constant, respectively, and the function u(t − tn) is the first
step function..

2) The pulse time interval satisfies the exponential
distribution rule

dI(t) � me−mtdt, (19)
where m represents the average counting rate of pulses.

3) The pulse amplitude is proportional to the energy loss of the
incident particle in the detector, which has random
fluctuation characteristics. Generally, the pulse amplitude
distribution of the nuclear signal meets the conditions of
normal distribution:

H(A) � 1����
2πσ

√ e−(A− �A)2/2σ2 , (20)

where �A is the average pulse amplitude and σ is the amplitude
standard deviation determined by the intrinsic energy R of the
detector and the average pulse amplitude, σ � R × ( �A/2.355 ).

4) The statistical characteristics of noise interference

The interference noise will be introduced in the measurement
of the nuclear signal due to the influence of electronic devices and
environment. The white noise distribution satisfies the normal
distribution rule and is superposed linearly with the nuclear

FIGURE 6 | Denoising result of nuclear pulse signals measured in the laboratory: (A) denoising result based on sparse representation; (B) denoising result by
wavelet morphology–wavelet method (Db4); (C) denoising result by wavelet morphology–wavelet method (Db8).

TABLE 3 | Evaluation indexes of denoising effect of measured nuclear signals in
the laboratory.

Denoising method RMSE NCC SNR

Before denoising 10.4730 0.1760 −10.2007
Method in this paper 0.0971 0.9275 10.1279
Wavelet Db4 0.8023 0.4989 0.9568
Wavelet Db8 0.6742 0.5787 1.7121
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signal to form an observation signal. The slow and fast time
constants in the dual exponential function are set to 20 and 0.5 µs,
respectively, based on the pulse waveform of the nuclear signal.
For the pulse amplitude, the natural resolution of the detector is
set to 20%, and the average pulse amplitude is set to 1 V, which
obeys the normal distribution. The generation time of the pulse
waveform is obtained randomly through exponential distribution
according to the pulse time interval and the setting of the average
count rate of nuclear signal pulse of 6,000 cps. For the
interference noise, the mean value and standard deviation of
the noise signal are set as 0 and 0.2 V, respectively, which obeys
the additive superposition rule. Figure 2 shows the original
nuclear signal obtained by sampling frequency 1 MHz and
sampling time 1 ms.

Analysis of Denoising Effect of Nuclear Signal
Thewavelet analysismethod is selected to denoise the simulated signal
to compare and illustrate the denoising effect of this method.Wavelet
packets, respectively, choose wavelet Db4 and wavelet Db8, which are
currently widely applied in the nuclear signal denoising area, and the
denoising results are shown in Figure 3: straight from the top, in turn,
plots present the original nuclear signal without noise, the nuclear

signal with noise, the result of the sparse decomposition based on the
Gabor dictionary, the result of the sparse decomposition based on the
chirplet dictionary, the result processed by Db8, and the result
processed by Db4.

In this work, three parameters were introduced, which formed
the evaluation index of denoising effect, that is, signal-to-noise
ratio (SNR), root mean square error (RMSE), and normalized
correlation coefficient (NCC). The SNR was used to evaluate the
noise energy; the smaller the value of SNR, the lower the noise
energy in the signal. The RMSE was used to evaluate the overall
error between the recovered signal after denoising and the
original noise bureau broadcast signal. The smaller the value
of RMSE is, the lower the error is. The NCC reflects the degree of
similarity between the recovered signal and the original ideal
signal waveform without noise after denoising, and the closer it is
to 1, the more similar the two waveforms are.

Based on the results in Figure 3 and Table 2, the following
conclusions can be drawn by comparing the denoising results and
denoising evaluation indexes of the four methods:

1) The denoising effect of the nuclear signal based on sparse
representation introduced in this paper is better than that
of wavelet analysis. The waveform of each pulse recovery
signal remains consistent, the pulse trend remains the
same, and the error based on sparse representation is the
smallest compared with the original pulse signal after
denoising.

2) The denoising results obtained by denoising the nuclear signal
based on sparse representation are related to the selection of
over-complete dictionaries, and the results vary obviously by
different over-complete dictionaries.

