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Imaging in the visible spectrum is a low-cost tool that can be readily deployed for in-field or
over-belt monitoring of biomass quality for bio-refining operations. Rapid image analysis
coupled with innovative preprocessing may reduce the impacts of feedstock variability
through identification of contaminants or other material attributes to guide selective sorting
and quality management. Image analysis was employed to evaluate the quality of corn
stover in red-green-blue (RGB) chromatic space. This study used controlled, bench-scale
imaging as a proof-of-concept for rapid quality assessment of corn stover based on
variations in material attributes, including chemical and physical attributes, that relate to
biological degradation and soil contamination. Logistic regression-based classification
algorithms were used to develop a method for biomass screening as a function of
biological degradation or soil contamination. This study demonstrated the use of image
analysis to extract features from RGB color space to investigate variations in critical
material attributes from chemical composition of corn stover. Fourier transform infrared
(FT-IR) suggested a correlation between red band intensity and biological degradation,
while detailed surface texture analysis was found to distinguish among variations in ash.
These insights offer promise for development of a rapid screening tool that could be
deployed by farmers for in-field assessment of biomass quality or biorefinery operators for
in-line sorting and process optimization.
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INTRODUCTION

The 2016 Billioin Tons Report (BT16) estimates that by 2040, more than 1 billion tons of biomass
will be available to achieve a vision of a sustainable bioeconomy (US DOE, 2016). Lignocellulosic
biomass has been considered a promising feedstock for biofuels production; therefore, tremendous
research efforts have been made to enhance different aspects of the related processes (Cheah et al.,
2020). Increases in fuel prices have challenged all countries around the world to develop their own
biofuels from renewable resources such as lignocellulosic crops (Qureshi et al., 2010). Zea mays is a
significant agricultural crop with potential as a biofuel feedstock due to its high carbohydrate content,
low production cost, and high availability in the US corn belt (Li et al., 2020). Biomass variability
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originating from production and field conditions propagates with
the feedstock through the value chain, posing a challenge to the
emerging biorefinery industry (Ray et al., 2020). Variations in
lignocellulosic biomass material and quality attributes are often
overlooked when assessing feedstock value and pathways for
conversion to fuels, chemicals, and products (Ray et al., 2020).
Variations in cell wall composition, extractives, moisture content,
inorganic species, and soil contaminants have been identified as
critical factors affecting biomass quality, process uptime, and
product yields (Ray et al., 2020; Sievers et al., 2020; Ding et al.,
2021a). Hoover et al. (2019) developed several multiple regression
models where five chemical characteristics could be used to
estimate biochemical conversion performance. Using these
models, an approach for a grading system was demonstrated
that could be used to inform markets on the impacts of biomass
variability. Hartley et al. (2020) used discrete event simulation
that investigated feedstock quality on plant uptime and overall
impact to biofuel cost through feedstock delivery cost. These
works show how fundamental biomass information might enable
real-time decision making on plant profitability and operability.
Storage is an essential component of the biomass logistics supply
chain, which can have significant impacts to the overall feedstock
supply cost and operational reliability (Rentizelas, 2016). Many
studies have established that the combination of living cell
respiration, biological degradation, and thermo-chemical
oxidative reactions bring about significant changes to critical
biomass feedstock attributes and process efficiency during storage
(Bose et al., 2020; Groenewold et al., 2020; Li et al., 2020).
Changes that may occur in stored biomass feedstock include
dry mass loss (up to 5.5% per month) (Thornqvist, 1985;
Eisenbies et al., 2016), drying, decomposition, and energy
content loss (Krigstin and Wetzel, 2016). In addition to capital
and operational costs, it is imperative to consider the impact of
storage method and format on chemical properties of biomass
and overall process efficiency.

Image analysis techniques have been widely applied to
measure lignocellulosic biomass features. Image analysis
techniques for assessing crops and plant material involve
extracting information from digital images of the
lignocellulosic biomass (Yan et al., 2020). Unique features of
the materials, such as shape, color, and surface texture, can be
recognized. Recent research found that crop biomass is highly
correlated with different crop parameters, such as leaf area index,
crop height, and canopy volume (Lati et al., 2013; Bendig et al.,
2014; Tilly et al., 2014), and is also correlated with different
vegetation indices based on hyperspectral and red, green, blue
(RGB) images (Gupta et al., 2000; Gitelson et al., 2003; Swain
et al., 2010; Gitelson et al., 2014; Jannoura et al., 2015). Crop
biomass yield has been estimated from spectral information from
an unmanned aerial vehicle using standard RGB and
multispectral or hyperspectral cameras (Jiang et al., 2019).
Image analysis has also been used to estimate the distribution
of plants in fields of a clover-grass mixture by using convolutional
neural networks trained to predict semantic segmentation maps
of clover, grass, and weeds in RGB images containing clover-grass
mixtures (Skovsen et al., 2017). Further, Wang et al. found a
strong positive correlation between the grayscale values of

biochar and its methylene blue and iodine adsorption capacity,
and the Pearson’s correlation coefficient range was 0.685–0.977
(Wang et al., 2015). In addition, surface texture can be measured
directly from images taken with a laser profilometer (Chinga
et al., 2007; Wagner and Horn, 2017), stereomicroscope (Mitra
et al., 2014; Piselli et al., 2017), photographic scanner (Aguirre
et al., 2018), or scanning electron microscope (Yan et al., 2020).
The image analysis can also provide information on the surface
roughness based on grayscale values of the image or height map
(Chinga et al., 2007).

There are limited publications on visible, red-green-blue
(RGB) analysis of biomass variability relevant to biorefineries
and lack of such a study limits the ability to develop rapid
screening tools for in-field assessment of biomass quality
based on physical and chemical attributes. The novelty of this
paper was to design and use controlled, bench-scale imaging,
employing an off-the-shelf digital camera, as a proof-of-concept
for rapid, quality-based assessment of corn stover in visible, red-
green-blue (RGB) space based on variability derived from soil
contamination and biological degradation. Logistic regression
classification algorithms were used to develop an image
screening of biomass as a function of soil contamination and
biological degradation. In addition, FTIR was used with a more
detailed surface analysis to investigate variation in critical
material attributes that arise from chemical composition.
Finally, surface texture analysis of the same images
distinguished among variable ash levels and degradation. The
qualitative results presented in this study show promise for
developing rapid screening tools to deploy in-field or in-line
for rapid assessment of feedstock quality.

MATERIALS AND METHODS

Corn Stover Bale Collection and Sample
Preparation
Two sets of corn stover samples were imaged and analyzed in this
study. The first was a set of 216 core samples from 24 bales
obtained from four fields in different central Iowa counties:
Hamilton (4 bales), Hardin (6 bales), Story (6 bales), and
Poweshiek (8 bales) described in Ray et al. (2020). Baling
occurred between October 12 and 27, 2017, using an AGCO
2270XD large square baler, except for Poweshiek County, where a
Heston 2270XD square baler was used. Preliminary screening for
moisture and ash content was performed by taking three cores per
bale to select the 24 bales used in this study. Selected bales were
more thoroughly sampled by collecting nine cores per bale,
illustrated in a previous study (Ray et al., 2020). Corn stover
samples were dried at 40°C and milled with a 2 mm screen in a
Thomas Model 4 Wiley Mill (Thomas Scientific, Swedesboro, NJ)
for chemical composition analysis. Additional milling using a
Retsch ZM200 (Haan, Germany) with a 0.2 mm screen was done
to analyze inorganics. For surface analysis, the bales were size
reduced through a Vermeer BG480 bale processor with a 75-mm
screen, then a Bliss Hammermill with a 25-mm screen, and
samples were collected and milled to pass a 2-mm screen for
evaluation of surface properties.
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The second set of 12 corn stover samples was selected to
evaluate material attributes influenced by aging and degradation
in storage operations. Bales were from Hardin County, IA (2

bales) and Story County, IA (3 bales) with harvest and baling
information described for each county previously. Bale sections
exhibiting visual evidence of biological degradation were selected

FIGURE 1 | (A) Image workflow sample template with internal color standards and biomass samples; (B) Examples of the region of interest selection to measure
and output RGB channel data.
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for sampling as described in previous studies (Li et al., 2020;
Groenewold et al., 2020; Bose et al., 2020). Samples were collected
from bale flakes displaying variable extents of biological
degradation—moderate biological degradation (medium brown
coloration), severe biological degradation (dark brown to almost
black), and mild-or negligible biological degradation (light
brown). The two bales from Hardin County were size reduced
using a Vermeer BG480 bale processer with a 75-mm screen,
samples were collected following size reduction, and one sample
per bale was visually identified as severely biologically degraded
or mild/negligible biologically degraded. The three bales from
Story County were manually deconstructed and dissected to
collect samples from flakes of the bale that were observed to
have mild/negligible biological degradation or moderate/severe
biological degradation (Groenewold et al., 2020). For subsequent
characterization, samples were milled to pass through a 2 mm
and a 0.2 mm screen as described above.

Image Processing and Analysis
An imaging workflow was developed that uses a Panasonic Lumix
G camera with a 88.9-cm square light shed and Metz Mecablitz
52 AF-1 digital flashes. Camera location and settings, as well as
flash position, were kept consistent for all images. Each 2-mm
sample was imaged using a standardized sample template with
internal color standards in each sample photo and a consistent set
of biomass samples in each photo (Figure 1A). The image
processing workflow included post-processing in SilkyPix
Developer Studio 8 SE and data extraction with ImageJ
(https://imagej.nih.gov/ij/). Each photo’s exposure and gray
balance were set individually using the X-Rite ColorChecker
Passport Photo 2 with color reference targets included in each
image. Regions of interest were defined in each image, as
displayed in Figure 1B. The digital photos were decomposed
into red, green, and blue channel values ranging from 0 to 255 in
relative intensity. The mean, median, standard deviation,
minimum, and maximum for the red, green, and blue values
range from the regions of interest for all samples were included in
the data sets available in the Bioenergy Feedstock Library (Ding
et al., 2021b). The image results were aligned with sample
metadata, total inorganics, inorganic speciation, and chemical
composition (NIRS predicted composition or wet chemical
composition) (Ding et al., 2021b). In addition to analytical
characterization, three independent observers inspected each
sample to assist with positive classification of samples into
qualitative sample categories: 1) clean and not degraded, 2)
soil contaminated, or 3) degraded (Ding et al., 2021b). This is
further discussed below.