3) The selection of wavelet basis has great influence on the
denoising effect of the nuclear signal based on wavelet
analysis. Compared with that of the original signal, the
amplitude of the denoised signal has big error, and its
waveform was distorted.

The Verification of Measured Signals
In the laboratory, a γ pulse nuclear signal was obtained
through the nuclear measurement system composed of an
NaI detector and γ radiation source 60Co. Figure 4 shows
the waveform measured by the above measurement system in
the laboratory by the sampling frequency of 100 M Hz. Due to
the weak interference in the laboratory, the nuclear signal can

FIGURE 8 |Nuclear pulse signal output by the neutron detection system
built in the laboratory.

FIGURE 7 | Structural block diagram of the neutron measurement system.
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be easily differentiated. In this paper, background noise of the
laboratory is measured and amplified and then superimposed
into the measured signal to simulate the noisy nuclear signal.
Its waveform is shown in Figure 5.

The method introduced in this paper is adopted to carry out
denoising processing for the above nuclear signal with noise, and
the result is shown in Figure 6A. Meanwhile, the denoising
results by wavelet morphology–wavelet method were also
measured and are shown in Figures 6B,C.

Due to the small noise interference of the original measured
nuclear signal, it can be approximately equivalent to the ideal
noise-free waveform, and the evaluation index of denoising effect
of each method is calculated. The results are shown in Table 3.

Based on the results in Figure 6 and Table 3, the method in this
paper can still restore the measured nuclear pulse signal in the
laboratory under high noise, whereas the denoising effect of
wavelet method is poor with large energy loss and large distortion.
In general, the method of denoising the nuclear signal introduced in
this paper has high accuracy, small waveform distortion, and good
retention of the time characteristics and amplitude of the original
nuclear pulse signal. So, its denoising effect is obviously better than
that of the wavelet method.

To validate the denoising effect of the method in this paper for a
weak signal under a long cable transmission nuclear measurement
system, a set of neutron detection systems was built in the laboratory,
whichmodeled themeasurement system in the core pool of a sodium-
cooled fast reactor. In the system, the Am–Be neutron source and LB-
125 fission ionization chamber were applied, and the output signal of
the fission ionization chamber was transported through a 10m long
cable to the preamplifier for amplification to improve the SNR of the
detector and then sent to the linear amplifier through a long shielded
cable. The structural block diagram of the neutron measurement
system is shown in Figure 7.

The nuclear pulse signal shown in Figure 8was read out by the
neutron detection system built in this paper after the main

amplifier. Due to the long distance between the preamplifier
and the fission ionization chamber, interference noise can easily
be mixed into the measurement process through the transmission
cable, so large noise has been superimposed in the nuclear pulse
signal measured by the experiment.

The nuclear pulse signal denoising method adopted in this
paper was used for sparse decomposition and reconstruction of
the nuclear pulse signal output by the neutron detection system
built in the laboratory. Figure 9 shows the result obtained
through adjusting the iteration threshold parameters.

RMSE, NCC, SNR, and other parameters cannot be used for
evaluation, as there is noway to obtain the nuclear pulse without noise
through the neutron detection system. However, from the
reconstructed pulse image, we can obviously find the method can
effectively extract the nuclear signal from the system with a random
noise signal and maintain the time information of the original pulse.

CONCLUSION

In this paper, a sparse representation–based nuclear signal denoising
method is proposed for nuclear signal extraction in a strong noise
interference environment. Firstly, the Gabor time–frequency atoms
and chirplet time–frequency atoms are constructed, and then the
sparse decomposition and reconstruction of the signal are performed
by the Batch Orthogonal Matching Pursuit (Batch-OMP) algorithm,
and the residual ratio threshold is used as the termination condition of
the iteration of the algorithm. The simulation results show that this
method outperforms the traditional wavelet method in all indexes,
with high accuracy and low error, and retains the kernel signal
characteristics. The experiments prove that the method can
effectively extract the kernel signal in the noisy environment and
retain the original pulse information well.
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