Chemical Analysis
Inorganic speciation for Al, Ca, Fe, K, Mg, Mn, Na, P, Si, Ti, and S
oxides were measured according to ASTM standards D3174,
D3682, D6349 by a Huffman Hazen Laboratories in Golden,
CO and represented on a % dry biomass basis. The chemical
composition, including total inorganics, glucan, xylan, lignin, and
total extractives, was measured using near-infrared spectroscopy
(NIRS) predicted composition or wet chemical composition. For
NIRS, predicted composition samples at 2 mm particle size were

dried in a desiccator for a minimum of 72 h prior to NIRS
analysis. Previous publications have described spectral analysis
and NIRS calibrationmodels in detail (Payne andWolfrum, 2015;
Ray et al., 2020). Wet chemical composition was performed in
duplicate following the National Renewable Energy Laboratory’s
laboratory analytical procedures for standard biomass analysis
(Sluiter et al., 2010), as described in a previous study (Hoover
et al., 2019). The NIRS chemical composition predictive models
were built on these same wet chemical procedures.

Observational Dataset
Three independent researchers performed an observational
assessment of each sample and categorized sample quality on
the basis of soil contamination and degradation due to biological
heating. The surveyed researchers were highly experienced in
biomass sampling, preparation, and analytical characterization
for assessment of biomass quality, as well as identification of
degraded samples that have undergone biological heating or
biomass materials with soil contamination. Observational
assessment consisted of a -visual (color and clear decay, soil
contamination), tactile (texture from grit, soil, silt and/or sand
entrapment, and fiber integrity), and odor (presence of astringent
odors common to biological degradation) material inspection of
each sample and recorded whether it was 1) not soil
contaminated and not biologically degraded 2) soil
contaminated, or 3) biologically degraded. Samples were
assessed with a scale of 0–3 for soil contamination, and
biological degradation with 0 = not observed, 1 = low, 2 =
moderate, and 3 = high. The observational values were
summed for each category for a minimum value of 0
(i.e., each observer selected 0) and a maximum of 9 (i.e., each
observer selected 3) [(Ray et al., 2020) Supplementary Material].
Observational data are aggregated in the dataset (Ding et al.,
2021b).

Statistical Analysis
JMP® Pro 16.0.0 was used to analyze the combined information
from the image analysis, chemical analysis, and observational
dataset as described above. Hierarchical cluster analysis using the
Ward method was used to group the 222 samples with chemical
composition data into four organic chemically distinct groups
using glucan, xylan, lignin, and extractives contents (Ding et al.,
2021b) along with four inorganic chemically distinct groups for
the 191 samples in the dataset with inorganic speciation contents
for 191 samples (Ding et al., 2021b). Principal component
analysis (PCA) was also used for each organic and inorganic
dataset to visualize and interpret the hierarchically defined
clusters. Four linear regression models using least squares were
generated relating 1) organic chemical components—glucan,
xylan, lignin, a 2-way interaction between glucan and xylan,
and a 3-way interaction between glucan, xylan, and lignin
along with total inorganics—to the median red channel values
(Ding et al., 2021b) as described in the image processing and
analysis section, 2) the same organic chemical components along
with SiO2 and SO3 inorganic constituents to the median red
channel values 3) organic chemical components to the observed
biological degradation dataset as described in the Observational
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dataset section and 4) the observed biological degradation levels
to median red channel value. For the development of these
models, factors were retained if they significantly contributed
to the response variable (p ≤ 0.05) and were not highly correlated
to other factors in the model except for cases when single factors
were retained regardless of their significance if they were included
in any interaction terms. Multicollinearity between model
explanatory factors was determined based on the Variance
Inflation Scores (VIF). A VIF score >10 was considered high
multicollinearity between model factors. Nominal logistic fit
regression models were used to develop predictive models for
biological degradation and soil contamination levels, using the
established hierarchical cluster groups as response variables and
median values from the red, green, blue channels and 2-way
interactions between these values. The dataset used for these
models included the 222 samples for predicting the levels of
biological degradation with organic chemical data available
and 176 samples for predicting levels of soil contamination
using samples with both organic chemical and inorganic
speciation data available. Factors for each model were
removed based on p-values greater than 0.05. The datasets
were randomly split into 80% training and 20% validation for
these predictive models.

Fourier-Transform Infrared Spectroscopy
Characterization
Corn stover samples for Sample Set 1 were milled using a Retsch
ZM200 (Haan, Germany) to 0.2 mm, extractives were retained in
the samples. Corn stover samples were extracted with 95:5
acetone/water on a Soxhlet apparatus (~70°C) to remove
extractives for Sample Set 2. Corn stover samples for Sample
Set 2 were milled in Retsch PM 100 mill fitted with one or two
50 ml ZrO2 grinding jars and 10*10 mm ball bearings 10 h to
less or equal to 45 µm (5 min mill with 10 min interval test).
FTIR spectra of all corn stover samples were collected using a
Bruker Vertex 70 FTIR spectrometer, equipped with a
diamond ATR accessory (Bruker Corporation). Spectra were
collected in the spectral range 4000-600 cm−1, using 64 scans
and 1 cm−1 resolution. Spectra were baseline corrected at
1840 cm−1 and advanced diamond ATR fixed with the angle
at 450.

Surface Texture Analysis
Textural features of cropped images were quantified using the
plugins SurfChar J 1q (Chinga et al., 2007), GLCM Texture Too
(Haralick, 1979; Lan and Liu, 2018), and FracLac (Smith et al.,
1996; Karperien et al., 2013). Before textural analysis, the original
color corrected images were cropped to isolate a 900x900-pixel
region-of-interest (ROI) centered on the sample cup. Then, the
color information was discarded in the image of all subsequent
texture analyses and used either 32-bit (SurfCharJ) or 8-bit
(GLCM and FracLac) greyscale images. The SurfCharJ 1q
package calculated an estimate for the root mean square
deviation (Rq), arithmetical mean deviation (Ra), skewness
(Rsk), Kurtosis (Rku), lowest valley (Rv), the highest peak
(Rp), total profile height (Rt), the mean height of surface

profile (Rc), mean polar facet orientation (FPO), variation of
the polar facet orientation (MFOV), the direction of azimuthal
facets (FAD), mean resultant vector (MRV), and surface area
(SA) from the image. The GLCM Texture Too plugin calculated
angular second moment (ASM), inverse difference moment
(IDM), contrast, entropy, homogeneity, variance, shade,
prominence, inertia, and correlation. The FracLac plugin
analyzed the fractal dimensions of the images. Local connected
fractal dimension analysis was used, and the Dm output was
collected. In total, 27 different surface texture parameters were
calculated.

RESULTS AND DISCUSSION

Biological Degradation
Figure 2 shows the results and distribution of chemical
compositions and inorganic speciation variability of all
samples used for image analysis (detailed dataset in (Ding
et al., 2021b). Total inorganics, SiO2, and Al2O3, revealed
substantial variation on a % dry matter basis. Both Si and Al-
based inorganic species are potential contributions from levels of
soil contamination.

Image Analysis Biological Degradation
Hierarchical cluster analysis based on chemical components was
used to glean key insights about sources of variability
(i.e., degradation and soil contamination) that affect quality,
with samples grouping into four distinct clusters observed
through principal component analysis (PCA) (Figure 3).
These chemical composition constituents vary by level of
biological degradation (Andrews et al., 1999; Brand et al.,
2011; Krigstin and Wetzel, 2016; Groenewold et al., 2020). The
loading plot in Figure 3B shows how each of these chemical
components is driving the observed cluster in the PCA score plot
demonstrated in Figure 3A.

Figure 4A shows a linear relationship between the median red
channel and the chemical properties of the samples and was used
throughout the analyses. The red channel had the largest range of
variability when compared to blue and green, high correlation to
other factors used in regression analyses and was correlated to
green and blue channels (Supplementary Figure S1, supporting
information). Linear relationship factors were identified from
chemical data using a stepwise technique as a function of their
contributions toward explaining variability in the median red
channel output, while minimizing multicollinearity between
explanatory factors. For example, extractives and the
interaction factor of (glucan x xylan) are highly correlated
(Supplementary Figure S1, supporting information).
Therefore, both were not necessary to explain the variability in
the median red channel. The relationship between these chemical
properties and the median red channel exceeds an R2 value of 0.7.
Interaction terms between glucan, xylan, and lignin content were
included in this analysis. Table 1 displays the standardized
coefficients and relative significance level for each chemical
material attribute from linear relationships in Figure 4A.
These coefficients suggest that xylan was the highest
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contributor to explaining the variability seen in the red channel.
At the same time, changes in glucan contribute the least in
comparison to the other factors. This is consistent with prior
work that demonstrated selective degradation of hemicellulose in
response to biological heating during storage with cellulosic
components involved to a lesser extent (Groenewold et al.,
2020). Both factors indicate that as glucan and xylan contents
decrease, the red channel signal decreases.

It should be noted that extractives were not used in the model
due to the high correlation with glucan and xylan; however, as
extractive content increases in the data set, the red channel
decreases. Previous studies have demonstrated that extractives
content increases with the extent of biological degradation
(Groenewold et al., 2020; Li et al., 2020; Ray et al., 2020),
consistent with reductions in hemicellulose and to a lesser
extent, cellulosic components, as a function of biological

FIGURE 2 | Boxplots for (A) chemical composition; n = 222, and (B) inorganic speciation; n = 191. SiO2 is broken out for a clearer view of the variable ranges of the
other inorganic species.

FIGURE 3 | Principal component analysis of biological degradation (A) score plot and (B) loading plot for chemical composition. n = 222.
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degradation. The interaction terms between glucan and xylan
suggest that with increases in both, the impact of xylan on the red
channel output decreases. During degradation, xylan content,
representing the hemicellulose fraction, is more reduced than
glucan content (Qing and Wyman, 2011). This interaction term
reflects the changing ratio between cellulose and hemicellulose.
The same conclusion can be drawn from the interaction
between glucan, xylan, and lignin, representing the changing
ratios between these chemical attributes in response to
degradation. Total inorganics also significantly contributed
to changes in the median red channel response. This
relationship is further discussed in the following section on
soil contamination.

Linear regression analysis was used to relate organic
components of glucan, xylan, and lignin to the severity of
biological degradation. Figure 4B shows the resulting linear
relationship, and the coefficients are shown in Table 1. The R2

was 0.77 for this regression, similar to the regression formed
between chemical properties and the red band in Figure 4A.
This relationship also indicates that xylan is the highest
contributor, suggesting that lower concentrations of xylan
content correspond to higher biological degradation levels.
The only organic-based significant factor not shared between

the two regressions (Figures 4A,B) was the interaction
between glucan, xylan, and lignin (Table 1). This factor did
not significantly contribute to explaining the biological
degradation observations. Researcher observations of
biological degradation less resolved (scale from 0-9 with
each researcher selecting between 0-3) compared to the red
channel range (88-161measured); therefore, observational
data may not be able to capture the changes in glucan-
xylan-lignin property relationships, suggesting the basis for
differing explanatory factors in Figures 4A,B. The similarities
between the linear regressions formed between the red channel
and chemical properties and observed levels of biological
degradation and chemical properties suggest that the red
channel from the image analysis identifies biological
degradation in the samples. Figure 4C further corroborates
this by showing the strong linear relationship between the red
channel outputs and the biological degradation observations
(R2 = 0.79).

The relationships observed between the chemical changes,
image analysis of the red channel, and biological degradation
observations generally align with the overarching
hierarchical cluster grouping. Cluster 1 and 2 (Figure 3A)
correspond with no or mild biological degradation, group 3 as
moderate, and group 4 as the severely biological degradation
samples.

Structural Properties of Biologically
Degraded Corn Stover Biomass
To gain a more comprehensive understanding of the impacts of
biological degradation on the structural properties of biomass,
FT-IR was applied to characterize corn stover with different
extents of degradation. Corn stover biomass was selected
based on the degree of degradation classified as mild,
moderate, and severe or scaled from 1 to 9. The detailed
information for the red band values and chemical composition
is listed in Table 2. The more severely biologically degraded
biomass resulted in a lower red band value. Figure 5 shows the
FT-IR spectrum of selected corn stover biomass (Bales 5, 1, and

FIGURE 4 | Least squares regression analysis of (A) red band intensity as a function of chemical composition, (B) biological degradation/self-heating observation
as a function of chemical composition, and (C) red band intensity as a function of biological degradation/self-heating observation. Legend gives results of cluster analysis
from chemical composition in Figures 3A,B.

TABLE 1 | Chemical properties are used to form linear regressions for explaining
the red-band and biological degradation/self-heating observation variability.

Chemical property Red band coefficienta Self-heating
observation coefficienta

Glucan 0.10* −0.26**
Xylan 0.44** −0.49**
Lignin 0.25** −0.18**
Glucan x Xylan −0.26** 0.34**
Glucan x Xylan x Lignin −0.15** not significant
Total Inorganics −0.35** N/A

aStandardized coefficients.
*Indicates significance 0.01 < p≤ 0.05.
**Indicates highly significant p < 0.01.
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6) (See image analysis dataset bale ID (Ding et al., 2021b)) and
focuses on the region from 1800-800 cm−1 reflecting the critical
structural properties of biomass (Ma et al., 2018). Remarkable
differences were observed in Bale 5. The C-O-C ether stretching
at 1030 cm−1 and 1242 cm−1 decreased after biological
degradation indicating the carbohydrates were hydrolyzed
during biological degradation, which corresponded to the
decrease of xylan. The absorbance of aromatic C-H
stretching of lignin in 1510-1300 cm−1 also decreased after
degradation, suggesting that lignin condensation reactions
happened during the biological degradation process. It was
hypothesized that the biological oxidation reactions that
occur during the degradation result in chromophore
formation, such as conjugated carbonyl and quinone, leading
to the darkened color of the biomass. In Figure 5A, the

absorbance of unconjugated (1710 cm−1) and conjugated
(1651 cm−1) carbonyl (C=O) increased and shifted with the
reducing value of the red band, implying that lignin was
oxidized during the biological degradation process supporting
this hypothesis. Figures 5B,C show the FT-IR spectrum of the
Sample Set 1 corn stover samples. Unlike the degraded samples,
the extractives and soils were not removed, and the particle size
was 0.2 mm, which is much larger than that used for the Sample
Set 2 samples. The FT-IR spectra of the samples show similar
results with the degraded samples. However, some samples,
such as Bale 6 Cores1 and 8, have weaker absorbance caused by
the particle size or soil contaminants. Also, the overall
absorbance of Sample Set 1 is lower than the degraded
samples (Sample Set 2). Therefore, the particle size of
biomass and soil removal is essential for FT-IR ATR

TABLE 2 | Biological degradation properties, red band value, and chemical composition of corn stover for samples characterized using FT-IR.

Sample Degree of
biological degradation

Red band Glucan (%) Xylan (%) Lignin (%) Total Inorganics
(%)

Sample set 2, biologically degraded corn stovera

Bale 5b Mild 148 33.39 18.19 14.70 12.24
Bale 5b Moderate 110 32.23 13.08 18.69 8.81
Bale 5b Severe 106 30.23 10.51 20.41 10.43

Sample set 1, corn stoverc

Bale 1 core 3d 1 141 36.0 19.0 16.2 8.3
Bale 1 core 7d 4 130 31.8 18.7 16.2 9.6
Bale 1 core 6d 7 116 NP NP NP NP
Bale 1 core 4d 8 104 NP NP NP NP
Bale 6 core 1d 1 149 41.2 19.5 17.2 9.5
Bale 6 core 3d 3 138 32.1 19.2 15.8 9.1
Bale 6 core 8d 6 123 NP 18.5 15.0 10.4
Bale 6 core 7d 8 108 31.9 10.1 23.8 12.9
Bale 6 core 6d 9 92 NP NP NP NP

aObtained by wet chemistry.
bExtractives free for FT-IR, measurement, <45 µm.
cObtained by NIR.
dExtractives retained for FT-IR, measurement, <0.2 mm.
NP, no prediction, samples fell outside of the NIRS prediction calibration.

FIGURE 5 | FT-IR from samples from across a range of degradation states (A) Bale 5, (B) Bale 1, and (C) Bale 6.
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characterization. The FT-IR results demonstrated a potential
correlation between the hydrolyzed carbohydrates and the
condensed and oxidized lignin in biologically degraded corn
stover. These results provide further insights into biopolymer
degradation and modification mechanisms during storage,
which could correlate to the red band intensity detected
through image analysis.

Image Analysis of Soil Contamination
As shown in Table 1 and Figure 4A, the total inorganics content
significantly contributes to changes observed in the red channel,
suggesting that image analysis could provide a valuable tool for

identifying levels of soil contamination. Hierarchical cluster
analysis was used similarly on ash speciation data to identify
distinct clusters based on inorganic features. Cluster 1 represents
limited or no soil contamination, and cluster 4 represents high
soil contamination. The PCA score plot (Figure 6A) displays
these clusters. The variability in the 1st principal component
suggests a relationship to inorganic species derived from soil
contamination, including silicon and aluminum (Lacey et al.,
2018). The second principal component relates to inorganic
components that serve structural and physiological functions
within the plant (i.e., biogenic ash), including sulfur, nitrogen,
potassium, calcium, magnesium, and phosphorus (Thy et al.,

FIGURE 6 | Principal component analysis of soil contamination (A) score plot and (B) loading plot for ash speciation represented on a % dry biomass basis.

FIGURE 7 | Linear regression of measured versus predicted red channel value explained by chemical composition and select inorganic species (SO3 and SiO2)
visualizing (A) ash clusters and (B) chemical clusters.
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2013; Li et al., 2020). The inorganic clusters 1 and 2 vary primarily
based on intrinsic inorganic species inherent to plant biomass,
and clusters 3 and 4 show relationships to soil contaminant
inorganic species (i.e., silicon and aluminum).

Figure 7A shows the resulting regression with the ash
speciation clusters labeled, and Figure 7B shows the same
regression with the chemical clusters, that were based on
glucan, xylan, lignin, and extractives contents. Regression
analyses highlight that for this dataset, the red channel
relationships are being driven by the biological degradation
severity, even with the highest ash sample in the data
representing close to 62% total inorganics. The regression
shown in Figure 7A includes SO3 and SiO2 content instead of
total inorganics, as was included in the regression represented in
Figure 4A, to represent the relationship of these intrinsic and
extrinsic ash species to the image red channel intensity.
Phosphorus and potassium oxides were not selected for the
linear regression as representatives of intrinsic ash, as
suggested by the principal component 2 in the principal
component loadings plot (Figure 6B) as they did not
significantly contribute to explaining the red variability. It
should be noted that fewer samples in the dataset contained
ash speciation compared to the organic composition data
available (191 samples compared to 222 samples). Therefore,
the coefficient changes cannot be directly compared to the model
in Figure 4A; however, the general trends remain consistent.
Both SO3 (representative of intrinsic ash) and SiO2 content
(representative of soil contamination) significantly explain
variability in the red channel (Table 3).

In summary, regression analyses associated with both
biological degradation and soil contamination identified
relationships among chemical components in corn stover,
namely xylan, glucan, lignin, total inorganics, Si, and S,
strongly correlated to the red band intensity detected
through image analysis. The variations in organic chemical
attributes xylan, glucan, and lignin were attributed to
biological degradation. In contrast, variations in inorganic
attributes, Si and S, corresponded to the extent of soil
contamination and intrinsic inorganic content in the
sample. Although a mechanistic understanding of the
biological degradation (Groenewold et al., 2020; Ding et al.,
2021a) and thermo-chemical oxidative reactions that alter

biomass quality attributes during storage (Krigstin and
Wetzel, 2016) is required to sort out confounding signals
from the degradation and accumulation of inorganic
species, qualitative results presented here show promise for
developing rapid screening tools to deploy in-field or in-line
for rapid assessment of quality (Ray et al., 2020).

Screening Prediction Development
The purpose of the regression analyses and relationships, as
previously discussed, was to demonstrate that aspects of the
images, the median red channel intensity specifically, could be
quantitatively related to the chemical changes known to be
impacted by biological degradation and soil contamination.
Here the red channel along with the blue and green channels
from the images was used to demonstrate potential screening
methods for corn stover samples to predict the presence of
biological degradation and soil contamination. For this
demonstration, logistic regression was used to predict the
hierarchical groups of chemical clusters representing
biological degradation and inorganics clusters representing
soil contamination considering the median red, blue and,
green channel outputs and interactions between these color
channels as predictors. For the organic chemical cluster
logistic regression, the receiver operator characteristics
(ROC) curve (Figures 8A,B) demonstrates the diagnostic
ability of image analysis properties to correctly identify the
organic chemical cluster, representing levels of biological
degradation, that each sample belongs to by comparing the
sensitivity, true identification rate, versus the specificity, false-
positive identification rate. These plots, along with the
confusion matrix, give the actual number of samples
predicted to be in each group versus their actual group
(Table 4) for both the training and validation sets. The
confusion matrix indicates that this model correctly
identified the severely biologically degraded samples (cluster
4) 100% of the time with no false identifications. However, the
identification accuracy was lower for cluster group 3, moderate
levels of biological degradation, and reduced further for
clusters 1 and 2, representing no and mild biological
degradation. The validation sample results from this logistic
regression follow the same trend. Samples with severe
biological degradation (cluster 4) are accurately predicted
100% with no false positives and show progressive decreases
in the sensitivity and specificity for clusters 3, 2, and 1. This
preliminary model indicates that this approach could be
employed to identify biomass samples exhibiting moderate
to severe biological degradation, but requires expanded
datasets and further refinement to distinguish between
samples with mild or limited biological degradation and
samples without degradation.

Linear regression analysis indicated that biological
degradation was the primary factor driving variaitions in
the red-channel intensity, with soil contamination
contributing secondarily. Based on this knowledge, the
proposed process for screening feedstock for soil
contamination is to the first screen for evidence of
moderate and severe biological degradation and then use

TABLE 3 |Chemical properties, including select ash species (SO3 and SiO2), were
used to form linear regressions to explain the red-band variability.

Chemical property Red band coefficienta

Glucan 0.06
Xylan 0.33**
Lignin 0.22**
Glucan x Xylan −0.36**
Glucan x Xylan x Lignin −0.17**
SiO2 −0.17**
SO3 −0.30**

aStandardized coefficients.
(*) indicates significance 0.01 < p< 0.05.
**indicates highly significant p < 0.01.
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FIGURE 8 | Receiver operator characteristic (ROC) curves for the logistics regression training sets using image analysis data red, green, blue channels to predict
the chemical cluster (associated with levels of biological degradation) (A) training set and (B) validation set and ash cluster (associated with levels of soil contamination)
(C) training set and (D) validation set.

TABLE 4 | Confusion matrix for chemical cluster logistics regression using red,
green, and blue channels image analysis data.

Actual Predicted

Training 1 2 3 4

1 31 (50%) 30 1 0
2 20 62 (72%) 4 0
3 3 6 16 (65%) 0
4 0 0 0 5 (100%)

Validation

1 4 (25%) 12 0 0
2 5 15 (71%) 1 0
3 1 1 4 (67%) 0
4 0 0 0 1 (100%)

This table shows the actual number of samples predicted to be in each group versus their
actual group and the true positive percentages for accurate prediction.

TABLE 5 | Confusion matrix for ash cluster logistics regressions using image
analysis data red, green, and blue channels, and chemical cluster input.

Actual Predicted

Training 1 2 3 4

1 47 (75%) 11 5 0
2 14 39 (72%) 1 0
3 7 4 12 (52%) 0
4 0 0 0 1 (100%)

Validation

1 13 (81%) 2 0 1
2 3 7 (58%) 0 2
3 1 2 4 (57%) 0
4 0 0 0 0 (.)

This table shows the actual number of samples predicted to be in each group versus their
actual group, along with the true positive percentages for accurately predicted.
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the outputs of the biological degradation prediction levels to
screen for the additional presence of soil contamination. The
resulting ROC curve and confusion matrices from this soil
contamination logistics regression are shown in Figures 8C,D
and Table 5. These results indicate enhanced diagnostic ability
to predict higher levels of soil contamination (cluster group 4),
representing a sample with 38% total ash and 28% SiO2

content. As only one sample was available at this level, no
validation samples were used for this cluster group. Cluster 1
samples representing the lowest ash samples with on average
10% ash content and 6% SiO2 content was accurately 75 and
81% for the training and validation sets, respectively. The
model had relatively equal power for identifying the lower
levels of soil contamination representing average total ash 18
and 11% and SiO2 contents of 11 and 6% for clusters 3 and 2,
respectively. These results show the potential for the image

analysis to be used as a screening tool for soil contamination
after considering color changes due to biological degradation;
however, a larger dataset with known validation samples are
necessary to improve modelaccuracy.

Surface Texture Analysis
The image analysis based on color variability was used to identify
biological degradation and soil contamination levels. In this
research, image analysis of surface properties was also
investigated to identify soil contamination, biological
degradation, and additional properties impacting particle flow.
For the samples with variable ash content, samples were selected
with ash content of 5–10% (low ash) and 10–20% (high ash)
(Sievers et al., 2020), surface roughness calculated as Rq
(Figure 9A), and the GLCM parameter Shade (Figure 9C)
appear to distinguish between high and low ash samples. The

FIGURE 9 | A subset of textural feature image analysis results from bale core samples taken corn stover bales with variable ash content. (A) Rq is the root mean
square deviation. (B) FracLac is the local connected fractal dimension. (C,D) Shade and angular second moment (ASM) are grey-level co-occurrence matrix analysis
parameters.
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pattern, however, was different between Rq and Shade, with the
high ash sample measuring low Rq and higher Shade values. Rq is
a measure of surface roughness that is positively correlated with
inter-particle friction and could impede flowability. However,
surface roughness is also correlated with hydrophobicity.
Therefore, particles that trap less water should have better
flowability. Shade characterizes the tendency of clustering of
pixels as a measure of asymmetry. In our previous work using
images of hammer-milled biomass, the asymmetric clustering
that shade describes was positively related to poor conveyance
(Gudavalli et al., 2020). The fractal analysis (Figure 9B) or the
GLCM parameter ASM (Figure 9D) differed among the ash
variable samples (Sample Set 1).

Mild, moderately, and severely degraded samples (Sample
Set 2) were partly distinguished by three of the four texture
parameters shown in Figure 10. The surface roughness (Rq,
Figure 10A) reveals the most separation. Shade and ASM
(Figures 10C,D) showed differences between mild and severe
samples. These differences can be generated by how the

samples fracture during milling, causing subtle differences
in particle size and shape distributions—these differences in
particles present as differences in the texture of biomass piles.
For example, surface texture analysis could distinguish
among variable ash levels or levels of degradation.

CONCLUSION

This study used image analysis in visible, red-green-blue (RGB)
chromatic space to evaluate the quality of corn stover across four
Iowa counties representing a realistic supply shed in the US corn
belt. Linear regression relationships with R2>0.7 were found
between the red channel values from images of corn stover
and changes in chemical properties resulting from biological
degradation (xylan, glucan, and lignin) and soil contamination
(Si and S). The FT-IR results demonstrated a potential correlation
between the hydrolyzed carbohydrates and the condensed and
oxidized lignin in biologically degraded corn stover, which could

FIGURE 10 | A subset of textural feature image analysis results from bale core samples taken corn stover bales with variable biological degradation. (A) Rq is the
root mean square deviation. (B) FracLac is the local connected fractal dimension. (C,D) Shade and angular second moment (ASM) are grey-level co-occurrence matrix
analysis parameters.

Frontiers in Energy Research | www.frontiersin.org February 2022 | Volume 10 | Article 83769813

Ding et al. Image Analysis of Corn Stover

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


correlate to the red band intensity detected through image
analysis. In addition, surface texture analysis of for these same
images was found to distinguish among variable levels of ash and
degradation.

Further, logistic regression classification algorithms were used
to develop an image analysis method for screening and classifying
levels of biological degradation and soil contamination in corn
stover. This prototype supports research and development that
uses image analysis and other rapid characterization tools to
further understand and describe corn stover and bioenergy
feedstock quality during in-field or over-belt applications to
support industrial operations for sorting biomass based on
quality or presence of contaminants.
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